1
|
Okada K, Okawada M, Yoneta M, Kuwahara W, Unai K, Kawakami M, Tsuji T, Kaneko F. Cognitive effect of passively induced kinesthetic perception associated with virtual body augmentation modulates spinal reflex. J Neurophysiol 2025; 133:69-77. [PMID: 39531281 DOI: 10.1152/jn.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The virtual movement of an augmented body, perceived as part of oneself, forms the basis of kinesthetic perception induced by visual stimulation (KINVIS). KINVIS is a visually induced virtual kinesthetic perception that clinically suppresses spasticity. The present study hypothesized that central neural network activity during KINVIS affects subcortical neural circuits. The present study aimed to elucidate whether reciprocal and presynaptic inhibition occurs during KINVIS. Seventeen healthy participants were recruited (mean age: 27.9 ± 3.6 yr), and their soleus Hoffmann-reflexes (H-reflexes) were recorded by peripheral nerve stimulation while perceiving the dorsiflexion kinesthetic illusion in the right-side foot (seated in a comfortable chair). Two control conditions were set to observe the same foot video without the kinesthetic illusion while focusing on the static foot image. Unconditioned H-reflex and two types of conditioned H-reflexes were measured: Ia (reciprocal inhibition) and D1 (presynaptic inhibition). Reciprocal Ia and D1 inhibition of the soleus muscle was significantly enhanced during the kinesthetic illusion compared with the condition without kinesthetic illusion (a post hoc analysis using the Bonferroni test: Ia inhibition, P = 0.002; D1 inhibition, P = 0.049). This study indicates that kinesthetic illusion elicits an inhibitory effect on the monosynaptic reflex loop of Ia afferents, potentially inhibiting the hyperexcitability of the stretch reflex. These findings demonstrate that brain activity associated with visually induced kinesthetic illusions acts on spinal inhibition circuits. These insights may be valuable in clinical rehabilitation practice, specifically for the treatment of spasticity.NEW & NOTEWORTHY Neural effects in visual-induced kinesthetic illusion expand into the spinal reflex. Kinesthetic illusion inhibits the monosynaptic reflex in an antagonistic muscle via reciprocal and presynaptic inhibition. Visually induced kinesthetic illusion is a suitable treatment for spasticity in patients with stroke.
Collapse
Affiliation(s)
- Kohsuke Okada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Saiseikai Higashi-Kanagawa Rehabilitation Hospital, Yokohama, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Megumi Okawada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Masaki Yoneta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Home Care, Social Welfare Cooperation Kitano-Aikoukai, Kitami, Japan
| | - Wataru Kuwahara
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kei Unai
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Saiseikai Higashi-Kanagawa Rehabilitation Hospital, Yokohama, Japan
- Hatsudai Rehabilitation Hospital, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
2
|
Tanamachi K, Kuwahara W, Okawada M, Sasaki S, Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil 2023; 20:159. [PMID: 37980496 PMCID: PMC10657492 DOI: 10.1186/s12984-023-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND In clinical practice, motor imagery has been proposed as a treatment modality for stroke owing to its feasibility in patients with severe motor impairment. Motor imagery-based interventions can be categorized as open- or closed-loop. Closed-loop intervention is based on voluntary motor imagery and induced peripheral sensory afferent (e.g., Brain Computer Interface (BCI)-based interventions). Meanwhile, open-loop interventions include methods without voluntary motor imagery or sensory afferent. Resting-state functional connectivity (rs-FC) is defined as a significant temporal correlated signal among functionally related brain regions without any stimulus. rs-FC is a powerful tool for exploring the baseline characteristics of brain connectivity. Previous studies reported changes in rs-FC after motor imagery interventions. Systematic reviews also reported the effects of motor imagery-based interventions at the behavioral level. This study aimed to review and describe the relationship between the improvement in motor function and changes in rs-FC after motor imagery in patients with stroke. REVIEW PROCESS The literature review was based on Arksey and O'Malley's framework. PubMed, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science were searched up to September 30, 2023. The included studies covered the following topics: illusion without voluntary action, motor imagery, action imitation, and BCI-based interventions. The correlation between rs-FC and motor function before and after the intervention was analyzed. After screening by two independent researchers, 13 studies on BCI-based intervention, motor imagery intervention, and kinesthetic illusion induced by visual stimulation therapy were included. CONCLUSION All studies relating to motor imagery in this review reported improvement in motor function post-intervention. Furthermore, all those studies demonstrated a significant relationship between the change in motor function and rs-FC (e.g., sensorimotor network and parietal cortex).
Collapse
Affiliation(s)
- Kenya Tanamachi
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Wataru Kuwahara
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Megumi Okawada
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shun Sasaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan.
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
3
|
F-waves induced by motor point stimulation are facilitated during handgrip and motor imagery tasks. Exp Brain Res 2023; 241:527-537. [PMID: 36622384 DOI: 10.1007/s00221-022-06537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023]
Abstract
The F-wave is a motor response elicited via the antidromic firings of motor nerves by the electrical stimulation of peripheral nerves, which reflects the motoneuron pool excitability. However, the F-wave generally has low robustness i.e., low persistence and small amplitude. We recently found that motor point stimulation (MPS), which provides the muscle belly with electrical stimulation, shows different neural responses compared to nerve stimulation, e.g., MPS elicits F-waves more robustly than nerve stimulation. Here, we investigated whether F-waves induced by MPS can identify changes in motoneuron pool excitability during handgrip and motor imagery. Twelve participants participated in the present study. We applied MPS on their soleus muscle and recorded F-waves during eyes-open (EO), eyes-closed (EC), handgrip (HG), and motor imagery (MI) conditions. In the EO and EC conditions, participants relaxed with their eyes open and closed, respectively. In the HG, participants matched the handgrip force level to 30% of the maximum voluntary force with visual feedback. In the MI, they performed kinesthetic MI of plantarflexion at the maximal strength with closed eyes. In the HG and MI, the amplitudes of the F-waves induced by MPS were increased compared with those in the EO and EC, respectively. These results indicate that the motoneuron pool excitability was facilitated during the HG and MI conditions, consistent with findings in previous studies. Our findings suggest that F-waves elicited by MPS can be a good tool in human neurophysiology to assess the motoneuron pool excitability during cognitive and motor tasks.
Collapse
|
4
|
Wieland B, Behringer M, Zentgraf K. Motor imagery and the muscle system. Int J Psychophysiol 2022; 174:57-65. [DOI: 10.1016/j.ijpsycho.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
|
5
|
Yavlal F, Kızıltan M. The effect of motor imagery on the excitability of spinal segmentary reflexes in restless legs syndrome patients. NEUROL SCI NEUROPHYS 2022. [DOI: 10.4103/nsn.nsn_221_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Grosprêtre S, Marusic U, Gimenez P, Ennequin G, Mourot L, Isacco L. Stand Up to Excite the Spine: Neuromuscular, Autonomic, and Cardiometabolic Responses During Motor Imagery in Standing vs. Sitting Posture. Front Physiol 2021; 12:762452. [PMID: 34887774 PMCID: PMC8649772 DOI: 10.3389/fphys.2021.762452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Motor imagery (MI) for health and performance strategies has gained interest in recent decades. Nevertheless, there are still no studies that have comprehensively investigated the physiological responses during MI, and no one questions the influence of low-level contraction on these responses. Thus, the aim of the present study was to investigate the neuromuscular, autonomic nervous system (ANS), and cardiometabolic changes associated with an acute bout of MI practice in sitting and standing condition. Twelve young healthy males (26.3 ± 4.4 years) participated in two experimental sessions (control vs. MI) consisting of two postural conditions (sitting vs. standing). ANS, hemodynamic and respiratory parameters, body sway parameters, and electromyography activity were continuously recorded, while neuromuscular parameters were recorded on the right triceps surae muscles before and after performing the postural conditions. While MI showed no effect on ANS, the standing posture increased the indices of sympathetic system activity and decreased those of the parasympathetic system (p < 0.05). Moreover, MI during standing induced greater spinal excitability compared to sitting posture (p < 0.05), which was accompanied with greater oxygen consumption, energy expenditure, ventilation, and lower cardiac output (p < 0.05). Asking individuals to perform MI of an isometric contraction while standing allows them to mentally focus on the motor command, not challenge balance, and produce specific cardiometabolic responses. Therefore, these results provide further evidence of posture and MI-related modulation of spinal excitability with additional autonomic and cardiometabolic responses in healthy young men.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne Franche-Comté, Besançon, France
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre of Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea-ECM, Maribor, Slovenia
| | - Philippe Gimenez
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne Franche-Comté, Besançon, France
| | - Gael Ennequin
- Université Clermont Auvergne, CRNH, AME2P, Clermont-Ferrand, France
| | - Laurent Mourot
- EA3920-Prognostic Markers and Regulatory Factors of Heart and Vascular Diseases, and Exercise Performance, Health, Innovation Platform, University Bourgogne Franche-Comté, Besançon, France.,National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Laurie Isacco
- Université Clermont Auvergne, CRNH, AME2P, Clermont-Ferrand, France.,EA3920-Prognostic Markers and Regulatory Factors of Heart and Vascular Diseases, and Exercise Performance, Health, Innovation Platform, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
7
|
Arendsen LJ, Guggenberger R, Zimmer M, Weigl T, Gharabaghi A. Peripheral Electrical Stimulation Modulates Cortical Beta-Band Activity. Front Neurosci 2021; 15:632234. [PMID: 33867919 PMCID: PMC8044771 DOI: 10.3389/fnins.2021.632234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Low-frequency peripheral electrical stimulation using a matrix electrode (PEMS) modulates spinal nociceptive pathways. However, the effects of this intervention on cortical oscillatory activity have not been assessed yet. The aim of this study was to investigate the effects of low-frequency PEMS (4 Hz) on cortical oscillatory activity in different brain states in healthy pain-free participants. In experiment 1, PEMS was compared to sham stimulation. In experiment 2, motor imagery (MI) was used to modulate the sensorimotor brain state. PEMS was applied either during MI-induced oscillatory desynchronization (concurrent PEMS) or after MI (delayed PEMS) in a cross-over design. For both experiments, PEMS was applied on the left forearm and resting-state electroencephalography (EEG) was recording before and after each stimulation condition. Experiment 1 showed a significant decrease of global resting-state beta power after PEMS compared to sham (p = 0.016), with a median change from baseline of −16% for PEMS and −0.54% for sham. A cluster-based permutation test showed a significant difference in resting-state beta power comparing pre- and post-PEMS (p = 0.018) that was most pronounced over bilateral central and left frontal sensors. Experiment 2 did not identify a significant difference in the change from baseline of global EEG power for concurrent PEMS compared to delayed PEMS. Two cluster-based permutation tests suggested that frontal beta power may be increased following both concurrent and delayed PEMS. This study provides novel evidence for supraspinal effects of low-frequency PEMS and an initial indication that the presence of a cognitive task such as MI may influence the effects of PEMS on beta activity. Chronic pain has been associated with changes in beta activity, in particular an increase of beta power in frontal regions. Thus, brain state-dependent PEMS may offer a novel approach to the treatment of chronic pain. However, further studies are warranted to investigate optimal stimulation conditions to achieve a reduction of pain.
Collapse
Affiliation(s)
- Laura J Arendsen
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Manuela Zimmer
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Tobias Weigl
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Nakayama H, Kawakami M, Takahashi Y, Kondo K, Shimizu E. The changes in spinal reciprocal inhibition during motor imagery in lower extremity. Neurol Sci 2021; 42:3813-3820. [PMID: 33464412 DOI: 10.1007/s10072-021-05054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Motor imagery (MI) is known to improve motor function through enhancement of motor cortex activity. Spinal reciprocal inhibition (RI) is modulated by motor cortex activity, and, therefore, MI may change RI. The aim of this study was to examine the changes in RI during MI involving the lower extremity. Spinal RI was measured from the tibialis anterior (TA) to the soleus (SOL). Eleven healthy adults participated in experiment 1. All participants performed the following three conditions, and RI was assessed during each condition: (1) resting condition; (2) MI of ankle dorsiflexion condition (MI-DF); and (3) MI of ankle plantarflexion condition (MI-PF). Twelve healthy adults participated in experiment 2. All participants performed the following two conditions, and RI was assessed before and after MI practice for 10 min: (1) resting condition and (2) MI-DF. The interval between the conditioning and test stimulus (inter-stimulus interval; ISI) was set at 0, 1, 2, or 3 ms and 20 ms. In experiment 1, RI during MI-PF was significantly decreased compared with that during resting with both stimulus intervals. RI during MI-DF showed no significant change compared with that during resting with both ISIs. In experiment 2, the difference between the rest condition and the MI-DF condition after the MI task with ISI of 20 ms was significantly higher than before the MI task. Our findings suggest that real-time changes in RI during MI involving the lower extremity may vary depending on the direction of motion and MI practice.
Collapse
Affiliation(s)
- Hideto Nakayama
- Yatsu Hoken Hospital, 4-6-16 Yatsu, Narashino-shi, Chiba, 275-0026, Japan.,Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, inohana, Chiba-shi, Chiba, 260-8670, Japan
| | - Michiyuki Kawakami
- Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan. .,Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Takahashi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyou-ku, Tokyo, 113-8421, Japan
| | - Kunitsugu Kondo
- Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, inohana, Chiba-shi, Chiba, 260-8670, Japan
| |
Collapse
|
9
|
Wieland B, Behringer M, Zentgraf K. WITHDRAWN: Motor imagery and the muscle system. Int J Psychophysiol 2020; 156:87-92. [DOI: 10.1016/j.ijpsycho.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
|
10
|
Abraham A, Franklin E, Stecco C, Schleip R. Integrating mental imagery and fascial tissue: A conceptualization for research into movement and cognition. Complement Ther Clin Pract 2020; 40:101193. [PMID: 32891273 DOI: 10.1016/j.ctcp.2020.101193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022]
Abstract
Mental imagery (MI) research has mainly focused to date on mechanisms of effect and performance gains associated with muscle and neural tissues. MI's potential to affect fascia has rarely been considered. This paper conceptualizes ways in which MI might mutually interact with fascial tissue to support performance and cognitive functions. Such ways acknowledge, among others, MI's positive effect on proprioception, body schema, and pain. Drawing on cellular, physiological, and functional similarities and associations between muscle and fascial tissues, we propose that MI has the potential to affect and be affected by fascial tissue. We suggest that fascia-targeted MI (fascial mental imagery; FMI) can therefore be a useful approach for scientific as well as clinical purposes. We use the example of fascial dynamic neuro-cognitive imagery (FDNI) as a codified FMI method available for scientific and therapeutic explorations into rehabilitation and prevention of fascia-related disabling conditions.
Collapse
Affiliation(s)
- Amit Abraham
- Department of Kinesiology, College of Education, The University of Georgia, Athens, GA, USA. 330 River Road, Athens, 30602, GA, USA; Department of Medicine, Division of General Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric Franklin
- The International Institute for Franklin Method, Hitnauerstrasse 40 CH-8623 Wetzikon, Zurich, Switzerland.
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Via Giustiniani, 5 - 35128, Padova, Italy.
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University of Munich, Germany. Georg-Brauchle-Ring 60/62, 80802, Muenchen, Germany; Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany; Fascia Research Group, Ulm University, Experimental Anesthesiology, Ulm, Germany.
| |
Collapse
|
11
|
Bunno Y. Motor Imagery for Neurorehabilitation: The F-Wave Study. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Forgaard CJ, Franks IM, Maslovat D, Chua R. Influence of kinesthetic motor imagery and effector specificity on the long-latency stretch response. J Neurophysiol 2019; 122:2187-2200. [PMID: 31553684 DOI: 10.1152/jn.00159.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The long-latency "reflexive" response (LLR) following an upper limb mechanical perturbation is generated by neural circuitry shared with voluntary control. This feedback response supports many task-dependent behaviors and permits the expression of goal-directed corrections at latencies shorter than voluntary reaction time. An extensive body of literature has demonstrated that the LLR shows flexibility akin to voluntary control, but it has not yet been tested whether instruction-dependent LLR changes can also occur in the absence of an overt voluntary response. The present study used kinesthetic motor imagery (experiment 1) and instructed participants to execute movement with the unperturbed contralateral limb (experiment 2) to explore the relationship between the overt production of a voluntary response and LLR facilitation. Activity in stretched right wrist flexors were compared with standard "do not-intervene" and "compensate" conditions. Our findings revealed that on ~40% of imagery and ~50% of contralateral trials, a response occurred during the voluntary epoch in the stretched right wrist flexors. On these "leaked" trials, the early portion of the LLR (R2) was facilitated and displayed a similar increase to compensate trials. The latter half of the LLR (R3) showed further modulation, mirroring the patterns of voluntary epoch activity. By contrast, the LLR on "non-leaked" imagery and contralateral trials did not modulate. We suggest that even though a hastened voluntary response cannot account for all instruction-dependent LLR modulation, the overt execution of a response during the voluntary epoch in the same muscle(s) as the LLR is a prerequisite for instruction-dependent facilitation of this feedback response.NEW & NOTEWORTHY Using motor imagery and contralateral responses, we provide novel evidence that facilitation of the long-latency reflex (LLR) requires the execution of a response during the voluntary epoch. A high proportion of overt response "leaks" were found where the mentally simulated or mirrored response appeared in stretched muscle. The first half of the LLR was categorically sensitive to the appearance of leaks, whereas the latter half displayed characteristics closely resembling activity in the ensuing voluntary period.
Collapse
Affiliation(s)
- Christopher J Forgaard
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,The Brain and Mind Institute, Western University, Ontario, Canada.,Department of Psychology, Western University, Ontario, Canada
| | - Ian M Franks
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Dana Maslovat
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Dissociation between cortical and spinal excitability of the antagonist muscle during combined motor imagery and action observation. Sci Rep 2019; 9:13120. [PMID: 31511567 PMCID: PMC6739353 DOI: 10.1038/s41598-019-49456-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/21/2019] [Indexed: 11/23/2022] Open
Abstract
Inhibitory neural control of antagonist muscle is one of the fundamental neural mechanism of coordinated human limb movement. Previous studies have revealed that motor execution (ME) and motor imagery (MI) share many common neural substrates; however, whether inhibitory neural activity occurs during MI remains unknown. In addition, recent studies have demonstrated that a combined MI and action observation (MI + AO) produces strong neurophysiological changes compared with MI or AO alone. Therefore, we investigated inhibitory changes in cortical and spinal excitability of the antagonist muscle during MI + AO and ME. Single-pulse transcranial magnetic stimulation (TMS) experiments revealed that corticospinal excitability of the antagonist muscle was decreased during MI + AO. Conversely, F-wave experiments showed that F-wave persistence of the antagonist muscle increased. Paired-pulse TMS experiment also demonstrated that short-interval intracortical inhibition (SICI) did not contribute to this inhibition. Therefore, cortical mediated inhibition, except for SICI, may be related to this inhibition. Conversely, such clear inhibition of the antagonist muscle was not observed during ME, presumably owing to the effects of muscle contraction to decelerate the movements and/or sensory input accompanying the joint movements. These findings provide important insights into the neurophysiological differences between MI + AO and ME.
Collapse
|
14
|
Takahashi Y, Kawakami M, Yamaguchi T, Idogawa Y, Tanabe S, Kondo K, Liu M. Effects of Leg Motor Imagery Combined With Electrical Stimulation on Plasticity of Corticospinal Excitability and Spinal Reciprocal Inhibition. Front Neurosci 2019; 13:149. [PMID: 30846928 PMCID: PMC6393385 DOI: 10.3389/fnins.2019.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Motor imagery (MI) combined with electrical stimulation (ES) enhances upper-limb corticospinal excitability. However, its after-effects on both lower limb corticospinal excitability and spinal reciprocal inhibition remain unknown. We aimed to investigate the effects of MI combined with peripheral nerve ES (MI + ES) on the plasticity of lower limb corticospinal excitability and spinal reciprocal inhibition. Seventeen healthy individuals performed the following three tasks on different days, in a random order: (1) MI alone; (2) ES alone; and (3) MI + ES. The MI task consisted of repetitive right ankle dorsiflexion for 20 min. ES was percutaneously applied to the common peroneal nerve at a frequency of 100 Hz and intensity of 120% of the sensory threshold of the tibialis anterior (TA) muscle. We examined changes in motor-evoked potential (MEP) of the TA (task-related muscle) and soleus muscle (SOL; task-unrelated muscle). We also examined disynaptic reciprocal inhibition before, immediately after, and 10, 20, and 30 min after the task. MI + ES significantly increased TA MEPs immediately and 10 min after the task compared with baseline, but did not change the task-unrelated muscle (SOL) MEPs. MI + ES resulted in a significant increase in the magnitude of reciprocal inhibition immediately and 10 min after the task compared with baseline. MI and ES alone did not affect TA MEPs or reciprocal inhibition. MI combined with ES is effective in inducing plastic changes in lower limb corticospinal excitability and reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | | | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | | | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Grosprêtre S, Lebon F, Papaxanthis C, Martin A. Spinal plasticity with motor imagery practice. J Physiol 2018; 597:921-934. [PMID: 30417924 DOI: 10.1113/jp276694] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While a consensus has now been reached on the effect of motor imagery (MI) - the mental simulation of an action - on motor cortical areas, less is known about its impact on spinal structures. The current study, using H-reflex conditioning paradigms, examined the effect of a 20 min MI practice on several spinal mechanisms of the plantar flexor muscles. We observed modulations of spinal presynaptic circuitry while imagining, which was even more pronounced following an acute session of MI practice. We suggested that the small cortical output generated during MI may reach specific spinal circuits and that repeating MI may increase the sensitivity of the spinal cord to its effects. The short-term plasticity induced by MI practice may include spinal network modulation in addition to cortical reorganization. ABSTRACT Kinesthetic motor imagery (MI) is the mental simulation of a movement with its sensory consequences but without its concomitant execution. While the effect of MI practice on cortical areas is well known, its influence on spinal circuitry remains unclear. Here, we assessed plastic changes in spinal structures following an acute MI practice. Thirteen young healthy participants accomplished two experimental sessions: a 20 min MI training consisting of four blocks of 25 imagined maximal isometric plantar flexions, and a 20 min rest (control session). The level of spinal presynaptic inhibition was assessed by conditioning the triceps surae spinal H-reflex with two methods: (i) the stimulation of the common peroneal nerve that induced D1 presynaptic inhibition (HPSI response), and (ii) the stimulation of the femoral nerve that induced heteronymous Ia facilitation (HFAC response). We then compared the effects of MI on unconditioned (HTEST ) and conditioned (HPSI and HFAC ) responses before, immediately after and 10 min after the 20 min session. After resting for 20 min, no changes were observed on the recorded parameters. After MI practice, the amplitude of rest HTEST was unchanged, while HPSI and HFAC significantly increased, showing a reduction of presynaptic inhibition with no impact on the afferent-motoneuronal synapse. The current results revealed the acute effect of MI practice on baseline spinal presynaptic inhibition, increasing the sensitivity of the spinal circuitry to MI. These findings will help in understanding the mechanisms of neural plasticity following chronic practice.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- EA4660-C3S Laboratory - Culture, Sport, Health and Society, University of Bourgogne Franche-Comté, Besançon, France
| | - Florent Lebon
- CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Facultés des Sciences du Sport, F-21078, Dijon, France
| | - Charalambos Papaxanthis
- CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Facultés des Sciences du Sport, F-21078, Dijon, France
| | - Alain Martin
- CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Facultés des Sciences du Sport, F-21078, Dijon, France
| |
Collapse
|
16
|
Modulation of Hoffmann reflex excitability during action observation of walking with and without motor imagery. Neurosci Lett 2018; 684:218-222. [DOI: 10.1016/j.neulet.2018.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
|
17
|
Thompson AK, Carruth H, Haywood R, Hill NJ, Sarnacki WA, McCane LM, Wolpaw JR, McFarland DJ. Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex. Front Neurosci 2018; 12:505. [PMID: 30090056 PMCID: PMC6068279 DOI: 10.3389/fnins.2018.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
People can learn over training sessions to increase or decrease sensorimotor rhythms (SMRs) in the electroencephalogram (EEG). Activity-dependent brain plasticity is thought to guide spinal plasticity during motor skill learning; thus, SMR training may affect spinal reflexes and thereby influence motor control. To test this hypothesis, we investigated the effects of learned mu (8–13 Hz) SMR modulation on the flexor carpi radialis (FCR) H-reflex in 6 subjects with no known neurological conditions and 2 subjects with chronic incomplete spinal cord injury (SCI). All subjects had learned and practiced over more than 10 < 30-min training sessions to increase (SMR-up trials) and decrease (SMR-down trials) mu-rhythm amplitude over the hand/arm area of left sensorimotor cortex with ≥80% accuracy. Right FCR H-reflexes were elicited at random times during SMR-up and SMR-down trials, and in between trials. SMR modulation affected H-reflex size. In all the neurologically normal subjects, the H-reflex was significantly larger [116% ± 6 (mean ± SE)] during SMR-up trials than between trials, and significantly smaller (92% ± 1) during SMR-down trials than between trials (p < 0.05 for both, paired t-test). One subject with SCI showed similar H-reflex size dependence (high for SMR-up trials, low for SMR-down trials): the other subject with SCI showed no dependence. These results support the hypothesis that SMR modulation has predictable effects on spinal reflex excitability in people who are neurologically normal; they also suggest that it might be used to enhance therapies that seek to improve functional recovery in some individuals with SCI or other CNS disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah Carruth
- Division Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Rachel Haywood
- Division Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - N Jeremy Hill
- Burke Neurological Institute, White Plains, NY, United States.,Blythedale Children's Hospital, Valhalla, NY, United States
| | - William A Sarnacki
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Lynn M McCane
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Albany Stratton VA Medical Center, Albany, NY, United States
| | - Dennis J McFarland
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
18
|
Nakagawa K, Masugi Y, Saito A, Obata H, Nakazawa K. Influence of motor imagery on spinal reflex excitability of multiple muscles. Neurosci Lett 2018; 668:55-59. [PMID: 29329907 DOI: 10.1016/j.neulet.2018.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/07/2018] [Indexed: 11/25/2022]
Abstract
The effects of motor imagery on spinal reflexes such as the H-reflex are unclear. One reason for this is that the muscles that can be used to record spinal reflexes are limited to traditional evoking methods Recently, transcutaneous spinal cord stimulation has been used for inducing spinal reflexes from multiple muscles and we aimed to examine the effect of motor imagery on spinal reflexes from multiple muscles. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded from six muscles from lower limbs during motor imagery of right wrist extension and ankle plantarflexion with maximum isometric contraction. During both imaginary tasks, facilitation of spinal reflexes was detected in the ankle ipsilateral plantarflexor and dorsiflexor muscles, but not in thigh, toe or contralateral lower limb muscles. These results suggest that motor imagery of isometric contraction facilitates spinal reflex excitability in muscles of the ipsilateral lower leg and the facilitation does not correspond to the imaginary involved muscles.
Collapse
Affiliation(s)
- Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan; Japan Society for the Promotion of Science, Japan.
| | - Yohei Masugi
- Institute of Sports Medicine and Science, Tokyo International University, Matoba, Kawagoe-shi, Saitama, Japan
| | - Akira Saito
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan; Japan Society for the Promotion of Science, Japan
| | - Hiroki Obata
- Department of Humanities and Social Sciences, Institute of Liberal Arts, Kyushu Institute of Technology, Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
19
|
Grosprêtre S, Jacquet T, Lebon F, Papaxanthis C, Martin A. Neural mechanisms of strength increase after one-week motor imagery training. Eur J Sport Sci 2017; 18:209-218. [DOI: 10.1080/17461391.2017.1415377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sidney Grosprêtre
- EA4660-C3S Laboratory – Culture, Sport, Health and Society, University of Bourgogne Franche-Comté, Besançon, France
| | - Thomas Jacquet
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Florent Lebon
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Charalambos Papaxanthis
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Alain Martin
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
20
|
Shibata E, Kaneko F, Katayose M. Muscular responses appear to be associated with existence of kinesthetic perception during combination of tendon co-vibration and motor imagery. Exp Brain Res 2017; 235:3417-3425. [PMID: 28823036 DOI: 10.1007/s00221-017-5057-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/03/2017] [Indexed: 11/24/2022]
Abstract
The afferent inputs from peripheral sensory receptors and efferent signals from the central nervous system that underlie intentional movement can contribute to kinesthetic perception. Previous studies have revealed that tendon vibration to wrist muscles elicits an excitatory response-known as the antagonist vibratory response-in muscles antagonistic to the vibrated muscles. Therefore, the present study aimed to further investigate the effect of tendon vibration combined with motor imagery on kinesthetic perception and muscular activation. Two vibrators were applied to the tendons of the left flexor carpi radialis and extensor carpi radialis. When the vibration frequency was the same between flexors and extensors, no participant perceived movement and no muscle activity was induced. When participants imagined flexing their wrists during tendon vibration, the velocity of perceptual flexion movement increased. Furthermore, muscle activity of the flexor increased only during motor imagery. These results demonstrate that kinesthetic perception can be induced during the combination of motor imagery and co-vibration, even with no experience of kinesthetic perception from an afferent input with co-vibration at the same frequency. Although motor responses were observed during combined co-vibration and motor imagery, no such motor responses were recorded during either co-vibration alone or motor imagery alone, suggesting that muscular responses during the combined condition are associated with kinesthetic perception. Thus, the present findings indicate that kinesthetic perception is influenced by the interaction between afferent input from muscle spindles and the efferent signals that underlie intentional movement. We propose that the physiological behavior resulting from kinesthetic perception affects the process of modifying agonist muscle activity, which will be investigated in a future study.
Collapse
Affiliation(s)
- Eriko Shibata
- Development Research Group for Advanced Neuroscience-based Rehabilitation, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo, Japan.,Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo, Japan
| | - Fuminari Kaneko
- Development Research Group for Advanced Neuroscience-based Rehabilitation, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo, Japan. .,Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo, Japan.
| | - Masaki Katayose
- Second Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo, Japan
| |
Collapse
|
21
|
Abstract
In action theory, emotional actions are standardly treated as exceptions—cases where the “normal” springs of action are not functioning properly. My aim here is to argue that this is not so. We have plenty of evidence—beautifully brought together in the present special issue—that emotions play a crucial and often constitutive role in all the important phases of action preparation and initiation. Most of our actions are less stupid than, say, Zidane’s head-butt (a paradigmatic emotional action), but all of our actions have emotional components. Actions can be more or less emotional, but they are never completely nonemotional.
Collapse
Affiliation(s)
- Bence Nanay
- Centre for Philosophical Psychology, University of Antwerp, Belgium and University of Cambridge, UK
| |
Collapse
|
22
|
Aoyama T, Kaneko F, Ohashi Y, Nagata H. Surround inhibition in motor execution and motor imagery. Neurosci Lett 2016; 629:196-201. [DOI: 10.1016/j.neulet.2016.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
|
23
|
Kaneko F, Shibata E, Hayami T, Nagahata K, Aoyama T. The association of motor imagery and kinesthetic illusion prolongs the effect of transcranial direct current stimulation on corticospinal tract excitability. J Neuroeng Rehabil 2016; 13:36. [PMID: 27079199 PMCID: PMC4832525 DOI: 10.1186/s12984-016-0143-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 01/09/2023] Open
Abstract
Background A kinesthetic illusion induced by a visual stimulus (KI) can produce vivid kinesthetic perception. During KI, corticospinal tract excitability increases and results in the activation of cerebral networks. Transcranial direct current stimulation (tDCS) is emerging as an alternative potential therapeutic modality for a variety of neurological and psychiatric conditions, such that identifying factors that enhance the magnitude and duration of tDCS effects is currently a topic of great scientific interest. This study aimed to establish whether the combination of tDCS with KI and sensory-motor imagery (MI) induces larger and longer-lasting effects on the excitability of corticomotor pathways in healthy Japanese subjects. Methods A total of 21 healthy male volunteers participated in this study. Four interventions were investigated in the first experiment: (1) anodal tDCS alone (tDCSa), (2) anodal tDCS with visually evoked kinesthetic illusion (tDCSa + KI), (3) anodal tDCS with motor imagery (tDCSa + MI), and (4) anodal tDCS with kinesthetic illusion and motor imagery (tDCSa + KIMI). In the second experiment, we added a sham tDCS intervention with kinesthetic illusion and motor imagery (sham + KIMI) as a control for the tDCSa + KIMI condition. Direct currents were applied to the right primary motor cortex. Corticospinal excitability was examined using transcranial magnetic stimulation of the area associated with the left first dorsal interosseous. Results In the first experiment, corticomotor excitability was sustained for at least 30 min following tDCSa + KIMI (p < 0.01). The effect of tDCSa + KIMI on corticomotor excitability was greater and longer-lasting than that achieved in all other conditions. In the second experiment, significant effects were not achieved following sham + KIMI. Conclusions Our results suggest that tDCSa + KIMI has a greater therapeutic potential than tDCS alone for inducing higher excitability of the corticospinal tract. The observed effects may be related to sustained potentiation of resultant cerebral activity during combined KI, MI, and tDCSa.
Collapse
Affiliation(s)
- Fuminari Kaneko
- Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan. .,Development Research Group for Advanced Neuroscience-based Rehabilitation, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan.
| | - Eriko Shibata
- Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan.,Development Research Group for Advanced Neuroscience-based Rehabilitation, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan
| | - Tatsuya Hayami
- Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan.,Division of Health Science Education, School of General Education, Shinshu University, Asahi 3-1-1, Matsumoto City, Japan
| | - Keita Nagahata
- Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan.,Noboribetsu Hospital, Noboribetsuonsencho133, Noboribetsu City, Japan
| | - Toshiyuki Aoyama
- Laboratory of Sensory Motor Science and Sports Neuroscience, First Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan.,Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Ami-machi, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
24
|
Effect of kinesthetic illusion induced by visual stimulation on muscular output function after short-term immobilization. J Electromyogr Kinesiol 2016; 27:66-72. [PMID: 26914845 DOI: 10.1016/j.jelekin.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 01/04/2016] [Accepted: 01/18/2016] [Indexed: 11/23/2022] Open
Abstract
Kinesthetic illusions by visual stimulation (KiNVIS) enhances corticomotor excitability and activates motor association areas. The purpose of this study was to investigate the effect of KiNVIS induction on muscular output function after short-term immobilization. Thirty subjects were assigned to 3 groups: an immobilization group, with the left hand immobilized for 12h (immobilization period); an illusion group, with the left hand immobilized and additionally subjected to KiNVIS of the immobilized part during the immobilization period; and a control group with no manipulation. The maximum voluntary contraction (MVC), fluctuation of force (force fluctuation) during a force modulation task, and twitch force were measured both before (pre-test) and after (post-test) the immobilization period. Data were analyzed by performing two-way (TIME×GROUP) repeated measures ANOVA. The MVC decreased in the immobilization group only (pre-test; 37.8±6.1N, post-test; 32.8±6.9N, p<0.0005) after the immobilization period. The force fluctuation increased only in the immobilization group (pre-test; 2.19±0.54%, post-test; 2.78±0.87%, p=0.007) after the immobilization period. These results demonstrate that induction of KiNVIS prevents negative effect on MVC and force fluctuation after 12h of immobilization.
Collapse
|
25
|
Bunno Y, Suzuki T, Iwatsuki H. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity. J Phys Ther Sci 2016; 27:3793-8. [PMID: 26834354 PMCID: PMC4713793 DOI: 10.1589/jpts.27.3793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/17/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate the changes in spinal motor neuron
excitability and autonomic nervous system activity during motor imagery of isometric
thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The
F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor
imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine
thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for
5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were
significantly increased compared with those at rest, whereas those during motor imagery at
10% MVC were not significantly different from those at rest. The relative values of the
F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those
at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery
were similar during motor imagery at the two muscle contraction strengths. [Conclusion]
Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic
nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10%
MVC.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- Graduate School of Health Sciences, Graduate School of Aomori University of Health and Welfare, Japan; Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Toshiaki Suzuki
- Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Hiroyasu Iwatsuki
- Graduate School of Health Sciences, Graduate School of Aomori University of Health and Welfare, Japan
| |
Collapse
|
26
|
Grosprêtre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol 2015; 115:1279-88. [PMID: 26719089 DOI: 10.1152/jn.00952.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023] Open
Abstract
Motor imagery (MI) is the mental simulation of movement, without the corresponding muscle contraction. Whereas the activation of cortical motor areas during MI is established, the involvement of spinal structures is still under debate. We used original and complementary techniques to probe the influence of MI on spinal structures. Amplitude of motor-evoked potentials (MEPs), cervico-medullary-evoked potentials (CMEPs), and Hoffmann (H)-reflexes of the flexor carpi radialis (FCR) muscle and of the triceps surae muscles was measured in young, healthy subjects at rest and during MI. Participants were asked to imagine maximal voluntary contraction of the wrist and ankle, while the targeted limb was fixed (static condition). We confirmed previous studies with an increase of FCR MEPs during MI compared with rest. Interestingly, CMEPs, but not H-reflexes, also increased during MI, revealing a possible activation of subcortical structures. Then, to investigate the effect of MI on the spinal network, we used two techniques: 1) passive lengthening of the targeted muscle via an isokinetic dynamometer and 2) conditioning of H-reflexes with stimulation of the antagonistic nerve. Both techniques activate spinal inhibitory presynaptic circuitry, reducing the H-reflex amplitude at rest. In contrast, no reduction of H-reflex amplitude was observed during MI. These findings suggest that MI has modulatory effects on the spinal neuronal network. Specifically, the activation of low-threshold spinal structures during specific conditions (lengthening and H-reflex conditioning) highlights the possible generation of subliminal cortical output during MI.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| | - Florent Lebon
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| | - Charalambos Papaxanthis
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| | - Alain Martin
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
27
|
Bunno Y, Onigata C, Suzuki T. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100. J Phys Ther Sci 2015; 27:2775-8. [PMID: 26504291 PMCID: PMC4616092 DOI: 10.1589/jpts.27.2775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 01/13/2023] Open
Abstract
[Purpose] We often perform physical therapy using motor imagery of muscle contraction to
improve motor function for healthy subjects and central nerve disorders. This study aimed
to determine the differences in the excitability of spinal motor neurons during motor
imagery of a muscle contraction at different contraction strengths. [Subjects] We recorded
the F-wave in 15 healthy subjects. [Methods] In resting trial, the muscle was relaxed
during F-wave recording. For motor imagery trial, subjects were instructed to imagine
maximal voluntary contractions of 50% and 100% while holding the sensor of a pinch meter,
and F-waves were recorded for each contraction. The F-wave was recorded immediately after
motor imagery. [Results] Persistence and F/M amplitude ratio during motor imagery under
maximal voluntary contractions of 50% and 100% were significantly higher than that at
rest. In addition, the relative values of persistence, F/M amplitude ratio, and latency
were similar during motor imagery under the two muscle contraction strengths. [Conclusion]
Motor imagery under maximal voluntary contractions of 50% and 100% can increase the
excitability of spinal motor neurons. Differences in the imagined muscle contraction
strengths are not involved in changes in the excitability of spinal motor neurons.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Japan ; Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Chieko Onigata
- Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Toshiaki Suzuki
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Japan ; Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| |
Collapse
|
28
|
Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Neuroscience 2015; 303:535-43. [DOI: 10.1016/j.neuroscience.2015.07.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
|
29
|
Nigmatullina Y, Arshad Q, Wu K, Seemungal BM, Bronstein AM, Soto D. How imagery changes self-motion perception. Neuroscience 2015; 291:46-52. [PMID: 25637805 PMCID: PMC4372257 DOI: 10.1016/j.neuroscience.2015.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 11/29/2022]
Abstract
Imagined self-motion differentially modulates vestibular processing. Differential modulation affects both high- and low-order vestibular processing. Congruent and incongruent imagery have opposing effects. Modulation reported is specific to mental imagery and not an attentional bias.
Imagery and perception are thought to be tightly linked, however, little is known about the interaction between imagery and the vestibular sense, in particular, self-motion perception. In this study, the observers were seated in the dark on a motorized chair that could rotate either to the right or to the left. Prior to the physical rotation, observers were asked to imagine themselves rotating leftward or rightward. We found that if the direction of imagined rotation was different to the physical rotation of the chair (incongruent trials), the velocity of the chair needed to be higher for observers to experience themselves rotating relative to when the imagined and the physical rotation matched (on congruent trials). Accordingly, the vividness of imagined rotations was reduced on incongruent relative to congruent trials. Notably, we found that similar effects of imagery were found at the earliest stages of vestibular processing, namely, the onset of the vestibular–ocular reflex was modulated by the congruency between physical and imagined rotations. Together, the results demonstrate that mental imagery influences self-motion perception by exerting top-down influences over the earliest vestibular response and subsequent perceptual decision-making.
Collapse
Affiliation(s)
- Y Nigmatullina
- Academic Department of Neuro-otology, Division of Brain Sciences, Imperial College, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - Q Arshad
- Academic Department of Neuro-otology, Division of Brain Sciences, Imperial College, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - K Wu
- Academic Department of Neuro-otology, Division of Brain Sciences, Imperial College, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - B M Seemungal
- Academic Department of Neuro-otology, Division of Brain Sciences, Imperial College, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - A M Bronstein
- Academic Department of Neuro-otology, Division of Brain Sciences, Imperial College, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK.
| | - D Soto
- Memory and Attention Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| |
Collapse
|
30
|
Clark BC, Mahato NK, Nakazawa M, Law TD, Thomas JS. The power of the mind: the cortex as a critical determinant of muscle strength/weakness. J Neurophysiol 2014; 112:3219-26. [PMID: 25274345 DOI: 10.1152/jn.00386.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We tested the hypothesis that the nervous system, and the cortex in particular, is a critical determinant of muscle strength/weakness and that a high level of corticospinal inhibition is an important neurophysiological factor regulating force generation. A group of healthy individuals underwent 4 wk of wrist-hand immobilization to induce weakness. Another group also underwent 4 wk of immobilization, but they also performed mental imagery of strong muscle contractions 5 days/wk. Mental imagery has been shown to activate several cortical areas that are involved with actual motor behaviors, including premotor and M1 regions. A control group, who underwent no interventions, also participated in this study. Before, immediately after, and 1 wk following immobilization, we measured wrist flexor strength, voluntary activation (VA), and the cortical silent period (SP; a measure that reflect corticospinal inhibition quantified via transcranial magnetic stimulation). Immobilization decreased strength 45.1 ± 5.0%, impaired VA 23.2 ± 5.8%, and prolonged the SP 13.5 ± 2.6%. Mental imagery training, however, attenuated the loss of strength and VA by ∼50% (23.8 ± 5.6% and 12.9 ± 3.2% reductions, respectively) and eliminated prolongation of the SP (4.8 ± 2.8% reduction). Significant associations were observed between the changes in muscle strength and VA (r = 0.56) and SP (r = -0.39). These findings suggest neurological mechanisms, most likely at the cortical level, contribute significantly to disuse-induced weakness, and that regular activation of the cortical regions via imagery attenuates weakness and VA by maintaining normal levels of inhibition.
Collapse
Affiliation(s)
- Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Department of Biomedical Sciences, Ohio University, Athens, Ohio; Department of Geriatric Medicine, Ohio University, Athens, Ohio;
| | - Niladri K Mahato
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio
| | - Masato Nakazawa
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Office of Research, Ohio University, Athens, Ohio
| | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Department of Family Medicine, Ohio University, Athens, Ohio; and
| | - James S Thomas
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio; Department of Biomedical Sciences, Ohio University, Athens, Ohio; School of Rehabilitation and Communication Sciences, Ohio University, Athens, Ohio
| |
Collapse
|
31
|
Motor imagery modulation of postural sway is accompanied by changes in the EMG–COP association. Neurosci Lett 2014; 577:101-5. [DOI: 10.1016/j.neulet.2014.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/02/2014] [Accepted: 06/06/2014] [Indexed: 11/23/2022]
|
32
|
Bunno Y, Yurugi Y, Onigata C, Suzuki T, Iwatsuki H. Influence of motor imagery of isometric opponens pollicis activity on the excitability of spinal motor neurons: a comparison using different muscle contraction strengths. J Phys Ther Sci 2014; 26:1069-73. [PMID: 25140099 PMCID: PMC4135200 DOI: 10.1589/jpts.26.1069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/23/2014] [Indexed: 12/05/2022] Open
Abstract
[Purpose] This study aimed to determine the differences in the excitability of spinal
motor neurons during motor imagery of a muscle contraction at different contraction
strengths. [Methods] We recorded the F-wave in 15 healthy subjects. First, in a trial at
rest, the muscle was relaxed during F-wave recording. Next, during motor imagery, subjects
were instructed to imagine maximum voluntary contractions of 10%, 30%, and 50% while
holding the sensor of a pinch meter, and F-waves were recorded for each contraction.
F-waves were recorded immediately and at 5, 10, and 15 min after motor imagery. [Results]
Both persistence and F/M amplitude ratios during motor imagery under maximum voluntary
contractions of 10%, 30%, and 50% were significantly higher than that at rest. In
addition, persistence, F/M amplitude ratio, and latency were similar during motor imagery
under the three muscle contraction strengths. [Conclusion] Motor imagery under maximum
voluntary contractions of 10%, 30%, and 50% can increase the excitability of spinal motor
neurons. The results indicated that differences in muscle contraction strengths during
motor imagery are not involved in changes in the excitability of spinal motor neurons.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- Graduate School of Health Sciences, Graduate School of Aomori University of Health and Welfare: 58-1 Mase, Hamadate, Aomori 030-8505, Japan
| | - Yuko Yurugi
- Graduate School of Health Sciences, Graduate School of Aomori University of Health and Welfare: 58-1 Mase, Hamadate, Aomori 030-8505, Japan
| | - Chieko Onigata
- Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Toshiaki Suzuki
- Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Hiroyasu Iwatsuki
- Graduate School of Health Sciences, Graduate School of Aomori University of Health and Welfare: 58-1 Mase, Hamadate, Aomori 030-8505, Japan
| |
Collapse
|
33
|
Kaneko F, Hayami T, Aoyama T, Kizuka T. Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction. J Neuroeng Rehabil 2014; 11:94. [PMID: 24902891 PMCID: PMC4113028 DOI: 10.1186/1743-0003-11-94] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
Background The combination of voluntary effort and functional electrical stimulation (ES) appears to have a greater potential to induce plasticity in the motor cortex than either electrical stimulation or voluntary training alone. However, it is not clear whether the motor commands from the central nervous system, the afferent input from peripheral organs, or both, are indispensable to induce the facilitative effects on cortical excitability. To clarify whether voluntary motor commands enhance corticospinal tract (CoST) excitability during neuromuscular ES, without producing voluntary muscular contraction (VMC), we examined the effect of a combination of motor imagery (MI) and electrical muscular stimulation on CoST excitability using transcranial magnetic stimulation (TMS). Methods Eight neurologically healthy male subjects participated in this study. Five conditions (resting, MI, ES, ES + MI [ESMI], and VMC) were established. In the ES condition, a 50-Hz stimulus was applied for 3 to 5 s to the first dorsal interosseous (FDI) while subjects were relaxed. In the MI condition, subjects were instructed to imagine abducting their index finger. In the ESMI condition, ES was applied approximately 1 s after the subject had begun to imagine index finger abduction. In the VMC condition, subjects modulated the force of index finger abduction to match a target level, which was set at the level produced during the ES condition. TMS was applied on the hotspot for FDI, and the amplitude and latency of motor evoked potentials (MEPs) were measured under each condition. Results MEP amplitudes during VMC and ESMI were significantly larger than those during other conditions; there was no significant difference in MEP amplitude between these 2 conditions. The latency of MEPs evoked during MI and VMC were significantly shorter than were those evoked during rest and ES. Conclusions MEP acutely reinforced in ESMI may indicate that voluntary motor drive markedly contributes to enhance CoST excitability, without actual muscular contraction.
Collapse
Affiliation(s)
- Fuminari Kaneko
- Laboratory of SensoryMotor Science and Sports Neuroscience, Second Division of Physical Therapy, Sapporo Medical University, West 17- South 1, Chuo-ku, Sapporo City, Japan.
| | | | | | | |
Collapse
|
34
|
Lemos T, Souza NS, Horsczaruk CHR, Nogueira-Campos AA, de Oliveira LAS, Vargas CD, Rodrigues EC. Motor imagery modulation of body sway is task-dependent and relies on imagery ability. Front Hum Neurosci 2014; 8:290. [PMID: 24847241 PMCID: PMC4021121 DOI: 10.3389/fnhum.2014.00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/18/2014] [Indexed: 01/06/2023] Open
Abstract
In this study we investigate to what extent the effects of motor imagery on postural sway are constrained by movement features and the subject's imagery ability. Twenty-three subjects were asked to imagine three movements using the kinesthetic modality: rising on tiptoes, whole-body forward reaching, and whole-body lateral reaching. After each task, subjects reported the level of imagery vividness and were subsequently grouped into a HIGH group (scores ≥3, “moderately intense” imagery) or a LOW group (scores ≤2, “mildly intense” imagery). An eyes closed trial was used as a control task. Center of gravity (COG) coordinates were collected, along with surface EMG of the deltoid (medial and anterior portion) and lateral gastrocnemius muscles. COG variability was quantified as the amount of fluctuations in position and velocity in the forward-backward and lateral directions. Changes in COG variability during motor imagery were observed only for the HIGH group. COG variability in the forward-backward direction was increased during the rising on tiptoes imagery, compared with the control task (p = 0.01) and the lateral reaching imagery (p = 0.02). Conversely, COG variability in the lateral direction was higher in rising on tiptoes and lateral reaching imagery than during the control task (p < 0.01); in addition, COG variability was higher during the lateral reaching imagery than in the forward reaching imagery (p = 0.02). EMG analysis revealed no effects of group (p > 0.08) or task (p > 0.46) for any of the tested muscles. In summary, motor imagery influences body sway dynamics in a task-dependent manner, and relies on the subject' imagery ability.
Collapse
Affiliation(s)
- Thiago Lemos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brasil
| | - Nélio S Souza
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta Rio de Janeiro, Brasil
| | - Carlos H R Horsczaruk
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta Rio de Janeiro, Brasil
| | - Anaelli A Nogueira-Campos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brasil ; Departamento de Fisiologia, Universidade Federal de Juiz de Fora Minas Gerais, Brasil
| | - Laura A S de Oliveira
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta Rio de Janeiro, Brasil
| | - Claudia D Vargas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brasil
| | - Erika C Rodrigues
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta Rio de Janeiro, Brasil ; Instituto D'Or de Pesquisa e Ensino Rio de Janeiro, Brasil
| |
Collapse
|
35
|
Abstract
STUDY DESIGN Experimental design. Objective To determine test-retest reliability across sessions of the thoracolumbar multisegmental motor responses (MMR) in the upper and lower limbs of healthy subjects. Test-retest reliability of MMR has not been established or examined in previous studies. SETTINGS Neuro Laboratory of the Texas Woman's University (School of Physical Therapy, Houston, TX, USA). METHODS The MMR of 15 healthy subjects were tested over two sessions. T11-12 vertebral segments were electrically stimulated using surface electrodes. MMR signals of the upper and lower limbs were recorded, using surface electrodes, from the upper extremity muscles (abductor pollicis brevis, flexor carpi radialis, biceps brachii, triceps brachii), and from the lower extremity muscles (vastus medialis obliqus, medial hamstring, soleus, tibialis anterior). The peak-to-peak maximum amplitude and deflection latency were the dependent parameters. Data from the first session was compared with a second session (on a different day), using interclass correlation coefficient (ICC), to evaluate the reliability across sessions. In addition, data from the right limbs were compared with the left limbs. RESULTS MMR of the right and left, upper and lower extremities were comparable between limbs in all subjects. Further, signals were highly correlated between days of testing (ICC = 0.58-0.99) and was not statistically different between the two sessions in the same subject. CONCLUSION These results indicate that MMR studies could be useful for serial testing of patients with neurological disorders, such as spinal cord injuries and diseases.
Collapse
Affiliation(s)
- Selda Uzun
- School of Physical Education and Sport Science, Marmara University, Istanbul, Turkey; and Texas Electrophysiology Services, Houston, TX, USA
| | | | - Mohamed A. Sabbahi
- Texas Electrophysiology Services, Houston, TX, USA; and School of Physical Therapy, Texas Woman's University, Houston, TX, USA
| |
Collapse
|
36
|
Nielsen T, Kuiken D. Relationships between non-pathological dream-enactment and mirror behaviors. Conscious Cogn 2013; 22:975-86. [PMID: 23871862 DOI: 10.1016/j.concog.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/23/2013] [Accepted: 06/09/2013] [Indexed: 12/19/2022]
Abstract
Dream-enacting behaviors (DEBs) are behavioral expressions of forceful dream images often occurring during sleep-to-wakefulness transitions. We propose that DEBs reflect brain activity underlying social cognition, in particular, motor-affective resonance generated by the mirror neuron system. We developed a Mirror Behavior Questionnaire (MBQ) to assess some dimensions of mirror behaviors and investigated relationships between MBQ scores and DEBs in a large of university undergraduate cohort. MBQ scores were normally distributed and described by a four-factor structure (Empathy/Emotional Contagion, Behavioral Imitation, Sleepiness/Anger Contagion, Motor Skill Imitation). DEB scores correlated positively with MBQ total and factor scores even with social desirability, somnambulism and somniloquy controlled. Emotion-specific DEB items correlated with corresponding emotion-specific MBQ items, especially crying and smiling. Results provide preliminary evidence for cross-state relationships between propensities for dream-enacting and mirror behaviors--especially behaviors involving motor-affective resonance--and our suggestion that motor-affective resonance mediates dream-enactment imagery during sleep and emotional empathy during waking.
Collapse
Affiliation(s)
- Tore Nielsen
- Dept. Psychiatry, Université de Montréal, Montréal, Québec, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
37
|
Shibata E, Kaneko F. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration. Neurosci Lett 2013; 541:24-8. [PMID: 23428506 DOI: 10.1016/j.neulet.2013.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 11/19/2022]
Abstract
The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles.
Collapse
Affiliation(s)
- E Shibata
- Graduate School of Health Sciences, Sapporo Medical University, West 17-South 1, Chuoh-ku, Sapporo city, Japan
| | | |
Collapse
|
38
|
Mizuguchi N, Nakata H, Uchida Y, Kanosue K. Motor imagery and sport performance. ACTA ACUST UNITED AC 2012. [DOI: 10.7600/jpfsm.1.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nobuaki Mizuguchi
- Laboratory of Sport Neuroscience, Graduate School of Sport Sciences, Waseda University
- Japan Society for the Promotion of Science
| | - Hiroki Nakata
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| | - Yusuke Uchida
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| | - Kazuyuki Kanosue
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| |
Collapse
|