1
|
Bavencoffe A, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Domagala DM, Zhu MX, Dessauer CW, Walters ET. Widespread hyperexcitability of nociceptor somata outlasts enhanced avoidance behavior after incision injury. Pain 2024:00006396-990000000-00749. [PMID: 39432803 DOI: 10.1097/j.pain.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. The present study shows that long-lasting hyperexcitability that can generate OA during modest depolarization in probable nociceptors dissociated from DRGs of male and female rats is induced by plantar incision injury. OA occurred when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This hyperexcitability persisted for at least 3 weeks, whereas behavioral indicators of affective pain-hind paw guarding and increased avoidance of a noxious substrate in an operant conflict test-persisted for 1 week or less. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. An unexpected discovery after plantar incisions was hyperexcitability in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to contribute to hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kramer PR, Hornung RS, Umorin M, Benson MD, Kinchington PR. Neurexin 3 Regulates Synaptic Connections Between Central Amygdala Neurons and Excitable Cells of the Lateral Parabrachial Nucleus in Rats with Varicella Zoster Induced Orofacial Pain. J Pain Res 2024; 17:2311-2324. [PMID: 38974829 PMCID: PMC11227312 DOI: 10.2147/jpr.s441706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/14/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Herpes Zoster in humans is the result of varicella zoster virus (VZV) infection. Injecting rats with varicella zoster virus produces pain similar to herpes zoster "shingles" pain in humans. . In a previous study, orofacial pain was induced by injecting the whisker pad of male rats with VZV and the pain response increased after attenuating neurexin 3 (Nrxn3) expression in the central amygdala. Neurons descend from the central amygdala to the lateral parabrachial nucleus and orofacial pain signals ascend to the lateral parabrachial nucleus. GABAergic neurons within the central amygdala regulate pain by inhibiting activity within the lateral parabrachial nucleus. Attenuating Nrxn3 expression in the central amygdala increased GABA release in the lateral parabrachial nucleus suggesting Nrxn3 controls pain by regulating GABA release. Nrxn3 can also control synaptic connections between neurons, and we hypothesized that Nrxn3 knockdown in the central amygdala would reduce the number of GABAergic synaptic connections in the lateral parabrachial nucleus and increase VZV associated pain. Methods To test this idea, the number of synaptic connections between GABAergic cells of the central amygdala and excitatory or dynorphin positive neurons within the lateral parabrachial nucleus were quantitated after infusion of a virus expressing synaptophysin. Synaptophysin is a synaptic vesicle protein that labels neuronal synaptic connections. These connections were measured in rats with and without whisker pad injection of VZV and knockdown of Nrxn3 within the central amygdala. Orofacial pain was measured using a place escape avoidance paradigm. Results GABAergic synaptic connections were reduced in the lateral parabrachial nucleus after Nrxn3 knockdown. Rats with a reduction in the number of connections had an increase in VZV associated orofacial pain. Immunostaining with the pain marker prodynorphin indicated that the reduction in GABAergic connections was primarily associated with prodynorphin positive neurons. Discussion The results suggest Nrxn3 reduces VZV associated orofacial pain, in part, by enhancing synaptic connections between GABA cells of the central amygdala and pain neurons within the lateral parabrachial nucleus.
Collapse
Affiliation(s)
- Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Rebecca S Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Sliwinski C, Heutehaus L, Taberner FJ, Weiss L, Kampanis V, Tolou-Dabbaghian B, Cheng X, Motsch M, Heppenstall PA, Kuner R, Franz S, Lechner SG, Weidner N, Puttagunta R. Contribution of mechanoreceptors to spinal cord injury-induced mechanical allodynia. Pain 2024; 165:1336-1347. [PMID: 38739766 PMCID: PMC11090032 DOI: 10.1097/j.pain.0000000000003139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/27/2023] [Indexed: 05/16/2024]
Abstract
ABSTRACT Evidence from previous studies supports the concept that spinal cord injury (SCI)-induced neuropathic pain (NP) has its neural roots in the peripheral nervous system. There is uncertainty about how and to which degree mechanoreceptors contribute. Sensorimotor activation-based interventions (eg, treadmill training) have been shown to reduce NP after experimental SCI, suggesting transmission of pain-alleviating signals through mechanoreceptors. The aim of the present study was to understand the contribution of mechanoreceptors with respect to mechanical allodynia in a moderate mouse contusion SCI model. After genetic ablation of tropomyosin receptor kinase B expressing mechanoreceptors before SCI, mechanical allodynia was reduced. The identical genetic ablation after SCI did not yield any change in pain behavior. Peptidergic nociceptor sprouting into lamina III/IV below injury level as a consequence of SCI was not altered by either mechanoreceptor ablation. However, skin-nerve preparations of contusion SCI mice 7 days after injury yielded hyperexcitability in nociceptors, not in mechanoreceptors, which makes a substantial direct contribution of mechanoreceptors to NP maintenance unlikely. Complementing animal data, quantitative sensory testing in human SCI subjects indicated reduced mechanical pain thresholds, whereas the mechanical detection threshold was not altered. Taken together, early mechanoreceptor ablation modulates pain behavior, most likely through indirect mechanisms. Hyperexcitable nociceptors seem to be the main drivers of SCI-induced NP. Future studies need to focus on injury-derived factors triggering early-onset nociceptor hyperexcitability, which could serve as targets for more effective therapeutic interventions.
Collapse
Affiliation(s)
- Christopher Sliwinski
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Lisa Weiss
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Vasileios Kampanis
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Bahardokht Tolou-Dabbaghian
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Xing Cheng
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Motsch
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Radhika Puttagunta
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Bavencoffe AG, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Zhu MX, Dessauer CW, Walters ET. Widespread latent hyperactivity of nociceptors outlasts enhanced avoidance behavior following incision injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578108. [PMID: 38352319 PMCID: PMC10862851 DOI: 10.1101/2024.01.30.578108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. An important question is whether similar nociceptor OA is induced by painful conditions other than neuropathy. The present study shows that probable nociceptors dissociated from DRGs of rats subjected to postsurgical pain (induced by plantar incision) exhibit OA. The OA was most apparent when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This latent hyperactivity persisted for at least 3 weeks, whereas behavioral indicators of affective pain - hindpaw guarding and increased avoidance of a noxious substrate in an operant conflict test - persisted for 1 week or less. An unexpected discovery was latent OA in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to amplify hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Falih M. Gorgun
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Breanna Q. Shen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
5
|
da Silva Fiorin F, Cunha do Espírito Santo C, Santos do Nascimento R, França AP, Freire Royes LF. Behavioral deficits after mild traumatic brain injury by fluid percussion in rats. Neurosci Lett 2024; 818:137550. [PMID: 37926292 DOI: 10.1016/j.neulet.2023.137550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Mild traumatic brain injury (TBI) can lead to various disorders, encompassing cognitive and psychiatric complications. While pre-clinical studies have long investigated behavioral alterations, the fluid percussion injury (FPI) model still lacks a comprehensive behavioral battery that includes psychiatric-like disorders. To address this gap, we conducted multiple behavioral tasks over two months in adult male Wistar rats, focusing on mild FPI. Statistical analyses revealed that both naive and sham animals exhibited an increase in sweet liquid consumption over time. In contrast, the TBI group did not show any temporal changes, although mild FPI did induce a statistically significant decrease in sucrose consumption compared to control groups during the chronic phase. Additionally, social interaction tasks indicated reduced contact time in TBI animals. The elevated plus maze task demonstrated an increase in open-arm exploration following fluid percussion. Nonetheless, no significant differences were observed in the acute and chronic phases for the forced swim and light-dark box tasks. Evaluation of three distinct memory tasks in the chronic phase revealed that mild FPI led to long-term memory deficits, as assessed by the object recognition task, while the surgical procedure itself resulted in short-term spatial memory deficits, as evaluated by the Y-maze task. Conversely, working memory remained unaffected in the water maze task. Collectively, these findings provide a nuanced characterization of behavioral deficits induced by mild FPI.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Caroline Cunha do Espírito Santo
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Raphael Santos do Nascimento
- Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angela Patricia França
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
6
|
Teixeira-Santos L, Martins S, Sousa T, Albino-Teixeira A, Pinho D. The pro-resolving lipid mediator Maresin 1 ameliorates pain responses and neuroinflammation in the spared nerve injury-induced neuropathic pain: A study in male and female mice. PLoS One 2023; 18:e0287392. [PMID: 37347750 PMCID: PMC10286986 DOI: 10.1371/journal.pone.0287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) have recently emerged as promising therapeutic approaches for neuropathic pain (NP). We evaluated the effects of oral treatment with the SPM Maresin 1 (MaR1) on behavioral pain responses and spinal neuroinflammation in male and female C57BL/6J mice with spared nerve injury (SNI)-induced NP. MaR1, or vehicle, was administered once daily, on post-surgical days 3 to 5, by voluntary oral intake. Sensory-discriminative and affective-motivational components of pain were evaluated with von Frey and place escape/avoidance paradigm (PEAP) tests, respectively. Spinal microglial and astrocytic activation were assessed by immunofluorescence, and the spinal concentration of cytokines IL-1β, IL-6, IL-10, and macrophage colony-stimulating factor (M-CSF) were evaluated by multiplex immunoassay. MaR1 treatment reduced SNI-induced mechanical hypersensitivity on days 7 and 11 in both male and female mice, and appeared to ameliorate the affective component of pain in males on day 11. No definitive conclusions could be drawn about the impact of MaR1 on the affective-motivational aspects of pain in female mice, since repeated suprathreshold mechanical stimulation of the affected paw in the dark compartment did not increase the preference of vehicle-treated SNI females for the light side, during the PEAP test session (a fundamental assumption for PAEP's validity). MaR1 treatment also reduced ipsilateral spinal microglial and astrocytic activation in both sexes and marginally increased M-CSF in males, while not affecting cytokines IL-1β, IL-6 and IL-10 in either sex. In summary, our study has shown that oral treatment with MaR1 (i) produces antinociception even in an already installed peripheral NP mouse model, and (ii) this antinociception may extend for several days beyond the treatment time-frame. These therapeutic effects are associated with attenuated microglial and astrocytic activation in both sexes, and possibly involve modulation of M-CSF action in males.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário São João (CHUSJ), Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Hornung RS, Kinchington PR, Umorin M, Kramer PR. PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus. Mol Pain 2023; 19:17448069231202598. [PMID: 37699860 PMCID: PMC10515525 DOI: 10.1177/17448069231202598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.
Collapse
Affiliation(s)
- Rebecca S Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| |
Collapse
|
8
|
Kramer PR, Umorin M, Hornung R, Benson MD, Kinchington PR. Sex Differences in the Role of Neurexin 3α in Zoster Associated Pain. Front Integr Neurosci 2022; 16:915797. [PMID: 35875508 PMCID: PMC9302461 DOI: 10.3389/fnint.2022.915797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Varicella zoster virus (VZV) induces orofacial pain and female rats show greater pain than male rats. During the proestrus phase of the estrous cycle the VZV induce pain response is attenuated in female rats. A screen of gene expression changes in diestrus and proestrus female rats indicated neurexin 3α (Nrxn3α) was elevated in the central amygdala of proestrus rats vs. diestrus rats. GABAergic neurons descend from the central amygdala to the lateral parabrachial region and Nrxn3α is important for presynaptic γ-Aminobutyric acid (GABA) release. Thus, we hypothesized that the reduced orofacial pain in male rats and proestrus female rats is the result of increased Nrxn3α within the central amygdala that increases GABA release from axon terminals within the parabrachial and inhibits ascending pain signals. To test this hypothesis Nrxn3 α expression was knocked-down by infusing shRNA constructs in the central amygdala. Then GABA release in the parabrachial was quantitated concomitant with measuring the pain response. Results revealed that knockdown of Nrxn3α expression significantly increases the pain response in both male rats and proestrus female rats vs. diestrus rats. GABA release was significantly reduced in the parabrachial of male and proestrus female rats after Nrxn3α knockdown. Neuronal activity of excitatory neurons was significantly inhibited in the parabrachial after Nrxn3α knockdown. These results are consistent with the idea that Nrxn3 within the central amygdala controls VZV associated pain by regulating GABA release in the lateral parabrachial that then modulates ascending orofacial pain signals.
Collapse
Affiliation(s)
- Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, United States
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, United States
| | - Rebecca Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, United States
| | - M. Douglas Benson
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Neurexin 3α in the central amygdala has a role orofacial varicella zoster pain. Neuroscience 2022; 496:16-26. [PMID: 35679996 PMCID: PMC9329223 DOI: 10.1016/j.neuroscience.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Varicella zoster virus (VZV) is responsible for chronic pain. VZV injection has similarities to herpes zoster (HZ) "shingles" pain in humans. In this study orofacial pain was induced by injecting male rats with the human VZV. The amygdala and parabrachial have been implicated to control affective/motivational orofacial pain. Recently our lab reported neurexin 3α (Nrxn3α) is expressed in the central amygdala and parabrachial. GABAergic neurons descend from the central amygdala to the lateral parabrachial region and Nrxn3α is important for presynaptic (γ-Aminobutyric acid) GABA release. Thus, we hypothesized that lateral parabrachial neuronal activity and orofacial pain are controlled by Nrxn3α within the central amygdala. To test the hypothesis Nrxn3α expression was knocked down (i.e., using short hairpin RNA or shRNA) in the central amygdala and GABA release and neuronal activity were quantitated in the parabrachial concomitant with measurement of the VZV induced pain response. Results revealed that attenuating Nrxn3 expression within the amygdala reduces GABA release in the parabrachial and increases neuronal activity within the lateral parabrachial region. Attenuating Nrxn3 expression also increases VZV associated orofacial pain. Activating GABAergic neurons within the central amygdala with opsins increase GABA release in the parabrachial and reduced the pain response after Nrxn3 shRNA treatment. These results are consistent with the idea that Nrxn3 within the central amygdala controls VZV associated pain by regulating GABA release in the lateral parabrachial that then controls the activity of ascending pain neurons.
Collapse
|
10
|
Defrin R, Gruener H, Gaidukov E, Bondi M, Rachamim-Katz O, Ringler E, Blumen N, Zeilig G. From acute to long-term alterations in pain processing and modulation after spinal cord injury: mechanisms related to chronification of central neuropathic pain. Pain 2022; 163:e94-e105. [PMID: 33863855 DOI: 10.1097/j.pain.0000000000002315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT A severe and debilitating consequence of a spinal cord injury (SCI) is central neuropathic pain (CNP). Our aim was to investigate the processes leading to CNP emergence and chronification by analyzing causal relationship over time between spinothalamic function, pain excitability, and pain inhibition after SCI. This longitudinal follow-up study included 53 patients with acute SCI and 20 healthy controls. Spinothalamic, pain excitability, and intrasegmental and extrasegmental pain inhibition indices were repeatedly evaluated at 1.5, 3, and 6 months post-SCI. Between- and within-group analyses were conducted among those patients who eventually developed CNP and those who did not. Healthy controls were evaluated twice for repeatability analysis. Patients who developed CNP, compared with those who did not, exhibited increased thermal thresholds (P < 0.05), reduced pain adaptation (P < 0.01), and conditioned pain modulation (P < 0.05), early post-injury, and the CNP group's manifestations remained worse throughout the follow-up. By contrast, allodynia frequency was initially similar across SCI groups, but gradually increased in the subacute phase onward only among the CNP group (P < 0.001), along with CNP emergence. Early worse spinothalamic and pain inhibition preceded CNP and predicted its occurrence, and early worse pain inhibition mediated the link between spinothalamic function and CNP. Crossover associations were observed between early and late pain inhibition and excitability. Inefficient intrasegmental and extrasegmental inhibition, possibly resulting from spinothalamic deafferentation, seems to ignite CNP chronification. Pain excitability probably contributes to CNP maintenance, possibly via further exhaustion of the inhibitory control. Preemptive treatment promoting antinociception early post-SCI may mitigate or prevent CNP.
Collapse
Affiliation(s)
- Ruth Defrin
- Department of Physical Therapy at Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gruener
- Department of Physical Therapy at Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Evgeni Gaidukov
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Bondi
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Rachamim-Katz
- Barzilai Day Care Rehabilitation Unit, Barzilai Medical Center, Ashkelon, Israel
| | - Erez Ringler
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nava Blumen
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
12
|
Sun L, Liu R, Guo F, Wen MQ, Ma XL, Li KY, Sun H, Xu CL, Li YY, Wu MY, Zhu ZG, Li XJ, Yu YQ, Chen Z, Li XY, Duan S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat Commun 2020; 11:5974. [PMID: 33239627 PMCID: PMC7688648 DOI: 10.1038/s41467-020-19767-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is known to relay noxious information to the amygdala for processing affective responses. However, it is unclear whether the LPBN actively processes neuropathic pain characterized by persistent hyperalgesia with aversive emotional responses. Here we report that neuropathic pain-like hypersensitivity induced by common peroneal nerve (CPN) ligation increases nociceptive stimulation-induced responses in glutamatergic LPBN neurons. Optogenetic activation of GABAergic LPBN neurons does not affect basal nociception, but alleviates neuropathic pain-like behavior. Optogenetic activation of glutamatergic or inhibition of GABAergic LPBN neurons induces neuropathic pain-like behavior in naïve mice. Inhibition of glutamatergic LPBN neurons alleviates both basal nociception and neuropathic pain-like hypersensitivity. Repetitive pharmacogenetic activation of glutamatergic or GABAergic LPBN neurons respectively mimics or prevents the development of CPN ligation-induced neuropathic pain-like hypersensitivity. These findings indicate that a delicate balance between excitatory and inhibitory LPBN neuronal activity governs the development and maintenance of neuropathic pain. The parabrachial nucleus (PBN) projects to the amygdala, and contributes to affective aspects of neuropathic pain. Here the authors demonstrate that the lateral parabrachial nucleus (LPBN) contributes to hypersensitivity in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Rui Liu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Fang Guo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Man-Qing Wen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Kai-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027, Hangzhou, China
| | - Ceng-Lin Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuan-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Meng-Yin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 310058, Hangzhou, China
| | - Zheng-Gang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Jian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Yan-Qin Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Zhong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
13
|
Sham surgeries for central and peripheral neural injuries persistently enhance pain-avoidance behavior as revealed by an operant conflict test. Pain 2020; 160:2440-2455. [PMID: 31323014 DOI: 10.1097/j.pain.0000000000001642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies using rodent models of neuropathic pain use sham surgery control procedures that cause deep tissue damage. Sham surgeries would thus be expected to induce potentially long-lasting postsurgical pain, but little evidence for such pain has been reported. Operant tests of voluntary behavior can reveal negative motivational and cognitive aspects of pain that may provide sensitive tools for detecting pain-related alterations. In a previously described operant mechanical conflict test involving lengthy familiarization and training, rodents freely choose to either escape from a brightly lit chamber by crossing sharp probes or refuse to cross. Here, we describe a brief (2-day) mechanical conflict protocol that exploits rats' innate exploratory response to a novel environment to detect persistently enhanced pain-avoidance behavior after sham surgeries for 2 neural injury models: thoracic spinal cord injury and chronic constriction injury of the sciatic nerve. Pitting the combined motivations to avoid the bright light and to explore the novel device against pain from crossing noxious probes disclosed a conflicting, hyperalgesia-related reluctance to repeatedly cross the probes after injury. Rats receiving standard sham surgeries demonstrated enhanced pain-like avoidance behavior compared with naive controls, and this behavior was similar to that of corresponding chronic constriction injury or spinal cord injury rats weeks or months after injury. In the case of sham surgery for spinal cord injury, video analysis of voluntary exploratory behavior directed at the probes revealed enhanced forepaw withdrawal responses. These findings have important implications for preclinical investigations into behavioral alterations and physiological mechanisms associated with postsurgical and neuropathic pain.
Collapse
|
14
|
Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain 2020; 160:2724-2742. [PMID: 31365471 DOI: 10.1097/j.pain.0000000000001670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
About half of patients with spinal cord injury (SCI) develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. However, its therapeutic potential on SCI-CNP remains to be elucidated. Here, we demonstrated for the first time that intravenous DHA administrations with 3-day intervals (250 nmol/kg; starting 30 minutes after injury and maintained for 6 weeks) effectively prevented SCI-CNP development in a clinically relevant rat contusion model. SCI-CNP was assessed by a novel sensory profiling approach combining evoked pain measures and pain-related ethologically relevant rodent behaviours (burrowing, thigmotaxis, and place/escape avoidance) to mimic those for measuring human (sensory, affective, cognitive, and spontaneous) pain. Strikingly, already established SCI-CNP could be abolished partially by similar DHA administrations, starting from the beginning of week 4 after injury and maintained for 4 weeks. At spinal (epicenter and L5 dorsal horns) and supraspinal (anterior cingulate cortex) levels, both treatment regimens potently suppressed microglial and astrocyte activation, which underpins SCI-CNP pathogenesis. Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA's metabolite) in mediating DHA's effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.
Collapse
|
15
|
Dermorphin [D-Arg2, Lys4] (1-4) amide inhibits below-level heat hypersensitivity in mice after contusive thoracic spinal cord injury. Pain 2020; 160:2710-2723. [PMID: 31365470 DOI: 10.1097/j.pain.0000000000001671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opioid use for chronic pain is limited by severe central adverse effects. We examined whether activating mu-opioid receptors (MORs) in the peripheral nervous system attenuates spinal cord injury (SCI) pain-like behavior in mice. We produced a contusive SCI at the T10 vertebral level and examined motor and sensory dysfunction for 6 weeks. At 6 weeks, we tested the effect of subcutaneous (s.c.) injection of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripherally acting MOR-preferring agonist, on mechanical and heat hypersensitivity. Basso mouse scale score was significantly decreased after SCI, and mice showed hypersensitivity to mechanical and heat stimulation at the hind paw beginning at 2 weeks, as indicated by increased paw withdrawal frequency to mechanical stimulation and decreased paw withdrawal latency to heat stimulation. In wild-type SCI mice, DALDA (1 mg/kg, s.c.) attenuated heat but not mechanical hypersensitivity. The effect was blocked by pretreatment with an intraperitoneal injection of methylnaltrexone (5 mg/kg), a peripherally restricted opioid receptor antagonist, and was also diminished in Pirt-MOR conditional knockout mice. DALDA did not adversely affect exploratory activity or induced preference to drug treatment in SCI mice. In vivo calcium imaging showed that DALDA (1, 10 mg/kg, s.c.) inhibited responses of small dorsal root ganglion neurons to noxious heat stimulation in Pirt-GCaMP6s mice after SCI. Western blot analysis showed upregulation of MOR in the lumbar spinal cord and sciatic nerves at 6 weeks after SCI. Our findings suggest that peripherally acting MOR agonist may inhibit heat hypersensitivity below the injury level with minimal adverse effects.
Collapse
|
16
|
Hornung R, Pritchard A, Kinchington PR, Kramer PR. Reduced activity of GAD67 expressing cells in the reticular thalamus enhance thalamic excitatory activity and varicella zoster virus associated pain. Neurosci Lett 2020; 736:135287. [PMID: 32763361 DOI: 10.1016/j.neulet.2020.135287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
Within the reticular thalamic nucleus neurons express gamma aminobutyric acid (GABA) and these cells project to the ventral posteromedial thalamic nucleus. When GABA activity decreases the activity of excitatory cells in the ventral posteromedial nucleus would be expected to increase. In this study, we addressed the hypothesis that attenuating GABAergic cells in the reticular thalamic nucleus increases excitatory activity in the ventral posteromedial nucleus increasing varicella zoster virus (VZV) associated pain in the orofacial region. Adeno-associated virus (AAV) was infused in the reticular thalamic nucleus of Gad1-Cre rats. This virus transduced a G inhibitory designer receptor exclusively activated by designer drugs (DREADD) gene that was Cre dependent. A dose of estradiol that was previously shown to reduce VZV pain and increase GABAergic activity was administered to castrated and ovariectomized rats. Previous studies suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons and decreasing the activity of excitatory cells within the lateral thalamic region. The ventral posteromedial nucleus was infused with AAV containing a GCaMP6f expression construct. A glass lens was implanted for miniscope imaging. Our results show that the activity of GABA cells within the reticular thalamic region decreased with clozapine N-oxide treatment concomitant with increased calcium activity of excitatory cells in the ventral posteromedial nucleus and an increased orofacial pain response. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the reticular thalamus that then inhibit excitatory activity in ventral posteromedial nucleus causing a reduction in orofacial pain.
Collapse
Affiliation(s)
- Rebecca Hornung
- Texas A&M University College of Dentistry, Dallas, TX, 75246, United States
| | - Addison Pritchard
- Texas A&M University College of Dentistry, Dallas, TX, 75246, United States
| | - Paul R Kinchington
- Dept Ophthalmology, Molecular Genetics and Biochemistry, The Campbell Laboratory for Infectious Eye Diseases, University of Pittsburgh School of Medicine, University of Pittsburg, 203 Lothrop St., Pittsburgh, PA, 15213, United States
| | - Phillip R Kramer
- Texas A&M University College of Dentistry, Dallas, TX, 75246, United States.
| |
Collapse
|
17
|
Rusbridge C. Neurobehavioral Disorders: The Corticolimbic System in Health and Disease. Vet Clin North Am Small Anim Pract 2020; 50:1157-1181. [PMID: 32680665 DOI: 10.1016/j.cvsm.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The corticolimbic system (prefrontal cortices, amygdala, and hippocampus) integrates emotion with cognition and produces a behavioral output that is flexible based on the environmental circumstances. It also modulates pain, being implicated in pathophysiology of maladaptive pain. Because of the anatomic and function overlap between corticolimbic circuitry for pain and emotion, the pathophysiology for maladaptive pain conditions is extremely complex. Addressing environmental needs and underlying triggers is more important than pharmacotherapy when dealing with feline orofacial pain syndrome or feline hyperesthesia syndrome. By contrast, autoimmune limbic encephalitis requires prompt diagnosis and management with immunosuppression and seizure control.
Collapse
Affiliation(s)
- Clare Rusbridge
- Fitzpatrick Referrals, Godalming, Surrey GU7 2QQ, UK; School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7AL, UK.
| |
Collapse
|
18
|
Anxiolytic-like effects of mirogabalin, a novel ligand for α2δ ligand of voltage-gated calcium channels, in rats repeatedly injected with acidic saline intramuscularly, as an experimental model of fibromyalgia. Pharmacol Rep 2020; 72:571-579. [DOI: 10.1007/s43440-020-00103-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
|
19
|
Murasawa H, Kobayashi H, Saeki K, Kitano Y. Anxiolytic effects of the novel α 2δ ligand mirogabalin in a rat model of chronic constriction injury, an experimental model of neuropathic pain. Psychopharmacology (Berl) 2020; 237:189-197. [PMID: 31515584 DOI: 10.1007/s00213-019-05356-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/02/2019] [Indexed: 01/25/2023]
Abstract
RATIONALE Psychiatric disorders such as anxiety and depression are frequently observed in neuropathic pain patients, and negatively impact their quality of life. Mirogabalin is a novel ligand for the α2δ subunit of voltage-gated calcium channels and has unique binding characteristics to α2δ subunits and potent and long-lasting analgesic effects in neuropathic pain models. OBJECTIVES To provide further information on the pharmacological profile of mirogabalin and its utility for chronic pain therapy, we investigated its anxiolytic effects in an experimental animal model for neuropathic pain. METHODS In chronic constriction injury (CCI) model rats, mechanical hypersensitivity was determined by the von Frey test. Anxiety- and depression-related behaviours were evaluated using the elevated plus maze test and forced swimming test, respectively. RESULTS CCI model rats showed sustained tactile allodynia followed by anxiety-related behaviours, not depression-related behaviours. The tactile allodynia (significant decreases in paw withdrawal threshold) developed within 2 weeks after model preparation, whereas the anxiety-related behaviours (significant decreases in the number of entries and time spent in open arms and significant increases in time spent in closed arms) were observed at 5 weeks but not 4 weeks after model preparation. Single oral administration of mirogabalin (3 or 10 mg/kg) dose-dependently alleviated the above-mentioned anxiety-related behaviours and tactile allodynia. CONCLUSIONS CCI model rats showed anxiety-related behaviours in a time-dependent manner in the elevated plus maze test. Mirogabalin alleviated both the anxiety-related behaviours and tactile allodynia in CCI model rats. Mirogabalin may provide effective anxiety relief as well as pain relief in patients with neuropathic pain.
Collapse
Affiliation(s)
- Hiroyasu Murasawa
- Hashima Laboratory, Nihon Bioresearch Inc., 6-104, Majima, Fukuju-cho, Hashima, Gifu, 501-6251, Japan
| | - Hiroyuki Kobayashi
- Hashima Laboratory, Nihon Bioresearch Inc., 6-104, Majima, Fukuju-cho, Hashima, Gifu, 501-6251, Japan
| | - Kensuke Saeki
- Hashima Laboratory, Nihon Bioresearch Inc., 6-104, Majima, Fukuju-cho, Hashima, Gifu, 501-6251, Japan
| | - Yutaka Kitano
- Pain & Neuroscience Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| |
Collapse
|
20
|
Stinson C, Logan SM, Bellinger LL, Rao M, Kinchington PR, Kramer PR. Estradiol Acts in Lateral Thalamic Region to Attenuate Varicella Zoster Virus Associated Affective Pain. Neuroscience 2019; 414:99-111. [PMID: 31271831 DOI: 10.1016/j.neuroscience.2019.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Varicella zoster virus (VZV) results in chicken pox and herpes zoster. Female rats show a higher level of herpes zoster associated pain than males, consistent with human studies. In this study, we addressed the novel hypothesis that sex difference in herpes zoster associated pain is due, in part, to estradiol modulating activity in the thalamus. To test this hypothesis a high and low physiological dose of estradiol was administered to castrated and ovariectomized rats and the affective pain response was measured after injection of VZV into the whisker pad. Thalamic infusion of the estrogen receptor antagonist ICI 182,780 concomitant with a high dose of estradiol addressed the role of estradiol binding to its receptor to effect pain. Phosphorylated extracellular signal-regulated protein kinase (pERK) positive cells were measured in excitatory (glutaminase positive) and inhibitory (glutamate decarboxylase 67 positive) cells of the lateral thalamic region. Our results show that a high dose of estradiol significantly reduced the pain response in both males and females. pERK significantly increased in excitatory cells after treatment with a low dose of estradiol and increased in inhibitory cells after treatment with a high dose of estradiol. Administration of ICI 182,780 significantly increased the pain response, reduced expression of GABA related genes in the thalamic region and significantly reduced the number of inhibitory cells expressing pERK. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the thalamus and that this reduction includes an estrogen receptor dependent mechanism.
Collapse
Affiliation(s)
- Crystal Stinson
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Shaun M Logan
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Larry L Bellinger
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Mahesh Rao
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Paul R Kinchington
- Department of Ophthalmology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Room 1020 EEI building 203 Lothrop Street, Pittsburgh, PA 15213, United States of America
| | - Phillip R Kramer
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America.
| |
Collapse
|
21
|
Noble DJ, Martin KK, Parvin S, Garraway SM. Spontaneous and Stimulus-Evoked Respiratory Rate Elevation Corresponds to Development of Allodynia in Spinal Cord-Injured Rats. J Neurotrauma 2019; 36:1909-1922. [PMID: 30489202 DOI: 10.1089/neu.2018.5936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory complications frequently accompany spinal cord injury (SCI) and slowed breathing has been shown to mitigate pain sensitivity. It is possible that elevated respiratory rates (RRs) signal the emergence of chronic pain after SCI. We previously validated the use of remote electric field sensors to noninvasively track breathing in freely behaving rodents. Here, we examined spontaneous (resting) and stimulus-evoked RRs as potential indices of mechanical hypersensitivity following SCI. Adult male Long-Evans rats received a lower thoracic hemisection or contusion SCI, or sham surgery, and underwent weekly assessments of mechanical and thermal sensitivity using the von Frey and Hargreaves tests, respectively. Resting RRs were recorded with remote sensors prior to nociception assays as well as 1 day post-surgery. Evoked RRs were quantified weekly in response to at-level mechanical stimulation provided by a small brush at various stimulation speeds, including those corresponding to the distinct tuning properties of a sub-population of cutaneous afferents known as C-low threshold mechanoreceptors. SCI rats developed mechanical hypersensitivity, which peaked 2-3 weeks after SCI. Compared with at baseline, hemisection SCI rats showed significantly heightened resting RRs at 1 day and 7 days post-injury, and the latter predicted development of pain hypersensitivity. In contusion SCI rats, resting RR increases were less substantial but occurred at all weekly time-points. Increases in brush-evoked RR coincided with full expression of hypersensitivity at 14 (hemisection) or 21 (contusion) days after SCI, and these effects were restricted to the lowest brush speeds. Our results support the possibility that early changes in RR may convey pain information in rats.
Collapse
Affiliation(s)
- Donald J Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Karmarcha K Martin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
22
|
Otis C, Guillot M, Moreau M, Pelletier JP, Beaudry F, Troncy E. Sensitivity of functional targeted neuropeptide evaluation in testing pregabalin analgesic efficacy in a rat model of osteoarthritis pain. Clin Exp Pharmacol Physiol 2019; 46:723-733. [PMID: 31046168 DOI: 10.1111/1440-1681.13100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/27/2022]
Abstract
The monosodium iodoacetate (MIA)-induced joint degeneration in rats is the most used animal model to screen analgesic drugs to alleviate osteoarthritis (OA) pain. This study aimed to evaluate the analgesic efficacy of pregabalin (PGB) in an MIA-induced OA model in rodents by using functional and neuroproteomic pain assessment methods. Treatment group included PGB in curative intent over 9 days compared to gold standard therapy (positive controls) and placebo (negative control). Functional assessments of pain (quantitative sensory testing and operant test) were performed concomitantly with spinal neuropeptides quantification. At day 21 post-OA induction, PGB in MIA rats reduced tactile allodynia (P = 0.028) and improved the place escape/avoidance behaviour (P = 0.04) compared to values recorded at last time-point before initiating analgesic therapy. All spinal neuropeptide concentrations, such as substance P, calcitonin gene-related peptide, bradykinin and somatostatin, came back to normal (non-affected) rat values, compared to their increase observed in MIA rats receiving the placebo (P < 0.0001). Initiated 13 days after chemical OA induction, repeated medication with PGB provided analgesia according to quantitative sensory testing, operant test and targeted neuropeptides pain assessment methods. This report highlights the interest of using reliable and sensitive methods like targeted neuropeptide quantification to detect the analgesic effects of a test article with concomitant functional assessments of pain when studying OA pain components.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
23
|
do Espírito Santo CC, da Silva Fiorin F, Ilha J, Duarte MMMF, Duarte T, Santos ARS. Spinal cord injury by clip-compression induces anxiety and depression-like behaviours in female rats: The role of the inflammatory response. Brain Behav Immun 2019; 78:91-104. [PMID: 30659938 DOI: 10.1016/j.bbi.2019.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/28/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
Traumatic spinal cord injury (SCI) promotes long-term disability that affects mobility and functional independence. The spinal cord inflammatory response after the initial mechanical insult substantially impacts locomotor impairment and development of neuropsychiatric disorders, including anxiety and depression. However, these psychiatric events are scarcely investigated in females. This study investigated the anxiety/depression-like behaviours and inflammatory responses related to the production/release of pro- and anti-inflammatory cytokines in female adult Wistar rats submitted to severe clip-compression SCI. Data showed that SCI impaired the locomotor performance assessment by the BBB scale, but did not alter exploratory activity in open-field test. Animals' locomotor impairment was associated with anxious and depressive-like behaviours characterised by a decreased amount of time in the open arms of the elevated plus-maze test, and the motivational reduction of social interaction and anhedonia assessed by social exploration and sucrose preference tests. By contrast, SCI decreased the immobility time in the forced swimming test. Moreover, SCI caused a significant increase in local and systemic proinflammatory cytokines (TNF-α, INF-γ, IL-1β, and IL-6) and a reduction in the anti-inflammatory cytokine IL-10. Finally, there were significant negative correlations between depression-like behaviour, but not anxiety, and increased plasma concentrations of TNF-α, IL-1β, IL-6, and INF-γ. Additionally, the laminectomy procedure provoked the inflammatory response associated with reduced sucrose intake in Sham animals, although less expressively than in the SCI group. Collectively, these results indicate that SCI by clip-compression in female rats promotes a neuropsychiatric-like profile associated with an imbalance in the production/release of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Caroline Cunha do Espírito Santo
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | - Fernando da Silva Fiorin
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jocemar Ilha
- Departamento de Fisioterapia, Núcleo de Pesquisa em Lesão da Medula Espinal, Universidade do Estado de Santa Catarina, Florianópolis, Brazil
| | | | - Tiago Duarte
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Adair Roberto Soares Santos
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
24
|
Kramer PR, Rao M, Stinson C, Bellinger LL, Kinchington PR, Yee MB. Aromatase Derived Estradiol Within the Thalamus Modulates Pain Induced by Varicella Zoster Virus. Front Integr Neurosci 2018; 12:46. [PMID: 30369871 PMCID: PMC6194186 DOI: 10.3389/fnint.2018.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
Herpes zoster or shingles is the result of varicella zoster virus (VZV) infection and often results in chronic pain that lasts for months after visible symptoms subside. Testosterone often attenuates pain in males. Previous work demonstrates ovarian estrogen effects γ-aminobutyric acid (GABA) signaling in the thalamus, reducing pain but the role of testosterone within the thalamus is currently unknown. Because aromatase affects pain and is present in the thalamus we tested a hypothesis that testosterone converted to estrogen in the thalamus attenuates herpes zoster induced pain. To address this hypothesis, male Sprague-Dawley rats received whisker pad injection of either MeWo cells or MeWo cells containing VZV. To reduce aromatase derived estrogen in these animals we injected aromatase inhibitor letrozole systemically or infused it into the thalamus. To test if estrogen was working through the estrogen receptor (ER) agonist, 4, 4′, 4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was infused concomitant with letrozole. Motivational and affective pain was measured after letrozole and/or PPT treatment. Vesicular GABA transporter (VGAT) is important in pain signaling. Because estrogen effects VGAT expression we measured its transcript and protein levels after letrozole treatment. Virus injection and letrozole significantly increased the pain response but thalamic infusion of PPT reduced zoster pain. Letrozole increased the number of thalamic neurons staining for phosphorylated ERK (pERK) but decreased VGAT expression. The results suggest in male rats aromatase derived estradiol interacts with the ER to increase VGAT expression and increase neuronal inhibition in the thalamus to attenuate VZV induced pain.
Collapse
Affiliation(s)
- Phillip R Kramer
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Mahesh Rao
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Crystal Stinson
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Larry L Bellinger
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, Eye and Ear Foundation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael B Yee
- Department of Ophthalmology and of Molecular Microbiology and Genetics, Eye and Ear Foundation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Wolfensohn S. A review of the contributions of cross-discipline collaborative European IMI/EFPIA research projects to the development of Replacement, Reduction and Refinement strategies. Altern Lab Anim 2018; 46:91-102. [PMID: 29856646 DOI: 10.1177/026119291804600208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The objective of this review is to report on whether, and if so, how, scientific research projects organised and managed within collaborative consortia across academia and industry are contributing to the Three Rs (i.e. reduction, replacement and refinement of the use of animals in research). A number of major technological developments have recently opened up possibilities for more direct, human-based approaches leading to a reassessment of the role and use of experimental animals in pharmacological research and biomedicine. This report reviews how projects funded by one of the research funding streams, the Innovative Medicines Initiative (IMI), are contributing to a better understanding of the challenges faced in using animal models. It also looks how the results from these various projects are impacting on the continued use of laboratory animals in research and development. From the progress identified, it is apparent that the approach of private-public partnership has demonstrated the value of multicentre studies, and how the spirit of collaboration and sharing of information can help address human health challenges. In so doing, this approach can reduce the dependence on animal use in areas where it has normally been viewed as necessary. The use of a collaborative platform enables the Three Rs to be addressed on multiple different levels, such that the selection of models to be tested, the protocols to be followed, and the interpretation of results generated, can all be optimised. This will, in turn, lead to an overall reduction in the use of laboratory animals.
Collapse
Affiliation(s)
- Sarah Wolfensohn
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
26
|
Sliwinski C, Nees TA, Puttagunta R, Weidner N, Blesch A. Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. J Neurotrauma 2018; 35:2222-2238. [PMID: 29706124 DOI: 10.1089/neu.2017.5431] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large proportion of patients suffering from spinal cord injury (SCI) develop chronic central neuropathic pain. Previously, we and others have shown that sensorimotor training early after SCI can prevent the development of mechanical allodynia. To determine whether training initiated in the subchronic/chronic phase remains effective, correlates of below-level neuropathic pain were analyzed in the hindpaws 5-10 weeks after a moderate T11 contusion SCI (50 kDyn) in adult female C57BL/6 mice. In a comparison of SCI and sham mice 5 weeks post-injury, about 80% of injured animals developed mechanical hypersensitivity to light mechanical stimuli, whereas testing of noxious stimuli revealed hypo-responsiveness. Thermal sensitivity testing showed a decreased response latency after injury. Without intervention, mechanical and thermal hyper-responsiveness were evident until the end of the experiment (10 weeks). In contrast, treadmill training (2 × 15 min/day; 5 × /week) initiated 6 weeks post-injury resulted in partial amelioration of pain behavior and this effect remained stable. Analysis of calcitonin gene-related peptide (CGRP)-labeled fibers in lamina III-IV of the lumbar dorsal horn revealed an increase in labeling density after SCI. This was not due to changes in the number or size distribution of CGRP-labeled lumbar dorsal root ganglion neurons. Treadmill training reduced the CGRP-labeling density in the spinal cord of injured mice, whereas the density of non-peptidergic isolectin-B4 (IB4)+ fibers showed no changes in lamina IIi and a slight reduction of sparse IB4 labeling in laminae III-IV. Thus, sensorimotor activity initiated in the subchronic/chronic phase of SCI remains effective in ameliorating pain behavior and influencing structural changes of the nociceptive system.
Collapse
Affiliation(s)
| | - Timo A Nees
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,2 Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital , Heidelberg, Germany
| | - Radhika Puttagunta
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Norbert Weidner
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Armin Blesch
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,3 Department of Neurological Surgery and Goodman Campbell Brain and Spine, Stark Neurosciences Research Institute, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
27
|
Rodriguez E, Sakurai K, Xu J, Chen Y, Toda K, Zhao S, Han BX, Ryu D, Yin H, Liedtke W, Wang F. A craniofacial-specific monosynaptic circuit enables heightened affective pain. Nat Neurosci 2017; 20:1734-1743. [PMID: 29184209 PMCID: PMC5819335 DOI: 10.1038/s41593-017-0012-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023]
Abstract
Humans often rank craniofacial pain as more severe than body pain. Evidence suggests that a stimulus of the same intensity induces stronger pain in the face than in the body. However, the underlying neural circuitry for the differential processing of facial versus bodily pain remains unknown. Interestingly, the lateral parabrachial nucleus (PBL), a critical node in the affective pain circuit, is activated more strongly by noxious stimulation of the face than of the hindpaw. Using a novel activity-dependent technology called CANE developed in our laboratory, we identified and selectively labeled noxious-stimulus-activated PBL neurons and performed comprehensive anatomical input-output mapping. Surprisingly, we uncovered a hitherto uncharacterized monosynaptic connection between cranial sensory neurons and the PBL-nociceptive neurons. Optogenetic activation of this monosynaptic craniofacial-to-PBL projection induced robust escape and avoidance behaviors and stress calls, whereas optogenetic silencing specifically reduced facial nociception. The monosynaptic circuit revealed here provides a neural substrate for heightened craniofacial affective pain.
Collapse
Affiliation(s)
- Erica Rodriguez
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jennie Xu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Koji Toda
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - David Ryu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
28
|
Gambeta E, Kopruszinski CM, dos Reis RC, Zanoveli JM, Chichorro JG. Facial pain and anxiety-like behavior are reduced by pregabalin in a model of facial carcinoma in rats. Neuropharmacology 2017; 125:263-271. [DOI: 10.1016/j.neuropharm.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
29
|
Haefeli J, Huie JR, Morioka K, Ferguson AR. Assessments of sensory plasticity after spinal cord injury across species. Neurosci Lett 2017; 652:74-81. [PMID: 28007646 PMCID: PMC5466896 DOI: 10.1016/j.neulet.2016.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is a multifaceted phenomenon associated with alterations in both motor function and sensory function. A majority of patients with SCI report sensory disturbances, including not only loss of sensation, but in many cases enhanced abnormal sensation, dysesthesia and pain. Development of therapeutics to treat these abnormal sensory changes require common measurement tools that can enable cross-species translation from animal models to human patients. We review the current literature on translational nociception/pain measurement in SCI and discuss areas for further development. Although a number of tools exist for measuring both segmental and affective sensory changes, we conclude that there is a pressing need for better, integrative measurement of nociception/pain outcomes across species to enhance precise therapeutic innovation for sensory dysfunction in SCI.
Collapse
Affiliation(s)
- Jenny Haefeli
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - J Russell Huie
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Kazuhito Morioka
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Adam R Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA; San Francisco Veteran's Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
30
|
Stinson C, Deng M, Yee MB, Bellinger LL, Kinchington PR, Kramer PR. Sex differences underlying orofacial varicella zoster associated pain in rats. BMC Neurol 2017; 17:95. [PMID: 28514943 PMCID: PMC5436469 DOI: 10.1186/s12883-017-0882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/09/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most people are initially infected with varicella zoster virus (VZV) at a young age and this infection results in chickenpox. VZV then becomes latent and reactivates later in life resulting in herpes zoster (HZ) or "shingles". Often VZV infects neurons of the trigeminal ganglia to cause ocular problems, orofacial disease and occasionally a chronic pain condition termed post-herpetic neuralgia (PHN). To date, no model has been developed to study orofacial pain related to varicella zoster. Importantly, the incidence of zoster associated pain and PHN is known to be higher in women, although reasons for this sex difference remain unclear. Prior to this work, no animal model was available to study these sex-differences. Our goal was to develop an orofacial animal model for zoster associated pain which could be utilized to study the mechanisms contributing to this sex difference. METHODS To develop this model VZV was injected into the whisker pad of rats resulting in IE62 protein expression in the trigeminal ganglia; IE62 is an immediate early gene in the VZV replication program. RESULTS Similar to PHN patients, rats showed retraction of neurites after VZV infection. Treatment of rats with gabapentin, an agent often used to combat PHN, ameliorated the pain response after whisker pad injection. Aversive behavior was significantly greater for up to 7 weeks in VZV injected rats over control inoculated rats. Sex differences were also seen such that ovariectomized and intact female rats given the lower dose of VZV showed a longer affective response than male rats. The phase of the estrous cycle also affected the aversive response suggesting a role for sex steroids in modulating VZV pain. CONCLUSIONS These results suggest that this rat model can be utilized to study the mechanisms of 1) orofacial zoster associated pain and 2) the sex differences underlying zoster associated pain.
Collapse
Affiliation(s)
- Crystal Stinson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246 USA
| | - Mohong Deng
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Michael B Yee
- Dept Ophthalmology and of Molecular Microbiology and Genetics, 203 Lothrop St., Pittsburgh, PA 15213 USA
| | - Larry L. Bellinger
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246 USA
| | - Paul R. Kinchington
- Dept Ophthalmology and of Molecular Microbiology and Genetics, 203 Lothrop St., Pittsburgh, PA 15213 USA
| | - Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246 USA
| |
Collapse
|
31
|
Salimzade A, Hosseini-Sharifabad A, Rabbani M. Comparative effects of chronic administrations of gabapentin, pregabalin and baclofen on rat memory using object recognition test. Res Pharm Sci 2017. [PMID: 28626478 PMCID: PMC5465829 DOI: 10.4103/1735-5362.207201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Memory impairment is one of the greatest concerns when it comes to long-term CNS-affecting drug administration. Drugs like gabapentin, pregabalin and baclofen are administered in a long-term period in conditions such as epilepsy, neuropathic pain, spasticity associated with spinal cord injury or multiple sclerosis. Despite their wide spread use, few data are available on the effects of these drugs on cognitive functions, such as learning memory. In the present study, the effects of long-term administration of gabapentin, pregabalin and baclofen on memory were investigated in a comparative manner. Male Wistar rats received intraperitoneal (i.p.) injection of gabapentin (30 mg/kg), pregabalin (30 mg/kg), baclofen (3 mg/kg), combination of gabapentin/baclofen (30/3 mg/kg) and combination of pregabalin/baclofen (30/3 mg/kg) once a day for 3 weeks respective to their groups. After the end of treatments, rat memories were assessed using the object-recognition task. The discrimination and recognition indices (RI and DI) in the T2 trials were used as the memory indicating factors. The results showed that daily i.p. administrations of pregabalin but not gabapentin or baclofen significantly decreased DI and RI compared to saline group. In combination groups, either gabapentin or pregabalin impaired discrimination between new and familiar objects. Our findings suggested that pregabalin alone or in combination with baclofen significantly caused cognitive deficits.
Collapse
Affiliation(s)
- Asma Salimzade
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Hosseini-Sharifabad
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
32
|
Otis C, Gervais J, Guillot M, Gervais JA, Gauvin D, Péthel C, Authier S, Dansereau MA, Sarret P, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Concurrent validity of different functional and neuroproteomic pain assessment methods in the rat osteoarthritis monosodium iodoacetate (MIA) model. Arthritis Res Ther 2016; 18:150. [PMID: 27338815 PMCID: PMC4918125 DOI: 10.1186/s13075-016-1047-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background Lack of validity in osteoarthritis pain models and assessment methods is suspected. Our goal was to 1) assess the repeatability and reproducibility of measurement and the influence of environment, and acclimatization, to different pain assessment outcomes in normal rats, and 2) test the concurrent validity of the most reliable methods in relation to the expression of different spinal neuropeptides in a chemical model of osteoarthritic pain. Methods Repeatability and inter-rater reliability of reflexive nociceptive mechanical thresholds, spontaneous static weight-bearing, treadmill, rotarod, and operant place escape/avoidance paradigm (PEAP) were assessed by the intraclass correlation coefficient (ICC). The most reliable acclimatization protocol was determined by comparing coefficients of variation. In a pilot comparative study, the sensitivity and responsiveness to treatment of the most reliable methods were tested in the monosodium iodoacetate (MIA) model over 21 days. Two MIA (2 mg) groups (including one lidocaine treatment group) and one sham group (0.9 % saline) received an intra-articular (50 μL) injection. Results No effect of environment (observer, inverted circadian cycle, or exercise) was observed; all tested methods except mechanical sensitivity (ICC <0.3), offered good repeatability (ICC ≥0.7). The most reliable acclimatization protocol included five assessments over two weeks. MIA-related osteoarthritic change in pain was demonstrated with static weight-bearing, punctate tactile allodynia evaluation, treadmill exercise and operant PEAP, the latter being the most responsive to analgesic intra-articular lidocaine. Substance P and calcitonin gene-related peptide were higher in MIA groups compared to naive (adjusted P (adj-P) = 0.016) or sham-treated (adj-P = 0.029) rats. Repeated post-MIA lidocaine injection resulted in 34 times lower downregulation for spinal substance P compared to MIA alone (adj-P = 0.029), with a concomitant increase of 17 % in time spent on the PEAP dark side (indicative of increased comfort). Conclusion This study of normal rats and rats with pain established the most reliable and sensitive pain assessment methods and an optimized acclimatization protocol. Operant PEAP testing was more responsive to lidocaine analgesia than other tests used, while neuropeptide spinal concentration is an objective quantification method attractive to support and validate different centralized pain functional assessment methods.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Julie Gervais
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Julie-Anne Gervais
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | - Dominique Gauvin
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Catherine Péthel
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Marc-André Dansereau
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada. .,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Refsgaard L, Hoffmann-Petersen J, Sahlholt M, Pickering D, Andreasen J. Modelling affective pain in mice: Effects of inflammatory hypersensitivity on place escape/avoidance behaviour, anxiety and hedonic state. J Neurosci Methods 2016; 262:85-92. [DOI: 10.1016/j.jneumeth.2016.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
34
|
Harte SE, Meyers JB, Donahue RR, Taylor BK, Morrow TJ. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior. PLoS One 2016; 11:e0150164. [PMID: 26915030 PMCID: PMC4767889 DOI: 10.1371/journal.pone.0150164] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/10/2016] [Indexed: 11/19/2022] Open
Abstract
A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents.
Collapse
Affiliation(s)
- Steven E. Harte
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Jessica B. Meyers
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Bradley K. Taylor
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Thomas J. Morrow
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| |
Collapse
|
35
|
Schjerning O, Rosenzweig M, Pottegård A, Damkier P, Nielsen J. Abuse Potential of Pregabalin: A Systematic Review. CNS Drugs 2016; 30:9-25. [PMID: 26767525 DOI: 10.1007/s40263-015-0303-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several case reports and epidemiological studies have raised concern about the abuse potential of pregabalin, the use of which has increased substantially over the last decade. Pregabalin is, in some cases, used for recreational purposes and it has incurred attention among drug abusers for causing euphoric and dissociative effects when taken in doses exceeding normal therapeutic dosages or used by alternative routes of administration, such as nasal insufflation or venous injection. The magnitude of the abuse potential and the mechanism behind it are not fully known. OBJECTIVE The aim of this study was to present a systematic review of the data concerning the abuse potential of pregabalin. METHODS We performed a systematic literature search and reviewed the preclinical, clinical and epidemiological data on the abuse potential of pregabalin. RESULTS We included preclinical (n = 17), clinical (n = 19) and epidemiological (n = 13) studies addressing the abuse potential of pregabalin. We also reviewed case reports (n = 9) concerning abuse of pregabalin. The preclinical studies indicated that pregabalin possesses modulatory effects on the GABA and glutamate systems, leaving room for an abuse potential. Further, clinical studies reported euphoria as a frequent side effect in patients treated with pregabalin. The majority of case reports concerning abuse of pregabalin involved patients with a history of substance abuse and, similarly, epidemiological studies found evidence of abuse, especially among opiate abusers. CONCLUSIONS Overall, the available literature suggests an important clinical abuse potential of pregabalin and prescribers should pay attention to signs of abuse, especially in patients with a history of substance abuse.
Collapse
Affiliation(s)
- Ole Schjerning
- Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. .,Centre for Schizophrenia, Brandevej 5, 9220, Aalborg, Denmark.
| | | | - Anton Pottegård
- Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Per Damkier
- Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Chemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Jimmi Nielsen
- Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
36
|
Bree D, Moriarty O, Broom DC, Kelly JP, Roche M, Finn DP. Characterization of the Affective Component of Acute Postoperative Pain Associated with a Novel Rat Model of Inguinal Hernia Repair Pain. CNS Neurosci Ther 2015; 22:146-53. [PMID: 26663888 DOI: 10.1111/cns.12483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/09/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
AIMS Acute postoperative pain remains a significant healthcare issue. Historically, the assessment of postoperative pain in rodents has relied on evoked withdrawal or reflexive measures. Using a recently developed, anatomically relevant rat model of acute postoperative pain (J Pain, 16, 2015, 421), the present experiments sought to investigate the affective component of acute postoperative pain associated with inguinal hernia repair. METHODS Male Lister hooded rats underwent surgery to model Lichtenstein inguinal hernia repair (without hernia induction), or a sham procedure. Postsurgical characterization involved a modified place escape/avoidance paradigm (mPEAP), as well as home cage and open field locomotor activity monitoring. In pharmacological validation studies, rats received either morphine or carprofen prior to mPEAP testing. RESULTS Surgery was associated with a significantly increased proportion of the trial duration in the light compartment of the mPEAP arena, in avoidance of the noxious stimulus, compared with sham animals. When retested in the mPEAP at day 7 postsurgery, there was no difference between sham and surgery animals for time spent in either compartment, but surgery animals displayed a persistent increase in the percentage response to noxious stimulation. Morphine and carprofen treatment in surgery animals reduced escape/avoidance behavior at discrete time points over the trial. Surgery-induced reductions in home cage and open field locomotor activity were also observed. CONCLUSION The present studies report for the first time the characterization of the affective component of acute postoperative pain using the mPEAP in a rodent model, which may facilitate development of improved understanding and treatment of postoperative pain.
Collapse
Affiliation(s)
- Dara Bree
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.,Research and Development, Covidien, North Haven, CT, USA
| | - Daniel C Broom
- Research and Development, Covidien, North Haven, CT, USA
| | - John P Kelly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| |
Collapse
|
37
|
Burke NN, Finn DP, Roche M. Chronic administration of amitriptyline differentially alters neuropathic pain-related behaviour in the presence and absence of a depressive-like phenotype. Behav Brain Res 2014; 278:193-201. [PMID: 25300472 DOI: 10.1016/j.bbr.2014.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023]
Abstract
Chronic pain and depression share a complex, reciprocal relationship. Furthermore, in addition to treating depression, antidepressants such as amitriptyline are a first-line treatment for chronic pain conditions, indicating possible common neural substrates underlying both depression and pain. However, there is a paucity of studies examining the effect of antidepressant treatment on nociceptive and neuropathic pain responding in the presence of a depressive phenotype. The current study aimed to examine the effect of chronic amitriptyline administration on neuropathic pain-related behaviour and associated neuroinflammatory processes in the olfactory bulbectomised (OB) rat model of depression. Nociceptive responding to mechanical, innocuous cold or noxious heat stimuli in sham or OB rats was not altered by chronic amitriptyline administration. The induction of neuropathic pain following L5-L6 spinal nerve ligation (SNL) resulted in robust mechanical and cold allodynia and heat hyperalgesia in both sham and OB vehicle-treated animals. Chronic amitriptyline administration attenuated SNL-induced mechanical allodynia in both sham and OB rats at day 7 post-SNL, an effect which was enhanced and prolonged in OB rats. In comparison, chronic amitriptyline administration attenuated SNL-induced cold allodynia and heat hyperalgesia in sham, but not OB, rats. Evaluating the affective/motivational aspect of pain using the place escape avoidance paradigm revealed that OB-SNL rats exhibit reduced noxious avoidance behaviour when compared with sham counterparts, an effect not altered by chronic amitriptyline administration. Chronic amitriptyline administration prevented the increased expression of GFAP, IL-10 and CCL5, and enhanced the expression of TNFα, in the prefrontal cortex of OB-SNL rats. In conclusion, these data demonstrate that chronic amitriptyline differentially alters somatic nociceptive responding following peripheral nerve-injury, depending on stimulus modality and the presence or absence of a depressive-like phenotype, an effect which may involve modulation of neuroinflammatory processes.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
38
|
Pregabalin alleviates the nitroglycerin-induced hyperalgesia in rats. Neuroscience 2014; 284:11-17. [PMID: 25290014 DOI: 10.1016/j.neuroscience.2014.08.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/09/2023]
Abstract
The association between the clinical use of nitroglycerin (NTG) and migraine suggests NTG as an animal model trigger for migraine. NTG-induced hyperalgesia in rats has been extensively used as a migraine model for pre-clinical research. Pregabalin is an anti-epileptic drug and may play a role in the preventive treatment of migraine; however, the mechanism of this action remains to be clarified. Herein, we performed the present study to investigate the effect of pregabalin on the NTG-induced hyperalgesia in rats. Sixty male Sprague-Dawley rats were divided equally into six groups. Thirty minutes before NTG injection, the rats were pretreated with pregabalin. von Frey hair testing was employed to evaluate tactile sensitivity. Enzyme-linked immunosorbent assay was used to analyze plasma calcitonin gene-related peptide (CGRP) levels in the jugular vein. Immunohistochemistry was applied to detect c-Fos-immunoreactive neurons and western blot was performed to detect c-Fos protein expression in trigeminal nucleus caudalis (TNC). We found that pregabalin pretreatment alleviated the NTG-induced hyperalgesia. Moreover, pregabalin suppressed peripheral CGRP release, c-Fos-immunoreactive neurons and the protein expression of c-Fos in TNC as well. These data suggest that pregabalin could alleviate the NTG-induced hyperalgesia. Further studies are required to determine the mechanisms of action for this effect.
Collapse
|
39
|
Galan-Arriero I, Avila-Martin G, Ferrer-Donato A, Gomez-Soriano J, Bravo-Esteban E, Taylor J. Oral administration of the p38α MAPK inhibitor, UR13870, inhibits affective pain behavior after spinal cord injury. Pain 2014; 155:2188-98. [PMID: 25180015 DOI: 10.1016/j.pain.2014.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/03/2014] [Accepted: 08/22/2014] [Indexed: 12/15/2022]
Abstract
The p38α mitogenous activated protein kinase (MAPK) cell signaling pathway is a key mechanism of microglia activation and has been studied as a target for neuropathic pain. The effect of UR13870, a p38α MAPK inhibitor, on microglia expression in the anterior cingulate cortex (ACC) and spinal dorsal horn was addressed after T9 contusion spinal cord injury (SCI) in the rat, in addition to behavioral testing of pain-related aversion and anxiety. Administration of intravenous UR13870 (1mg/kg i.v.) and pregabalin (30 mg/kg i.v.) reduced place escape avoidance paradigm (PEAP) but did not affect open-field anxiety behavior 42 days after SCI. PEAP behavior was also reduced in animals administered daily with oral UR13870 (10mg/kg p.o.) and preserved spinal tissue 28 days after SCI. Although UR13870 (10mg/kg p.o.) failed to reduce OX-42 and glial fibrillar acid protein immunoreactivity within the spinal dorsal horn, a reduction toward the control level was observed close to the SCI site. In the anterior cingulate cortex (ACC), a significant increase in OX-42 immunoreactivity was identified after SCI. UR13870 (10mg/kg p.o.) treatment significantly reduced OX-42, metabotropic glutamate type 5 receptor (mGluR5), and NMDA (N-methyl-d-aspartate) 2B subunit receptor (NR2B) expression in the ACC after SCI. To conclude, oral treatment with a p38α MAPK inhibitor reduces the affective behavioral component of pain after SCI in association with a reduction of microglia and specific glutamate receptors within the ACC. Nevertheless the role of neuroinflammatory processes within the vicinity of the SCI site in the development of affective neuropathic pain cannot be excluded.
Collapse
Affiliation(s)
- Iriana Galan-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Gerardo Avila-Martin
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Agueda Ferrer-Donato
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Julio Gomez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; E.U.E. Fisioterapia de Toledo, Universidad de Castilla la Mancha, Toledo, Spain
| | - Elisabeth Bravo-Esteban
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; IAI, Consejo Superior de Investigaciones Científicas (CSIC), Arganda del Rey, Spain
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
| |
Collapse
|
40
|
Tappe-Theodor A, Kuner R. Studying ongoing and spontaneous pain in rodents - challenges and opportunities. Eur J Neurosci 2014; 39:1881-90. [DOI: 10.1111/ejn.12643] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Anke Tappe-Theodor
- Institute of Pharmacology; Heidelberg University; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| | - Rohini Kuner
- Institute of Pharmacology; Heidelberg University; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| |
Collapse
|
41
|
Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 2014; 12:44-56. [PMID: 24533015 PMCID: PMC3915349 DOI: 10.2174/1570159x1201140117162802] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 12/13/2022] Open
Abstract
Pregabalin is an antagonist of voltage gated Ca2+ channels and specifically binds to alpha-2-delta subunit to produce antiepileptic and analgesic actions. It successfully alleviates the symptoms of various types of neuropathic pain and presents itself as a first line therapeutic agent with remarkable safety and efficacy. Preclinical studies in various animal models of neuropathic pain have shown its effectiveness in treating the symptoms like allodynia and hyperalgesia. Clinical studies in different age groups and in different types of neuropathic pain (peripheral diabetic neuropathy, fibromyalgia, post-herpetic neuralgia, cancer chemotherapy-induced neuropathic pain) have projected it as the most effective agent either as monotherapy or in combined regimens in terms of cost effectiveness, tolerability and overall improvement in neuropathic pain states. Preclinical studies employing pregabalin in different neuropathic pain models have explored various molecular targets and the signaling systems including Ca2+ channel-mediated neurotransmitter release, activation of excitatory amino acid transporters (EAATs), potassium channels and inhibition of pathways involving inflammatory mediators. The present review summarizes the important aspects of pregabalin as analgesic in preclinical and clinical studies as well as focuses on the possible mechanisms.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
42
|
M'Dahoma S, Bourgoin S, Kayser V, Barthélémy S, Chevarin C, Chali F, Orsal D, Hamon M. Spinal cord transection-induced allodynia in rats--behavioral, physiopathological and pharmacological characterization. PLoS One 2014; 9:e102027. [PMID: 25019623 PMCID: PMC4096923 DOI: 10.1371/journal.pone.0102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/14/2014] [Indexed: 12/31/2022] Open
Abstract
In humans, spinal cord lesions induce not only major motor and neurovegetative deficits but also severe neuropathic pain which is mostly resistant to classical analgesics. Better treatments can be expected from precise characterization of underlying physiopathological mechanisms. This led us to thoroughly investigate (i) mechanical and thermal sensory alterations, (ii) responses to acute treatments with drugs having patent or potential anti-allodynic properties and (iii) the spinal/ganglion expression of transcripts encoding markers of neuronal injury, microglia and astrocyte activation in rats that underwent complete spinal cord transection (SCT). SCT was performed at thoracic T8-T9 level under deep isoflurane anaesthesia, and SCT rats were examined for up to two months post surgery. SCT induced a marked hyper-reflexia at hindpaws and strong mechanical and cold allodynia in a limited (6 cm2) cutaneous territory just rostral to the lesion site. At this level, pressure threshold value to trigger nocifensive reactions to locally applied von Frey filaments was 100-fold lower in SCT- versus sham-operated rats. A marked up-regulation of mRNAs encoding ATF3 (neuronal injury) and glial activation markers (OX-42, GFAP, P2×4, P2×7, TLR4) was observed in spinal cord and/or dorsal root ganglia at T6-T11 levels from day 2 up to day 60 post surgery. Transcripts encoding the proinflammatory cytokines IL-1β, IL-6 and TNF-α were also markedly but differentially up-regulated at T6-T11 levels in SCT rats. Acute treatment with ketamine (50 mg/kg i.p.), morphine (3-10 mg/kg s.c.) and tapentadol (10-20 mg/kg i.p.) significantly increased pressure threshold to trigger nocifensive reaction in the von Frey filaments test, whereas amitriptyline, pregabalin, gabapentin and clonazepam were ineffective. Because all SCT rats developed long lasting, reproducible and stable allodynia, which could be alleviated by drugs effective in humans, thoracic cord transection might be a reliable model for testing innovative therapies aimed at reducing spinal cord lesion-induced central neuropathic pain.
Collapse
Affiliation(s)
- Saïd M'Dahoma
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
- * E-mail:
| | - Sylvie Bourgoin
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Valérie Kayser
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Sandrine Barthélémy
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Caroline Chevarin
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Farah Chali
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | - Didier Orsal
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | - Michel Hamon
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
43
|
Finnerup NB. Pain in patients with spinal cord injury. Pain 2013; 154 Suppl 1:S71-S76. [DOI: 10.1016/j.pain.2012.12.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
44
|
Yu J, Fu P, Zhang Y, Liu S, Cui D. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion. Anat Rec (Hoboken) 2013; 296:1907-12. [PMID: 24136739 DOI: 10.1002/ar.22816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 08/05/2013] [Indexed: 01/07/2023]
Abstract
P2X3 receptors are present in the spinal dorsal horn (SDH) and play an essential role in the regulation of nociception and pain. Pregabalin (PGB) has been used as a new antiepileptic drug in the treatment of neuropathic pain. However, it is unclear whether PGB-induced analgesia was associated with the P2X3 receptor in SDH. Here, rats were randomly divided into four groups (n = 12 per group), including 2 sham operation groups, which was treated by normal saline (Sham + NS group) or PGB (Sham + PGB group), other 2 groups with chronic compression of the dorsal root ganglion, a normal saline-treated CCD group (CCD+NS group), and a PGB-treated CCD group (CCD + PGB group). A rat model of neuropathic pain was used by compressing the right L4 and L5 dorsal root ganglia. Each group was evaluated using the mechanical withdrawal threshold (MWT). The mRNA and protein levels of the P2X3 receptor in the ipsilateral SDH were measured by RT-PCR, western blot, and immunofluorescence on 14 day after CCD operation. CCD rats showed the highest mechanical hyperalgesia and the lowest pain threshold in the four groups. Simultaneously, CCD rats showed higher P2X3 mRNA and protein expression in ipsilateral side of the SDH than the sham operation rats. However, the MWT was increased and expression of P2X3 mRNA and protein in the ipsilateral SDH in CCD rats was decreased 3 days after PGB treatment. Thus, PGB may partially reverse mechanical hyperalgesia in CCD rats by inhibiting P2X3 receptor expression in the ipsilateral SDH.
Collapse
Affiliation(s)
- Jianfeng Yu
- Department of Anesthesiology, Weifang Medical University, Shandong Province, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Pratt D, Fuchs PN, Sluka KA. Assessment of avoidance behaviors in mouse models of muscle pain. Neuroscience 2013; 248:54-60. [PMID: 23747349 DOI: 10.1016/j.neuroscience.2013.05.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
Pain encompasses both a sensory as well as an affective dimension and these are differentially processed in the cortex. Animal models typically use reflexive behaviors to test nociceptive responses; these are thought to reflect the sensory dimension of pain. While several behavioral tests are available for examining the affective dimension of pain it is unclear if these are appropriate in animal models of muscle pain. We therefore tested the utility of existing paradigms as well as new avoidance paradigms in animal models of muscle pain in mice. Specifically we used an escape-avoidance test to noxious mechanical stimuli, a learned avoidance test to noxious mechanical stimuli, and avoidance of physical activity. We used three animal models of muscle pain: carrageenan-induced inflammation, non-inflammatory muscle pain, and exercise-enhanced pain. In the carrageenan model of inflammation mice developed escape-avoidance behaviors to mechanical stimuli, learned avoidance to mechanical stimulation and avoidance of physical activity - these models are associated with unilateral hyperalgesia. When both muscles were inflamed, escape-avoidance behaviors did not develop suggesting that equivalent bilateral pain behaviors cannot be tested with an escape-avoidance test. In the non-inflammatory muscle pain model mice did not show significant changes in escape-avoidance behaviors or learned avoidance, but did avoid physical activity. In the exercise-enhanced pain model, there were no changes in escape-avoidance, learned avoidance of noxious or physical activity In conclusion, we developed several testing protocols that assess supraspinal processing of pain behaviors in models of muscle pain and that are most sensitive in animals with unilateral hyperalgesia.
Collapse
Affiliation(s)
- D Pratt
- Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, IA, United States; Department of Psychology, University of Texas Arlington, Arlington, TX, United States; Department of Biology, University of Texas Arlington, Arlington, TX, United States
| | - P N Fuchs
- Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, IA, United States; Department of Psychology, University of Texas Arlington, Arlington, TX, United States; Department of Biology, University of Texas Arlington, Arlington, TX, United States
| | - K A Sluka
- Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, IA, United States; Department of Psychology, University of Texas Arlington, Arlington, TX, United States; Department of Biology, University of Texas Arlington, Arlington, TX, United States.
| |
Collapse
|
46
|
Fuchs PN, McNabb CT. The place escape/avoidance paradigm: A novel method to assess nociceptive processing. J Integr Neurosci 2012; 11:61-72. [DOI: 10.1142/s0219635212500045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 10/26/2011] [Indexed: 11/18/2022] Open
|
47
|
Uhelski ML, Davis MA, Fuchs PN. Pain affect in the absence of pain sensation: evidence of asomaesthesia after somatosensory cortex lesions in the rat. Pain 2012; 153:885-892. [PMID: 22365310 DOI: 10.1016/j.pain.2012.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/21/2011] [Accepted: 01/17/2012] [Indexed: 01/21/2023]
Abstract
Multidimensional models of pain processing distinguish the sensory, motivational, and affective components of the pain experience. Efforts to understand underlying mechanisms have focused on isolating the roles of specific brain structures, including both limbic and non-limbic cortical areas, in the processing of nociceptive stimuli. The purpose of this study was to examine the role of the somatosensory cortex in both sensory and affective aspects of pain processing. It was hypothesized that animals with lesions of the hind limb area of the somatosensory cortex would demonstrate altered sensory processing (asomaesthesia, a deficit in the ability to detect and identify somatic sensation) in the presence of an inflammatory state when compared to animals with sham lesions. The level of pain affect produced by an inflammatory pain condition was not expected to change, as this region has not demonstrated a role in processing the affective component of pain. Seventy-nine adult female Sprague-Dawley rats were randomly assigned to receive bilateral lesions or a sham procedure. The results showed that somatosensory lesions to the hindlimb region altered responses to mechanical stimulation in the presence of experimentally-induced inflammation, but did not attenuate the inflammation-induced paw volume changes or the level of pain affect, as demonstrated by escape/avoidance behavior in response to mechanical stimulation. Overall, these results support previous evidence suggesting that the somatosensory cortex is primarily involved in the processing the sensory/discriminative aspect of pain, and the current study is the first to demonstrate the presence of pain affect in the absence of somatosensory processing.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Psychology, University of Texas at Arlington, Arlington, Texas, USA Department of Biology, University of Texas at Arlington, Arlington, Texas, USA Department of Diagnostic and Biological Sciences, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
48
|
McNabb CT, Uhelski ML, Fuchs PN. A direct comparison of affective pain processing underlying two traditional pain modalities in rodents. Neurosci Lett 2011; 507:57-61. [PMID: 22172927 DOI: 10.1016/j.neulet.2011.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/23/2011] [Accepted: 11/26/2011] [Indexed: 10/14/2022]
Abstract
In the preclinical study of pain, two commonly used pain models are the L5 spinal nerve ligation (SNL) and the injection of carrageenan. Using a modified place escape/avoidance paradigm (mPEAP), a novel behavioral test that quantifies aversive behavior evoked by painful stimuli, we directly compared the affective component of the SNL and inflammation models. Fifty three Sprague-Dawley rats underwent baseline mechanical paw withdrawal threshold (MPWT) and mPEAP testing followed by an L5 SNL or sham surgery for the left paw and then a carrageenan or saline injection for the right paw. After recovering, animals underwent post-manipulation MPWT and mPEAP tests. Both pain conditions produced mechanical hypersensitivity, and animals with a single-paw condition demonstrated escape/avoidance behavior in response to stimulation of the affected paw. Animals with the bilateral pain condition did not show a preference for stimulation of one paw versus the other paw, and the avoidance behavior was not significantly different from the sham/saline control. The results indicate that the pain models are associated with significant avoidance behavior and that they produce comparable degrees of pain affect. These findings advance the preclinical study of pain by validating the simultaneous utilization of the SNL and inflammation models and will allow future studies that combine pain conditions to more closely resemble clinical conditions.
Collapse
Affiliation(s)
- C T McNabb
- The University of Texas at Arlington, Department of Psychology, 501 S. Nedderman Dr., 313 Life Sciences Building, Box 19528, Arlington, TX 76019, USA
| | | | | |
Collapse
|
49
|
Evaluating underlying neuronal activity associated with escape/avoidance behavior in response to noxious stimulation in adult rats. Brain Res 2011; 1433:56-61. [PMID: 22137659 DOI: 10.1016/j.brainres.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/28/2011] [Accepted: 11/05/2011] [Indexed: 11/21/2022]
Abstract
The place escape/avoidance paradigm (PEAP) is a behavioral test designed to quantify the level of unpleasantness evoked by painful stimuli by assessing the willingness of a subject to escape/avoid a preferred area when it is associated with noxious stimulation. Previous studies have demonstrated that escape/avoidance behavior is dependent on activity in the anterior cingulate cortex (ACC), a region of the limbic system involved in processing the emotional component of pain in humans and animals. Analysis of c-Fos expression in the ACC confirmed that the escape/avoidance response to noxious stimuli corresponds to changes in neural activation in this region. Behavioral tests such as the PEAP may be more sensitive to changes in supraspinal pain processing and could contribute to the development of novel analgesics in the future.
Collapse
|
50
|
Baastrup C, Jensen TS, Finnerup NB. Coexisting mechanical hypersensitivity and anxiety in a rat model of spinal cord injury and the effect of pregabalin, morphine, and midazolam treatment. Scand J Pain 2011; 2:139-145. [DOI: 10.1016/j.sjpain.2011.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Abstract
Background and purpose
Spinal cord injury (SCI) has detrimental consequences that include chronic neuropathic pain, which is seen in 40-50% of patients, and symptoms of anxiety and depression, which affect 13-45% of SCI patients. The coexistence of pain, anxiety, and depression is known from other neuropathic pain conditions, but the relationship between these symptoms is not clear and has not been investigated in a preclinical model of SCI so far.
The aim of this study was to investigate anxiety-like behavior and at-level mechanical hypersensitivity following experimental spinal cord contusion (SCC) in female Sprague-Dawley rats, and the effects of analgesic and anxiolytic drugs.
Methods
Mechanical sensitivity and elevated plus maze (EPM) behavior were measured pre- and postinjury in SCC and sham animals. Pregabalin 30 mg/kg, morphine 3 mg/kg, midazolam 0.5 mg/kg, and 0.9% NaCl were evaluated in a randomly allocated, blinded balanced design.
Results
SCC animals developed persistent at-level mechanical hypersensitivity and decreased open arm activity in the EPM, which indicates an anxiety-like state. Pregabalin, a dual-acting analgesic and anxiolytic drug reduced both hypersensitivity and anxiety-like behavior, while the analgesic drug morphine only reduced hypersensitivity. The anxiolytic drug midazolam in the dose used had no effect on either parameter.
Conclusions
SCC animals developed long lasting coexisting at-level mechanical hypersensitivity and anxiety-like behavior, but there was no evidence to support a causal relationship between pain and anxiety following SCI.
Implications
The findings that at-level mechanical hypersensitivity and anxiety-like behavior develops concomitantly in the spinal cord contusion models and that both symptoms is persistent provide basis for further investigation of the mechanisms and connection behind these two clinically relevant symptoms after injury to the central nervous system.
Collapse
Affiliation(s)
- Cathrine Baastrup
- Danish Pain Research Center , Aarhus University Hospital , Norrebrogade 44, Building 1A, DK-8000 Aarhus C , Aarhus , Denmark
| | - Troels S. Jensen
- Danish Pain Research Center , Aarhus University Hospital , Norrebrogade 44, Building 1A, DK-8000 Aarhus C , Aarhus , Denmark
- Department of Neurology , Aarhus University Hospital , Norrebrogade 44, DK-8000 Aarhus C , Aarhus , Denmark
| | - Nanna B. Finnerup
- Danish Pain Research Center , Aarhus University Hospital , Norrebrogade 44, Building 1A, DK-8000 Aarhus C , Aarhus , Denmark
| |
Collapse
|