1
|
Rokad D, Harischandra DS, Samidurai M, Chang YT, Luo J, Lawana V, Sarkar S, Palanisamy BN, Manne S, Kim D, Zenitsky G, Jin H, Anantharam V, Willette A, Kanthasamy A, Kanthasamy AG. Manganese Exposure Enhances the Release of Misfolded α-Synuclein via Exosomes by Impairing Endosomal Trafficking and Protein Degradation Mechanisms. Int J Mol Sci 2024; 25:12207. [PMID: 39596274 PMCID: PMC11594990 DOI: 10.3390/ijms252212207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Excessive exposure to manganese (Mn) increases the risk of chronic neurological diseases, including Parkinson's disease (PD) and other related Parkinsonisms. Aggregated α-synuclein (αSyn), a hallmark of PD, can spread to neighboring cells by exosomal release from neurons. We previously discovered that Mn enhances its spread, triggering neuroinflammatory and neurodegenerative processes. To better understand the Mn-induced release of exosomal αSyn, we examined the effect of Mn on endosomal trafficking and misfolded protein degradation. Exposing MN9D dopaminergic neuronal cells stably expressing human wild-type (WT) αSyn to 300 μM Mn for 24 h significantly suppressed protein and mRNA expression of Rab11a, thereby downregulating endosomal recycling, forcing late endosomes to mature into multivesicular bodies (MVBs). Ectopic expression of WT Rab11a significantly mitigated exosome release, whereas ectopic mutant Rab11a (S25N) increased it. Our in vitro and in vivo studies reveal that Mn exposure upregulated (1) mRNA and protein levels of endosomal Rab27a, which mediates the fusion of MVBs with the plasma membrane; and (2) expression of the autophagosomal markers Beclin-1 and p62, but downregulated the lysosomal marker LAMP2, thereby impairing autophagolysosome formation as confirmed by LysoTracker, cathepsin, and acridine orange assays. Our novel findings demonstrate that Mn promotes the exosomal release of misfolded αSyn by impairing endosomal trafficking and protein degradation.
Collapse
Affiliation(s)
- Dharmin Rokad
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Dilshan S. Harischandra
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Manikandan Samidurai
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Yuan-Teng Chang
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Jie Luo
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Vivek Lawana
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Souvarish Sarkar
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Bharathi N. Palanisamy
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Sireesha Manne
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Dongsuk Kim
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Auriel Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 07101, USA;
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| |
Collapse
|
2
|
Roy S, Kakoty V, Sahebkar A, Md S, Kesharwani P. Environmental pollutants and alpha-synuclein toxicity in Parkinson's disease. Pathol Res Pract 2024; 263:155605. [PMID: 39353322 DOI: 10.1016/j.prp.2024.155605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's Disease (PD) is a chronic and progressive neurodebilitating disorder that affects both motor and non-motor functions. PD is the second most commonly occurring brain disorder after Alzheimer's disease. The incidence rate of PD was found to be 17 per 100000 per year. The prevalence of the disease is at its peak at age 70 and older. One of the major reasons for the failure to devise a complete therapeutic cure for PD is an inability to identify the exact pathological cause. Recent research has also stated that PD originates in the gut way before the symptoms begin to manifest in an affected person. This might be due to the transmission of pathological alpha-synuclein (α-syn) from the gut to the brain via the vagus nerve. The involvement of toxic environmental exposure in the generation of major disorders like cancer, brain disorders etc, is not an entirely new notion. Our genes are affected directly by the environment. Simultaneously, a number of environmental pollutants may contribute significantly to the trigger of alpha-synuclein misfolding in the brain during PD. In the present review, we will mainly focus on understanding the pathological cascade of PD and how it is triggered by environmental pollutants.
Collapse
Affiliation(s)
- Sudhamoy Roy
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T Road, Phagwara, Punjab 144411, India
| | - Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T Road, Phagwara, Punjab 144411, India; College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Doroszkiewicz J, Farhan JA, Mroczko J, Winkel I, Perkowski M, Mroczko B. Common and Trace Metals in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2023; 24:15721. [PMID: 37958705 PMCID: PMC10649239 DOI: 10.3390/ijms242115721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Trace elements and metals play critical roles in the normal functioning of the central nervous system (CNS), and their dysregulation has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In a healthy CNS, zinc, copper, iron, and manganese play vital roles as enzyme cofactors, supporting neurotransmission, cellular metabolism, and antioxidant defense. Imbalances in these trace elements can lead to oxidative stress, protein aggregation, and mitochondrial dysfunction, thereby contributing to neurodegeneration. In AD, copper and zinc imbalances are associated with amyloid-beta and tau pathology, impacting cognitive function. PD involves the disruption of iron and manganese levels, leading to oxidative damage and neuronal loss. Toxic metals, like lead and cadmium, impair synaptic transmission and exacerbate neuroinflammation, impacting CNS health. The role of aluminum in AD neurofibrillary tangle formation has also been noted. Understanding the roles of these elements in CNS health and disease might offer potential therapeutic targets for neurodegenerative disorders. The Codex Alimentarius standards concerning the mentioned metals in foods may be one of the key legal contributions to safeguarding public health. Further research is needed to fully comprehend these complex mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Maciej Perkowski
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
6
|
Werner E, Gokhale A, Ackert M, Xu C, Wen Z, Roberts AM, Roberts BR, Vrailas-Mortimer A, Crocker A, Faundez V. The mitochondrial RNA granule modulates manganese-dependent cell toxicity. Mol Biol Cell 2022; 33:ar108. [PMID: 35921164 PMCID: PMC9635304 DOI: 10.1091/mbc.e22-03-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
Prolonged manganese exposure causes manganism, a neurodegenerative movement disorder. The identity of adaptive and nonadaptive cellular processes targeted by manganese remains mostly unexplored. Here we study mechanisms engaged by manganese in genetic cellular models known to increase susceptibility to manganese exposure, the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson's gene PARK2. We found that SLC30A10 and PARK2 mutations as well as manganese exposure compromised the mitochondrial RNA granule composition and function, resulting in disruption of mitochondrial transcript processing. These RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, cells that survived a cytotoxic manganese challenge had impaired RNA granule function, thus suggesting that this granule phenotype was adaptive. CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 or DHX30, as well as pharmacological inhibition of mitochondrial transcription-translation, were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that impairment of the mitochondrial RNA granule function is a protective mechanism for acute manganese toxicity.
Collapse
Affiliation(s)
- E. Werner
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - A. Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - M. Ackert
- School of Biological Sciences, Illinois State University, Normal, IL 617901
| | - C. Xu
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322
| | - Z. Wen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322
| | - A. M. Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - B. R. Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - A. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753
| | - V. Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
7
|
Jang SB, Choong CE, Pichiah S, Choi JY, Yoon Y, Choi EH, Jang M. In-situ growth of manganese oxide on self-assembled 3D- magnesium hydroxide coated on polyurethane: Catalytic oxidation mechanism and application for Mn(II) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127267. [PMID: 34583162 DOI: 10.1016/j.jhazmat.2021.127267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Novel integration of adsorption followed by catalytic oxidation is expected to be more beneficial for higher Mn(II) removal performance. We prepared self-assembled 3D flower-like Mg(OH)2 coated on granular-sized polyurethane (namely FMHP) via hydrothermal method at 120 °C under a facile synthesis route. The optimized material, FMHP prepared with 7 g MgO and 20 g polyurethane (FMH0.35P), achieved up to 351.2 mg g-1 Mn(II) removal capacity by Langmuir isotherm model. Besides, FMHP exhibited high Mn(II) removal in a wide range of NaCl concentration (0~0.1 M) and pH 2-9. Notably, through consecutive kinetics, BET, XPS, XRD, FESEM, and TEM analyses, it was found that the MnOx layer grows in-situ via ion exchange with Mg(II) on FMHP and further boosts the Mn(II) removal via catalytic oxidation during the Mn(II) removal process. Further, column experiments revealed that the FMH0.35P exhibited superior Mn(II) removal capacities up to 135.9 mg g-1 and highly compatible treatment costs ($0.062 m-3) compared to conventional chemical processes. The granular-sized FMH0.35P prepared by economic precursors and simple synthesis route revealed a high potential for Mn(II) containing water treatment due to its high removal capacities and easy operation.
Collapse
Affiliation(s)
- Seok Byum Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Saravanan Pichiah
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Jae Young Choi
- Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea
| | - Yeomin Yoon
- Department of Civil Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
8
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
9
|
Manganese promotes α-synuclein amyloid aggregation through the induction of protein phase transition. J Biol Chem 2021; 298:101469. [PMID: 34871547 PMCID: PMC8717548 DOI: 10.1016/j.jbc.2021.101469] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/31/2023] Open
Abstract
α-Synuclein (α-Syn) is the major protein component of Lewy bodies, a key pathological feature of Parkinson’s disease (PD). The manganese ion Mn2+ has been identified as an environmental risk factor of PD. However, it remains unclear how Mn2+ regulates α-Syn aggregation. Here, we discovered that Mn2+accelerates α-Syn amyloid aggregation through the regulation of protein phase separation. We found that Mn2+ not only promotes α-Syn liquid-to-solid phase transition but also directly induces soluble α-Syn monomers to form solid-like condensates. Interestingly, the lipid membrane is integrated into condensates during Mn2+-induced α-Syn phase transition; however, the preformed Mn2+/α-syn condensates can only recruit lipids to the surface of condensates. In addition, this phase transition can largely facilitate α-Syn amyloid aggregation. Although the Mn2+-induced condensates do not fuse, our results demonstrated that they could recruit soluble α-Syn monomers into the existing condensates. Furthermore, we observed that a manganese chelator reverses Mn2+-induced α-Syn aggregation during the phase transition stage. However, after maturation, α-Syn aggregation becomes irreversible. These findings demonstrate that Mn2+ facilitates α-Syn phase transition to accelerate the formation of α-Syn aggregates and provide new insights for targeting α-Syn phase separation in PD treatment.
Collapse
|
10
|
Yuan X, Tian Y, Liu C, Zhang Z. Environmental factors in Parkinson's disease: New insights into the molecular mechanisms. Toxicol Lett 2021; 356:1-10. [PMID: 34864130 DOI: 10.1016/j.toxlet.2021.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a chronic, progressive neurodegenerative disorder affecting 2-3% of the population ≥65 years. It has long been characterized by motor impairment, autonomic dysfunction, and psychological and cognitive changes. The pathological hallmarks are intracellular inclusions containing α-synuclein aggregates and the loss of dopaminergic neurons in the substantia nigra. Parkinson's disease is thought to be caused by a combination of various pathogenic factors, including genetic factors, environmental factors, and lifestyles. Although much research has focused on the genetic causes of PD, environmental risk factors also play a crucial role in the development of the disease. Here, we summarize the environmental risk factors that may increase the occurrence of PD, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Martins AC, Ruella Oliveira S, Barbosa F, Tinkov AA, V A, Santamaría A, Lee E, Bowman AB, Aschner M. Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opin Drug Metab Toxicol 2021; 17:581-593. [PMID: 33620266 PMCID: PMC8122055 DOI: 10.1080/17425255.2021.1894123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several diseases and clinical conditions can affect enteral nutrition and adequate gastrointestinal uptake. In this respect, parenteral nutrition (PN) is necessary for the provision of deficient trace elements. However, some essential elements, such as manganese (Mn) may be toxic to children and adults when parenterally administered in excess, leading to toxic, especially neurotoxic effects. AREAS COVERED Here, we briefly provide an overview on Mn, addressing its sources of exposure, the role of Mn in the etiology of neurodegenerative diseases, and focusing on potential mechanisms associated with Mn-induced neurotoxicity. In addition, we discuss the potential consequences of overexposure to Mn inherent to PN. EXPERT OPINION In this critical review, we suggest that additional research is required to safely set Mn levels in PN, and that eliminating Mn as an additive should be considered by physicians and nutritionists on a case by case basis in the meantime to avoid the greater risk of neurotoxicity by its presence. There is a need to better define clinical biomarkers for Mn toxicity by PN, as well as identify new effective agents to treat Mn-neurotoxicity. Moreover, we highlight the importance of the development of new guidelines and practice safeguards to protect patients from excessive Mn exposure and neurotoxicity upon PN administration.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvana Ruella Oliveira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly V
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Huang CF, Liu SH, Su CC, Fang KM, Yen CC, Yang CY, Tang FC, Liu JM, Wu CC, Lee KI, Chen YW. Roles of ERK/Akt signals in mitochondria-dependent and endoplasmic reticulum stress-triggered neuronal cell apoptosis induced by 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, a major active metabolite of bisphenol A. Toxicology 2021; 455:152764. [PMID: 33771661 DOI: 10.1016/j.tox.2021.152764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA) is recognized as a harmful pollutant in the worldwide. Growing studies have reported that BPA can cause adverse effects and diseases in human, and link to a potential risk factor for development of neurodegenerative diseases (NDs). 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which generated in the mammalian liver after BPA exposure, is a major active metabolite of BPA. MBP has been suggested to exert greater toxicity than BPA. However, the molecular mechanism of MBP on the neuronal cytotoxicity remains unclear. In this study, MBP exposure significantly reduced Neuro-2a cell viability and induced apoptotic events that MBP (5-15 μM) exhibited greater neuronal cytotoxicity than BPA (50-100 μM). The mitochondria-dependent apoptotic signals including the decrease in mitochondrial membrane potential (MMP) and the increase in cytosolic apoptosis-induced factor (AIF), cytochrome c release, and Bax protein expression were involved in MBP (10 μM)-induced Neuro-2a cell death. Exposure of Neuro-2a cells to MBP (10 μM) also triggered endoplasmic reticulum (ER) stress through the induction of several key molecules including glucose-regulated protein (GRP)78, C/EBP homologous protein (CHOP), X-box binding protein (XBP)-1, protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme(IRE)-1, activation transcription factor(AFT)4 and ATF6, and caspase-12. Pretreatment with 4-PBA (an ER stress inhibitor) and specific siRNAs for GRP78, CHOP, and XBP-1 significantly suppressed the expression of these ER stress-related proteins and the activation of caspase-12/-3/-7 in MBP-exposed Neuro-2a cells. Furthermore, MBP (10 μM) exposure dramatically increased the activation of extracellular regulated protein (ERK)1/2 and decreased Akt phosphorylation. Pretreatment with PD98059 (an ERK1/2 inhibitor) and transfection with the overexpression of activation of Akt1 (myr-Akt1) effectively suppressed MBP-induced apoptotic and ER stress-related signals. Collectively, these results demonstrate that MBP exposure exerts neuronal cytotoxicity via the interplay of ERK activation and Akt inactivation-regulated mitochondria-dependent and ER stress-triggered apoptotic pathway, which ultimately leads to neuronal cell death.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, 500, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, and Department of Surgery, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, Changhua County, 500, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
13
|
Pajarillo E, Nyarko-Danquah I, Adinew G, Rizor A, Aschner M, Lee E. Neurotoxicity mechanisms of manganese in the central nervous system. ADVANCES IN NEUROTOXICOLOGY 2021; 5:215-238. [PMID: 34263091 DOI: 10.1016/bs.ant.2020.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Getinet Adinew
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
14
|
Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms. Molecules 2020; 25:molecules25245880. [PMID: 33322668 PMCID: PMC7763224 DOI: 10.3390/molecules25245880] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential trace element, serving as a cofactor for several key enzymes, such as glutamine synthetase, arginase, pyruvate decarboxylase, and mitochondrial superoxide dismutase. However, its chronic overexposure can result in a neurological disorder referred to as manganism, presenting symptoms similar to those inherent to Parkinson’s disease. The pathological symptoms of Mn-induced toxicity are well-known, but the underlying mechanisms of Mn transport to the brain and cellular toxicity leading to Mn’s neurotoxicity are not completely understood. Mn’s levels in the brain are regulated by multiple transporters responsible for its uptake and efflux, and thus, dysregulation of these transporters may result in Mn accumulation in the brain, causing neurotoxicity. Its distribution and subcellular localization in the brain and associated subcellular toxicity mechanisms have also been extensively studied. This review highlights the presently known Mn transporters and their roles in Mn-induced neurotoxicity, as well as subsequent molecular and cellular dysregulation upon its intracellular uptakes, such as oxidative stress, neuroinflammation, disruption of neurotransmission, α-synuclein aggregation, and amyloidogenesis.
Collapse
|
15
|
Martins AC, Gubert P, Villas Boas GR, Paes MM, Santamaría A, Lee E, Tinkov AA, Bowman AB, Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 2020; 20:1109-1121. [PMID: 32799578 PMCID: PMC7657997 DOI: 10.1080/14737175.2020.1807330] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami, LIKA, Federal, University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Gustavo R Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Alexey A. Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
16
|
Yan DY, Xu B. The Role of Autophagy in Manganese-Induced Neurotoxicity. Front Neurosci 2020; 14:574750. [PMID: 33041767 PMCID: PMC7522436 DOI: 10.3389/fnins.2020.574750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Manganese (Mn), an essential micronutrient, acts as a cofactor for multiple enzymes. Epidemiological investigations have shown that an excessive level of Mn is an important environmental factor involved in neurotoxicity. Frequent pollution of air and water by Mn is a serious threat to the health of the population. Overexposure to Mn is particularly detrimental to the central nervous system, leading to symptoms similar to several neurological disorders. Many different mechanisms have been implicated in Mn-induced neurotoxicity, including oxidative/nitrosative stress, toxic protein aggregation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, dysregulation of autophagy, and the apoptotic cascade, which together promote the progressive neurodegeneration of nerve cells. As a compensatory regulatory mechanism, autophagy plays dual roles in various biological activities under pathological stress conditions. Dysregulation of autophagy is involved in the development of neurodegenerative disorders, with recent emerging evidence indicating a strong, complex relationship between autophagy and Mn-induced neurotoxicity. This review discusses the connection between autophagy and Mn-induced neurotoxicity, especially alpha-synuclein oligomerization, ER stress, and aberrated protein S-nitrosylation, which will provide new insights to profoundly explore the precise mechanisms of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Dong-Ying Yan
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Miah MR, Ijomone OM, Okoh COA, Ijomone OK, Akingbade GT, Ke T, Krum B, da Cunha Martins A, Akinyemi A, Aranoff N, Antunes Soares FA, Bowman AB, Aschner M. The effects of manganese overexposure on brain health. Neurochem Int 2020; 135:104688. [PMID: 31972215 PMCID: PMC7926190 DOI: 10.1016/j.neuint.2020.104688] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Collapse
Affiliation(s)
- Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Grace T Akingbade
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bárbara Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Ayodele Akinyemi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicole Aranoff
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Stern College for Women, Yeshiva University, New York, NY, USA
| | - Felix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
18
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
19
|
Park HJ, Zhao TT, Kim SH, Lee CK, Hwang BY, Lee KE, Lee MK. Ethanol extract from Gynostemma pentaphyllum ameliorates dopaminergic neuronal cell death in transgenic mice expressing mutant A53T human alpha-synuclein. Neural Regen Res 2020; 15:361-368. [PMID: 31552910 PMCID: PMC6905327 DOI: 10.4103/1673-5374.265557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gynostemma (G.) pentaphyllum (Cucurbitaceae) contains various bioactive gypenosides. Ethanol extract from G. pentaphyllum (GP-EX) has been shown to have ameliorative effects on the death of dopaminergic neurons in animal models of Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- and 6-hydroxydopamine. PD patients exhibit multiple symptoms, so PD-related research should combine neurotoxin models with genetic models. In the present study, we investigated the ameliorative effects of GP-EX, including gypenosides, on the cell death of dopaminergic neurons in the midbrain of A53T α-synuclein transgenic mouse models of PD (A53T). Both GP-EX and gypenosides at 50 mg/kg per day were orally administered to the A53T mice for 20 weeks. α-Synuclein-immunopositive cells and α-synuclein phosphorylation were increased in the midbrain of A53T mice, which was reduced following treatment with GP-EX. Treatment with GP-EX modulated the reduced phosphorylation of tyrosine hydroxylase, extracellular signal-regulated kinase (ERK1/2), Bcl-2-associated death promoter (Bad) at Ser112, and c-Jun N-terminal kinase (JNK1/2) due to α-synuclein overexpression. In the A53T group, GP-EX treatment prolonged the latency of the step-through passive avoidance test and shortened the transfer latency of the elevated plus maze test. Gypenosides treatment exhibited the effects and efficacy similar to those of GP-EX. Taken together, GP-EX, including gypenosides, has ameliorative effects on dopaminergic neuronal cell death due to the overexpression of α-synuclein by modulating ERK1/2, Bad at Ser112, and JNK1/2 signaling in the midbrain of A53T mouse model of PD. Further studies are needed to investigate GP-EX as a treatment for neurodegenerative synucleinopathies, including PD. This study was approved by the Animal Ethics Committee of Chungbuk National University (approval No. CBNUA-956-16-01) on September 21, 2016.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Department of Social Physical Education, Songwon University, Gwangju, Republic of Korea
| | - Chong Kil Lee
- Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Bang Yeon Hwang
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
20
|
Martins AC, Morcillo P, Ijomone OM, Venkataramani V, Harrison FE, Lee E, Bowman AB, Aschner M. New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3546. [PMID: 31546716 PMCID: PMC6801377 DOI: 10.3390/ijerph16193546] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.
Collapse
Affiliation(s)
- Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Omamuyovwi Meashack Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure 340252, Nigeria;
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology and Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany;
| | - Fiona Edith Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Aaron Blaine Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| |
Collapse
|
21
|
Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy AG. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci 2019; 13:654. [PMID: 31293375 PMCID: PMC6606738 DOI: 10.3389/fnins.2019.00654] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Occupational or environmental exposure to manganese (Mn) can lead to the development of "Manganism," a neurological condition showing certain motor symptoms similar to Parkinson's disease (PD). Like PD, Mn toxicity is seen in the central nervous system mainly affecting nigrostriatal neuronal circuitry and subsequent behavioral and motor impairments. Since the first report of Mn-induced toxicity in 1837, various experimental and epidemiological studies have been conducted to understand this disorder. While early investigations focused on the impact of high concentrations of Mn on the mitochondria and subsequent oxidative stress, current studies have attempted to elucidate the cellular and molecular pathways involved in Mn toxicity. In fact, recent reports suggest the involvement of Mn in the misfolding of proteins such as α-synuclein and amyloid, thus providing credence to the theory that environmental exposure to toxicants can either initiate or propagate neurodegenerative processes by interfering with disease-specific proteins. Besides manganism and PD, Mn has also been implicated in other neurological diseases such as Huntington's and prion diseases. While many reviews have focused on Mn homeostasis, the aim of this review is to concisely synthesize what we know about its effect primarily on the nervous system with respect to its role in protein misfolding, mitochondrial dysfunction, and consequently, neuroinflammation and neurodegeneration. Based on the current evidence, we propose a 'Mn Mechanistic Neurotoxic Triad' comprising (1) mitochondrial dysfunction and oxidative stress, (2) protein trafficking and misfolding, and (3) neuroinflammation.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
22
|
Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S, Panicker N, Zenitsky G, Jin H, Lewis M, Huang X, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Sci Signal 2019; 12:eaau4543. [PMID: 30862700 PMCID: PMC6435331 DOI: 10.1126/scisignal.aau4543] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn2+) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn2+-elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn2+ exposure. Welders exposed to Mn2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn2+-treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew L Neal
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Shivani Ghaisas
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Sireesha Manne
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Nikhil Panicker
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Huajun Jin
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Mechelle Lewis
- Departments of Neurology and Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Chen P, Totten M, Zhang Z, Bucinca H, Erikson K, Santamaría A, Bowma AB, Aschner M. Iron and manganese-related CNS toxicity: mechanisms, diagnosis and treatment. Expert Rev Neurother 2019; 19:243-260. [PMID: 30759034 PMCID: PMC6422746 DOI: 10.1080/14737175.2019.1581608] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Iron (Fe) and manganese (Mn) are essential nutrients for humans. They act as cofactors for a variety of enzymes. In the central nervous system (CNS), these two metals are involved in diverse neurological activities. Dyshomeostasis may interfere with the critical enzymatic activities, hence altering the neurophysiological status and resulting in neurological diseases. Areas covered: In this review, the authors cover the molecular mechanisms of Fe/Mn-induced toxicity and neurological diseases, as well as the diagnosis and potential treatment. Given that both Fe and Mn are abundant in the earth crust, nutritional deficiency is rare. In this review the authors focus on the neurological disorders associated with Mn and Fe overload. Expert commentary: Oxidative stress and mitochondrial dysfunction are the primary molecular mechanism that mediates Fe/Mn-induced neurotoxicity. Although increased Fe or Mn concentrations have been found in brain of patients, it remains controversial whether the elevated metal amounts are the primary cause or secondary consequence of neurological diseases. Currently, treatments are far from satisfactory, although chelation therapy can significantly decrease brain Fe and Mn levels. Studies to determine the primary cause and establish the molecular mechanism of toxicity may help to adapt more comprehensive and satisfactory treatments in the future.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melissa Totten
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hana Bucinca
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keith Erikson
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Abel Santamaría
- Laboratory of Excitatory Amino Acids, National Institute of Neurology and Neurosurgery, Mexico, Mexico City, Mexico
| | - Aaron B. Bowma
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
24
|
Vijayan B, Raj V, Nandakumar S, Kishore A, Thekkuveettil A. Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration. Cell Biol Toxicol 2018; 35:147-159. [PMID: 30673990 DOI: 10.1007/s10565-018-09449-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Manganese exposure is among the many environmental risk factors linked to the progression of neurodegenerative diseases, such as manganese-induced parkinsonism. In animal models, chronic exposure to manganese causes loss of cell viability, neurodegeneration, and functional deficits. Polyamines, such as spermine, have been shown to rescue animals from age-induced neurodegeneration in an autophagy-dependent manner; nonetheless, it is not understood whether polyamines can prevent manganese-induced toxicity. In this study, we used two model systems, the Caenorhabditis elegans UA44 strain and SK-MEL-28 cells, both expressing the protein alpha-synuclein (α-syn) to determine whether spermine could ameliorate manganese-induced toxicity. Manganese caused a substantial reduction in the viability of SK-MEL-28 cells and hastened neurodegeneration in the UA44 strain. Spermine protected both the SK-MEL-28 cells and the UA44 strain from manganese-induced toxicity. Spermine also reduced the age-associated neurodegeneration observed in the UA44 strain compared with a control strain without α-syn expression and led to improved avoidance behavior in a functional assay. Treatment with berenil, an inhibitor of polyamine catabolism, which leads to increased intracellular polyamine levels, also showed similar cellular protection against manganese toxicity. While both translation blocker cycloheximide and autophagy blocker chloroquine caused a reduction in the cytoprotective effect of spermine, transcription blocker actinomycin D had no effect. This study provides new insights on the effect of spermine in preventing manganese-induced toxicity, which is most likely via translational regulation of several candidate genes, including those of autophagy. Thus, our results indicate that polyamines positively influence neuronal health, even when exposed to high levels of manganese and α-syn, and supplementing polyamines through diet might delay the onset of diseases involving degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Bejoy Vijayan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Vishnu Raj
- Division of Molecular Medicine, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Swapna Nandakumar
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
25
|
Harischandra DS, Ghaisas S, Rokad D, Kanthasamy AG. Exosomes in Toxicology: Relevance to Chemical Exposure and Pathogenesis of Environmentally Linked Diseases. Toxicol Sci 2018; 158:3-13. [PMID: 28505322 DOI: 10.1093/toxsci/kfx074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to environmental toxins has been known to initiate or aggravate various neurological disorders, carcinomas and other adverse health effects. Uptake by naïve cells of pathogenic factors such as danger-associated molecules, mRNAs, miRNAs or aggregated proteins leads to disruption in cellular homeostasis further resulting in inflammation and disease propagation. Although early research tended to focus solely on exosomal removal of unwanted cellular contents, more recent reports indicate that these nano-vesicles play an active role in intercellular signaling. Not only is the exosomal cargo cell type-specific, but it also differs between healthy and dying cells. Moreover, following exosome uptake by naïve cells, the contents from these vesicles can alter the fate of recipient cells. Since exosomes can traverse long distances, they can influence distantly located cells and tissues. This review briefly explores the role played by environmental toxins in stimulating exosome release in the context of progressive neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, as well as certain cancers such as lung, liver, ovarian, and tracheal carcinomas.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Dharmin Rokad
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
26
|
Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochem Biophys Res Commun 2018; 498:171-177. [PMID: 29408508 DOI: 10.1016/j.bbrc.2018.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
Overexposure to manganese (Mn) leads to manganism and neurotoxicity induced by Mn is the focus of recent research. Microglia play a vital role in Mn-induced neurotoxicity, and our previous studies firstly showed that Mn could stimulate activation of microglia, leading to the neuroinflammation, and inhibition of microglial inflammation effectively attenuated Mn-induced death of dopamine neurons. However, the detailed mechanism of manganese-induced neuroinflammation is still unclear. Leucine rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of many neurodegenerative disorders. Recent studies have indicated that LRRK2, which is highly expressed in microglia, plays a specific role in microglia and autophagy process. In this paper, we try to find the effect of LRRK2 on Mn-triggered neuroinflammation and its possible mechanism in vivo and in vitro. By establishing a Mn exposure animal model, our studies found that Mn exposure could induce dopaminergic neurons damage and activate microglia. Activated microglia triggered neuroinflammation by releasing multiple inflammatory cytokines, and the expression of LRRK2 was upregulated in vivo and in vitro. We also found that Mn exposure induced autophagy dysfunction in vivo and in vitro. Next, we used LRRK2 siRNA and LRRK2-IN-1 to inhibit the expression of LRRK2, and found that inhibition of LRRK2 could not only decrease the expression of inflammatory cytokines, but also recover autophagic function of microglia. Our investigation not only reveals the role of LRRK2 in Mn-induced neuroinflammation but also sheds light on the prevention and protection of manganism.
Collapse
|
27
|
Tarale P, Daiwile AP, Sivanesan S, Stöger R, Bafana A, Naoghare PK, Parmar D, Chakrabarti T, Krishnamurthi K. Manganese exposure: Linking down-regulation of miRNA-7 and miRNA-433 with α-synuclein overexpression and risk of idiopathic Parkinson's disease. Toxicol In Vitro 2017; 46:94-101. [PMID: 28986288 DOI: 10.1016/j.tiv.2017.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/18/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Manganese is an essential trace element however elevated environmental and occupational exposure to this element has been correlated with neurotoxicity symptoms clinically identical to idiopathic Parkinson's disease. In the present study we chronically exposed human neuroblastoma SH-SY5Y cells to manganese (100μM) and carried out expression profiling of miRNAs known to modulate neuronal differentiation and neurodegeneration. The miRNA PCR array results reveal alterations in expression levels of miRNAs, which have previously been associated with the regulation of synaptic transmission and apoptosis. The expressions of miR-7 and miR-433 significantly reduced upon manganese exposure. By in silico homology analysis we identified SNCA and FGF-20as targets of miR-7 and miR-433. We demonstrate an inverse correlation in expression levels where reduction in these two miRNAs causes increases in SNCA and FGF-20. Transient transfection of SH-SY5Y cells with miR-7 and miR-433 mimics resulted in down regulation of SNCA and FGF-20 mRNA levels. Our study is the first to uncover the potential link between manganese exposure, altered miRNA expression and parkinsonism: manganese exposure causes overexpression of SNCA and FGF-20 by diminishing miR-7 and miR-433 levels. These miRNAs may be considered critical for protection from manganese induced neurotoxic mechanism and hence as potential therapeutic targets.
Collapse
Affiliation(s)
- Prashant Tarale
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Atul P Daiwile
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Saravanadevi Sivanesan
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India.
| | - Reinhard Stöger
- Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Amit Bafana
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Pravin K Naoghare
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow-226001, India
| | - Tapan Chakrabarti
- Visvesvaraya National Institute of Technology [VNIT], Nagpur 440010, India
| | - Kannan Krishnamurthi
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| |
Collapse
|
28
|
The Central Role of Biometals Maintains Oxidative Balance in the Context of Metabolic and Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8210734. [PMID: 28751933 PMCID: PMC5511683 DOI: 10.1155/2017/8210734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
Abstract
Traditionally, oxidative stress as a biological aspect is defined as an imbalance between the free radical generation and antioxidant capacity of living systems. The intracellular imbalance of ions, disturbance in membrane dynamics, hypoxic conditions, and dysregulation of gene expression are all molecular pathogenic mechanisms closely associated with oxidative stress and underpin systemic changes in the body. These also include aspects such as chronic immune system activation, the impairment of cellular structure renewal, and alterations in the character of the endocrine secretion of diverse tissues. All of these mentioned features are crucial for the correct function of the various tissue types in the body. In the present review, we summarize current knowledge about the common roots of metabolic and neurodegenerative disorders induced by oxidative stress. We discuss these common roots with regard to the way that (1) the respective metal ions are involved in the maintenance of oxidative balance and (2) the metabolic and signaling disturbances of the most important biometals, such as Mg2+, Zn2+, Se2+, Fe2+, or Cu2+, can be considered as the central connection point between the pathogenesis of both types of disorders and oxidative stress.
Collapse
|
29
|
Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson's disease: Relevance to α-synuclein misfolding in metal neurotoxicity. Neurotoxicology 2017; 64:267-277. [PMID: 28450057 DOI: 10.1016/j.neuro.2017.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Many chronic neurodegenerative disorders share a common pathogenic mechanism involving the aggregation and deposition of misfolded proteins. Recently, it was shown that these aggregated proteins could be transferred from one cell to another via extracellular nanovesicles called exosomes. Initially thought to be a means of cellular waste removal, exosomes have since been discovered to actively participate in cell-to-cell communication. Importantly, various inflammatory and signaling molecules, as well as small RNAs are selectively packaged in these vesicles. Considering the important role of environmental manganese (Mn) in Parkinson's disease (PD)-like neurological disorders, we characterized the effect of Mn on exosome content and release using an MN9D dopaminergic cell model of PD, which was generated to stably express wild-type human α-synuclein (αSyn). Mn exposure (300μM MnCl2) for 24h induced the release of exosomes into the extracellular media prior to cytotoxicity, as determined by NanoSight particle analysis and electron microscopy. Strikingly, Western blot analysis revealed that Mn treatment in αSyn-expressing cells increases the protein Rab27a, which regulates the release of exosomes from cells. Moreover, next-generation sequencing showed more small RNAs in exosomes isolated from Mn-exposed cells than from control exosomes. Our miRNA profiling analysis led to the discovery of increased expression of certain miRNAs previously shown to regulate key biological pathways, including protein aggregation, autophagy, inflammation and hypoxia. Collectively, our results provide a glimpse of Mn's role in modulating extracellular miRNA content through exosomal release from dopaminergic neuronal cells and thus potentially contributing to progressive neurodegeneration. Further characterization of extracellular miRNAs and their targets will have major impacts on biomarker discovery and translational strategies for environmentally linked neurodegenerative diseases including PD.
Collapse
|
30
|
|
31
|
Role of neurotoxicants and traumatic brain injury in α-synuclein protein misfolding and aggregation. Brain Res Bull 2016; 133:60-70. [PMID: 27993598 DOI: 10.1016/j.brainresbull.2016.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
Protein misfolding and aggregation are key pathological features of many neurodegenerative diseases including Parkinson's disease (PD) and other forms of human Parkinsonism. PD is a complex and multifaceted disorder whose etiology is not fully understood. However, several lines of evidence support the multiple hit hypothesis that genetic vulnerability and environmental toxicants converge to trigger PD pathology. Alpha-synuclein (α-Syn) aggregation in the brain is an important pathophysiological characteristic of synucleinopathies including PD. Epidemiological and experimental studies have shown that metals and pesticides play a crucial role in α-Syn aggregation leading to the onset of various neurodegenerative diseases including PD. In this review, we will emphasize key findings of several epidemiological as well as experimental studies of metal- and pesticide-induced α-Syn aggregation and neurodegeneration. We will also discuss other factors such as traumatic brain injury and oxidative insult in the context of α-Syn-related neurodegenerative processes.
Collapse
|
32
|
Shen XF, Huang P, Fox DA, Lin Y, Zhao ZH, Wang W, Wang JY, Liu XQ, Chen JY, Luo WJ. Adult lead exposure increases blood-retinal permeability: A risk factor for retinal vascular disease. Neurotoxicology 2016; 57:145-152. [DOI: 10.1016/j.neuro.2016.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
|
33
|
Disease-Toxicant Interactions in Parkinson's Disease Neuropathology. Neurochem Res 2016; 42:1772-1786. [PMID: 27613618 DOI: 10.1007/s11064-016-2052-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Human disease commonly manifests as a result of complex genetic and environmental interactions. In the case of neurodegenerative diseases, such as Parkinson's disease (PD), understanding how environmental exposures collude with genetic polymorphisms in the central nervous system to cause dysfunction is critical in order to develop better treatment strategies, therapies, and a more cohesive paradigm for future research. The intersection of genetics and the environment in disease etiology is particularly relevant in the context of their shared pathophysiological mechanisms. This review offers an integrated view of disease-toxicant interactions in PD. Particular attention is dedicated to how mutations in the genes SNCA, parkin, leucine-rich repeat kinase 2 (LRRK2) and DJ-1, as well as dysfunction of the ubiquitin proteasome system, may contribute to PD and how exposure to heavy metals, pesticides and illicit drugs may further the consequences of these mutations to exacerbate PD and PD-like disorders. Although the toxic effects induced by exposure to these environmental factors may not be the primary causes of PD, their mechanisms of action are critical for our current understanding of the neuropathologies driving PD. Elucidating how environment and genetics collude to cause pathogenesis of PD will facilitate the development of more effective treatments for the disease. Additionally, we discuss the neuroprotection exerted by estrogen and other compounds that may prevent PD and provide an overview of current treatment strategies and therapies.
Collapse
|
34
|
Peres TV, Parmalee NL, Martinez-Finley EJ, Aschner M. Untangling the Manganese-α-Synuclein Web. Front Neurosci 2016; 10:364. [PMID: 27540354 PMCID: PMC4972813 DOI: 10.3389/fnins.2016.00364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases affect a significant portion of the aging population. Several lines of evidence suggest a positive association between environmental exposures, which are common and cumulative in a lifetime, and development of neurodegenerative diseases. Environmental or occupational exposure to manganese (Mn) has been implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction, oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction cannot be ruled out. In this review we will examine the current knowledge surrounding the interaction of α-Syn and Mn in neurodegenerative process.
Collapse
Affiliation(s)
- Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Nancy L Parmalee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
35
|
Cholanians AB, Phan AV, Ditzel EJ, Camenisch TD, Lau SS, Monks TJ. From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration. Toxicol Sci 2016; 153:271-81. [PMID: 27413109 DOI: 10.1093/toxsci/kfw117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), are neurodegenerative diseases characterized by accumulation of α-synuclein (SYN), a small neuronal protein with prion like properties that plays a central role in PD pathogenesis. SYN can misfold and generate toxic oligomers/aggregates, which can be cytotoxic. Environmental arsenic (As)-containing pesticide use correlates with increased incidence of PD. Moreover, because As exposure can lead to inhibition of autophagic flux we hypothesize that As can facilitate the accumulation of toxic SYN oligomers/aggregates and subsequent increases in markers of autophagy. We therefore examined the role of As in the oligomerization of SYN, and the consequences thereof. Chronic exposure of SH-SY5Y cells overexpressing SYN to As caused a dose-dependent oligomerization of SYN, with concomitant increases in protein ubiquitination and expression of other stress markers (protein glutathione binding, γ-GCS, light chain 3 (LC3)-I/II, P62, and NAD(P)H dehydrogenase quinone 1), indicative of an increased proteotoxic stress. Immunocytochemical analyses revealed an accumulation of SYN, and it's colocalization with LC3, a major autophagic protein. Mice exposed to As (100 ppb) for 1 month, exhibited elevated SYN accumulation in the cortex and striatum, and elevations in protein ubiquitination and LC3-I and II levels. However, tyrosine hydroxylase (TH), an indicator of dopaminergic cell density, was upregulated in the As exposed animals. Because SYN can inhibit TH function, and As can decrease monoamine levels, As exposure possibly leads to compensatory mechanisms leading to an increase in TH expression. Our findings suggest that susceptible individuals may be at higher risk of developing synucleinopathies and/or neurodegeneration due to environmental As exposure.
Collapse
Affiliation(s)
- Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Andy V Phan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Eric J Ditzel
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Todd D Camenisch
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Serrine S Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Terrence J Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| |
Collapse
|
36
|
Song H, Kim W, Choi JH, Kim SH, Lee D, Park CH, Kim S, Kim DY, Kim KT. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation. Sci Rep 2016; 6:28634. [PMID: 27346674 PMCID: PMC4922050 DOI: 10.1038/srep28634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 02/01/2023] Open
Abstract
Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer’s disease (AD) and Parkinson’s disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Haengjin Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Wanil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jung-Hyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sung-Hoon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Choon-Ho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu, Gyeongbuk, 41940, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
37
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2548792. [PMID: 27314012 PMCID: PMC4899583 DOI: 10.1155/2016/2548792] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2016] [Indexed: 02/07/2023]
Abstract
Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease.
Collapse
|
39
|
Yshii LM, Denadai-Souza A, Vasconcelos AR, Avellar MCW, Scavone C. Suppression of MAPK attenuates neuronal cell death induced by activated glia-conditioned medium in alpha-synuclein overexpressing SH-SY5Y cells. J Neuroinflammation 2015; 12:193. [PMID: 26502720 PMCID: PMC4623263 DOI: 10.1186/s12974-015-0412-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease with characteristics and symptoms that are well defined. Nevertheless, its aetiology remains unknown. PD is characterized by the presence of Lewy bodies inside neurons. α-Synuclein (α-syn) is a soluble protein present in the pre-synaptic terminal of neurons. Evidence suggests that α-syn has a fundamental role in PD pathogenesis, given that it is an important component of Lewy bodies localized in the dopaminergic neurons of PD patients. METHODS In the present study, we investigated the influence of wild type (WT) and A30P α-syn overexpression on neuroblastoma SH-SY5Y toxicity induced by the conditioned medium (CM) from primary cultures of glia challenged with lipopolysaccharide (LPS) from Escherichia coli. RESULTS We observed that SH-SY5Y cells transduced with α-syn (WT or A30P) and treated with CM from LPS-activated glia cells show evidence of cell death, which is not reverted by NF-κB inhibition by sodium salicylate or by blockage of P50 (NF-κB subunit). Furthermore, the expression of A30P α-syn in neuroblastoma SH-SY5Y decreases the cell death triggered by the CM of activated glia versus WT α-syn or control group. This effect of A30P α-syn may be due to the low MAPK42/44 phosphorylation. This finding is substantiated by MEK1 inhibition by PD98059, decreasing LDH release by CM in SH-SY5Y cells. CONCLUSION Our results suggest that SH-SY5Y cells transduced with α-syn (WT or A30P) and treated with CM from LPS-activated glia cells show cell death, which is not reverted by NF-κB blockage. Additionally, the expression of A30P α-syn on neuroblastoma SH-SY5Y leads to decreased cell death triggered by the CM of activated glia, when compared to WT α-syn or control group. The mechanism underlying this process remains to be completely elucidated, but the present data suggest that MAPK42/44 phosphorylation plays an important role in this process. TRIAL REGISTRATION PROSPERO CRD42015020829.
Collapse
Affiliation(s)
- Lidia M Yshii
- Department of Pharmacology, Molecular Neuropharmacology Laboratory, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900, Brazil.
| | - Alexandre Denadai-Souza
- Department of Pharmacology, Section of Experimental Endocrinology, Federal University of São Paulo, São Paulo, Brazil.
| | - Andrea R Vasconcelos
- Department of Pharmacology, Molecular Neuropharmacology Laboratory, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900, Brazil.
| | - Maria Christina W Avellar
- Department of Pharmacology, Section of Experimental Endocrinology, Federal University of São Paulo, São Paulo, Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Molecular Neuropharmacology Laboratory, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900, Brazil.
| |
Collapse
|
40
|
Dučić T, Carboni E, Lai B, Chen S, Michalke B, Lázaro DF, Outeiro TF, Bähr M, Barski E, Lingor P. Alpha-Synuclein Regulates Neuronal Levels of Manganese and Calcium. ACS Chem Neurosci 2015; 6:1769-79. [PMID: 26284970 DOI: 10.1021/acschemneuro.5b00093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Manganese (Mn) may foster aggregation of alpha-synuclein (αSyn) contributing to the pathogenesis of PD. Here, we examined the influence of αSyn overexpression on distribution and oxidation states of Mn in frozen-hydrated primary midbrain neurons (PMNs) by synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure spectroscopy (XANES). Overexpression of αSyn increased intracellular Mn levels, whereas levels of Ca, Zn, K, P, and S were significantly decreased. Mn oxidation states were not altered. A strong correlation between Cu-/Mn-levels as well as Fe-/Mn-levels was observed in αSyn-overexpressing cells. Subcellular resolution revealed a punctate or filament-like perinuclear and neuritic distribution of Mn, which resembled the expression of DMT1 and MnSOD. While overexpression of αSyn did not significantly alter the expression patterns of the most-expressed Mn transport proteins (DMT1, VGCC, Fpn1), it attenuated the Mn release from Mn-treated neurons. Thus, these data suggest that αSyn may act as an intracellular Mn store. In total, neurotoxicity in PD could be mediated via regulation of transition metal levels and the metal-binding capacity of αSyn, which could represent a promising therapeutic target for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Tanja Dučić
- CELLS
−
ALBA, Carretera BP 1413, de Cerdanyola
del Vallès a Sant Cugat del Vallè, km. 33, 08290 Cerdanyola del Vallès,
Barcelona, Spain
| | - Eleonora Carboni
- Department
of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DFG-Research Center
for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Barry Lai
- Advanced
Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,
| | - Si Chen
- Advanced
Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States,
| | - Bernhard Michalke
- Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Diana F. Lázaro
- Department
of Neurodegeneration and Restorative Research, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Tiago F. Outeiro
- Department
of Neurodegeneration and Restorative Research, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Mathias Bähr
- Department
of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DFG-Research Center
for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Elisabeth Barski
- Department
of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Paul Lingor
- Department
of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DFG-Research Center
for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| |
Collapse
|
41
|
Bates CA, Fu S, Ysselstein D, Rochet JC, Zheng W. Expression and Transport of α-Synuclein at the Blood-Cerebrospinal Fluid Barrier and Effects of Manganese Exposure. ADMET AND DMPK 2015; 3:15-33. [PMID: 26640596 PMCID: PMC4669215 DOI: 10.5599/admet.3.1.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus maintains the homeostasis of critical molecules in the brain by regulating their transport between the blood and cerebrospinal fluid (CSF). The current study was designed to investigate the potential role of the blood-CSF barrier (BCSFB) in α-synuclein (a-Syn) transport in the brain as affected by exposure to manganese (Mn), the toxic metal implicated in Parkinsonian disorders. Immunohistochemistry was used to identify intracellular a-Syn expression at the BCSFB. Quantitative real-time PCR was used to quantify the change in a-Syn mRNA expression following Mn treatments at the BCSFB in vitro. ELISA was used to quantify a-Syn levels following in vivo and in vitro treatments of Mn, copper (Cu), and/or external a-Syn. Thioflavin-T assay was used to investigate a-Syn aggregation after incubating with Mn and/or Cu in vitro. A two-chamber Transwell system was used to study a-Syn transport by BCSFB monolayer. Data revealed the expression of endogenous a-Syn in rat choroid plexus tissue and immortalized choroidal epithelial Z310 cells. The cultured primary choroidal epithelia from rats showed the ability to take up a-Syn from extracellular medium and transport a-Syn across the cellular monolayer from the donor to receiver chamber. Exposure of cells with Mn induced intracellular a-Syn accumulation without causing any significant changes in a-Syn mRNA expression. A significant increase in a-Syn aggregation in a cell-free system was observed with the presence of Mn. Moreover, Mn exposure resulted in a significant uptake of a-Syn by primary cells. These data indicate that the BCSFB expresses a-Syn endogenously and is capable of transporting a-Syn across the BCSFB monolayer; Mn exposure apparently increases a-Syn accumulation in the BCSFB by facilitating its uptake and intracellular aggregation.
Collapse
Affiliation(s)
| | - Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| | - Daniel Ysselstein
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
42
|
Correlation between the biochemical pathways altered by mutated parkinson-related genes and chronic exposure to manganese. Neurotoxicology 2014; 44:314-25. [DOI: 10.1016/j.neuro.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 01/02/2023]
|
43
|
Sidoryk-Wegrzynowicz M, Aschner M. Manganese toxicity in the central nervous system: the glutamine/glutamate-γ-aminobutyric acid cycle. J Intern Med 2013; 273:466-77. [PMID: 23360507 PMCID: PMC3633698 DOI: 10.1111/joim.12040] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) is an essential trace element that is required for maintaining proper function and regulation of numerous biochemical and cellular reactions. Despite its essentiality, at excessive levels Mn is toxic to the central nervous system (CNS). Increased accumulation of Mn in specific brain regions, such as the substantia nigra, globus pallidus and striatum, triggers neurotoxicity resulting in a neurological brain disorder, termed manganism. Mn has been also implicated in the pathophysiology of several other neurodegenerative diseases. Its toxicity is associated with disruption of the glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons, thus leading to changes in Glu-ergic and/or GABAergic transmission and Gln metabolism. Here we discuss the common mechanisms underlying Mn-induced neurotoxicity and their relationship to CNS pathology and GGC impairment.
Collapse
|
44
|
Xu B, Wu SW, Lu CW, Deng Y, Liu W, Wei YG, Yang TY, Xu ZF. Oxidative stress involvement in manganese-induced alpha-synuclein oligomerization in organotypic brain slice cultures. Toxicology 2013; 305:71-8. [DOI: 10.1016/j.tox.2013.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 02/07/2023]
|
45
|
Abstract
The review addresses issues pertinent to Mn accumulation and its mechanisms of transport, its neurotoxicity and mechanisms of neurodegeneration. The role of mitochondria and glia in this process is emphasized. We also discuss gene x environment interactions, focusing on the interplay between genes linked to Parkinson's disease (PD) and sensitivity to Mn.
Collapse
Affiliation(s)
- Jerome Roth
- Department of Pharmacology and Toxicology, University at Buffalo School of Medicine, 11 Cary Hall, Buffalo, NY, 14214, USA
| | | | | |
Collapse
|
46
|
Verina T, Schneider JS, Guilarte TR. Manganese exposure induces α-synuclein aggregation in the frontal cortex of non-human primates. Toxicol Lett 2012; 217:177-83. [PMID: 23262390 DOI: 10.1016/j.toxlet.2012.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/01/2023]
Abstract
Aggregation of α-synuclein (α-syn) in the brain is a defining pathological feature of neurodegenerative disorders classified as synucleinopathies. They include Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Occupational and environmental exposure to manganese (Mn) is associated with a neurological syndrome consisting of psychiatric symptoms, cognitive impairment and parkinsonism. In this study, we examined α-syn immunoreactivity in the frontal cortex of Cynomolgus macaques as part of a multidisciplinary assessment of the neurological effects produced by exposure to moderate levels of Mn. We found increased α-syn-positive cells in the gray matter of Mn-exposed animals, typically observed in pyramidal and medium-sized neurons in deep cortical layers. Some of these neurons displayed loss of Nissl staining with α-syn-positive spherical aggregates. In the white matter we also observed α-syn-positive glial cells and in some cases α-syn-positive neurites. These findings suggest that Mn exposure promotes α-syn aggregation in neuronal and glial cells that may ultimately lead to degeneration in the frontal cortex gray and white matter. To our knowledge, this is the first report of Mn-induced neuronal and glial cell α-syn accumulation and aggregation in the frontal cortex of non-human primates.
Collapse
Affiliation(s)
- Tatyana Verina
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
47
|
Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RDS, Erikson KM, Aschner M, Leal RB. In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 2012; 7:e33057. [PMID: 22427945 PMCID: PMC3302787 DOI: 10.1371/journal.pone.0033057] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/06/2012] [Indexed: 11/30/2022] Open
Abstract
Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3rd, 4th and 5th week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.
Collapse
Affiliation(s)
- Fabiano M. Cordova
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Centro de Ciência Animal, Universidade Federal do Tocantins, Araguaína, Brazil
| | - Aderbal S. Aguiar
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tanara V. Peres
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mark W. Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Filipe M. Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline P. Remor
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Samantha C. Lopes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Célso Pilati
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, Brazil
| | - Alexandra S. Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rui D. S. Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina, Greensboro, North Carolina, United States of America
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rodrigo B. Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- * E-mail:
| |
Collapse
|
48
|
Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011; 25:191-203. [PMID: 21963226 PMCID: PMC3230726 DOI: 10.1016/j.jtemb.2011.08.144] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/16/2011] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is an essential ubiquitous trace element that is required for normal growth, development and cellular homeostasis. Exposure to high Mn levels causes a clinical disease characterized by extrapyramidal symptom resembling idiopathic Parkinson's disease (IPD). The present review focuses on the role of various transporters in maintaining brain Mn homeostasis along with recent methodological advances in real-time measurements of intracellular Mn levels. We also provide an overview on the role for Mn in IPD, discussing the similarities (and differences) between manganism and IPD, and the relationship between α-synuclein and Mn-related protein aggregation, as well as mitochondrial dysfunction, Mn and PD. Additional sections of the review discuss the link between Mn and Huntington's disease (HD), with emphasis on huntingtin function and the potential role for altered Mn homeostasis and toxicity in HD. We conclude with a brief survey on the potential role of Mn in the etiologies of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and prion disease. Where possible, we discuss the mechanistic commonalities inherent to Mn-induced neurotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Aaron B Bowman
- Department of Neurology, Vanderbilt Kennedy Center, Center for Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232-8552, United States
| | | | | | | |
Collapse
|
49
|
Tan J, Zhang T, Jiang L, Chi J, Hu D, Pan Q, Wang D, Zhang Z. Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein. J Biol Chem 2011; 286:29654-62. [PMID: 21724849 DOI: 10.1074/jbc.m111.233874] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutations in the ATP13A2 gene are associated with Kufor-Rakeb syndrome (KRS) and are found also in patients with various other types of parkinsonism. ATP13A2 encodes a predicted lysosomal P5-type ATPase that plays important roles in regulating cation homeostasis. Disturbance of cation homeostasis in brains is indicated in Parkinson disease pathogenesis. In this study, we explored the biological function of ATP13A2 as well as the pathogenic mechanism of KRS pathogenic ATP13A2 mutants. The results revealed that wild-type ATP13A2, but not the KRS pathogenic ATP13A2 mutants, protected cells from Mn(2+)-induced cell death in mammalian cell lines and primary rat neuronal cultures. In addition, wild-type ATP13A2 reduced intracellular manganese concentrations and prevented cytochrome c release from mitochondria compared with the pathogenic mutants. Furthermore, endogenous ATP13A2 was up-regulated upon Mn(2+) treatment. Our results suggest that ATP13A2 plays important roles in protecting cells against manganese cytotoxicity via regulating intracellular manganese homeostasis. The study provides a potential mechanism of KRS and parkinsonism pathogenesis.
Collapse
Affiliation(s)
- Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Covy JP, Giasson BI. α-Synuclein, leucine-rich repeat kinase-2, and manganese in the pathogenesis of Parkinson disease. Neurotoxicology 2011; 32:622-9. [PMID: 21238487 DOI: 10.1016/j.neuro.2011.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/29/2010] [Accepted: 01/07/2011] [Indexed: 01/14/2023]
Abstract
Parkinson disease (PD) is the most common movement disorder. It is characterized by bradykinesia, postural instability, resting tremor, and rigidity associated with the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Another pathological hallmark of PD is the presence of α-synuclein proteiniacous inclusions, known as Lewy bodies and Lewy neurites, in some of the remaining dopaminergic neurons. Mounting evidence indicates that both genetic and environmental factors contribute to the etiology of PD. For example, genetic mutations (duplications, triplications or missense mutations) in the α-synuclein gene can lead to PD, but even in these patients, age-dependent physiological changes or environmental exposures appear to be involved in disease presentation. Several additional alterations in many other genes have been established to either cause or increase the risk of parkinson disease. More specifically, autosomal dominant missense mutations in the gene for leucine-rich repeat kinase 2 (LRRK2/PARK8) are the most common known cause of PD. Recently it was shown that G2019S, the most common diseasing-causing mutant of LRRK2, has dramatic effects on the kinase activity of LRRK2: while activity of wild-type LRRK2 is inhibited by manganese, the G2019S mutation abrogates this inhibition. Based on the in vitro kinetic properties of LRRK2 in the presence of manganese, we proposed that LRRK2 may be a sensor of cytoplasmic manganese levels and that the G2019S mutant has lost this function. This finding, alongside a growing number of studies demonstrating an interaction between PD-associated proteins and manganese, suggest that dysregulation of neuronal manganese homeostasis over a lifetime can play an important role in the etiology of PD.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|