1
|
Gauthier C, El Cheikh K, Basile I, Daurat M, Morère E, Garcia M, Maynadier M, Morère A, Gary-Bobo M. Cation-independent mannose 6-phosphate receptor: From roles and functions to targeted therapies. J Control Release 2024; 365:759-772. [PMID: 38086445 DOI: 10.1016/j.jconrel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-M6PR) is a ubiquitous transmembrane receptor whose main intracellular role is to direct enzymes carrying mannose 6-phosphate moieties to lysosomal compartments. Recently, the small membrane-bound portion of this receptor has appeared to be implicated in numerous pathophysiological processes. This review presents an overview of the main ligand partners and the roles of CI-M6PR in lysosomal storage diseases, neurology, immunology and cancer fields. Moreover, this membrane receptor has already been noted for its strong potential in therapeutic applications thanks to its cellular internalization activity and its ability to address pathogenic factors to lysosomes for degradation. A number of therapeutic delivery approaches using CI-M6PR, in particular with enzymes, antibodies or nanoparticles, are currently being proposed.
Collapse
Affiliation(s)
- Corentin Gauthier
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Elodie Morère
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Alain Morère
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
2
|
Huang DX, Yang MX, Jiang ZM, Chen M, Chang K, Zhan YX, Gong X. Nerve trunk healing and neuroma formation after nerve transection injury. Front Neurol 2023; 14:1184246. [PMID: 37377855 PMCID: PMC10291201 DOI: 10.3389/fneur.2023.1184246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
The nerve trunk healing process of a transected peripheral nerve trunk is composed of angiogenesis, nerve fiber regeneration, and scarring. Nerve trunk healing and neuroma formation probably share identical molecular mediators and similar regulations. At the nerve transection site, angiogenesis is sufficient and necessary for nerve fiber regeneration. Angiogenesis and nerve fiber regeneration reveal a positive correlation in the early time. Scarring and nerve fiber regeneration show a negative correlation in the late phase. We hypothesize that anti-angiogenesis suppresses neuromas. Subsequently, we provide potential protocols to test our hypothesis. Finally, we recommend employing anti-angiogenic small-molecule protein kinase inhibitors to investigate nerve transection injuries.
Collapse
|
3
|
Xu Z, Jiang Y, Mu W, Li W, Zhang G, Jiang S, Xu P. Electrophysiological, biomechanical, and finite element analysis study of sacral nerve injury caused by sacral fracture. Front Bioeng Biotechnol 2022; 10:920991. [PMID: 36213062 PMCID: PMC9532616 DOI: 10.3389/fbioe.2022.920991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: We aimed to study the mechanism of sacral nerve injury caused by sacral fractures and the relationship between nerve decompression and nerve function.Methods: First, we observed the anatomical features of lumbosacral nerve root region in Sprague-Dawley rats. Next, the rats were divided into the sham, 10 g, 30 g, and 60 g groups for electrophysiological studies on nerve root constriction injury. Then we studied the biomechanical properties of rat nerve roots, lumbosacral trunk, and sacrum. Finally, we established a finite element analysis model of sacral nerve roots injury in rats and determined the correlation between sacral deformation and the degree of sacral nerve roots injury.Result: Anatomical study showed L5 constitutes sciatic nerve, the length of the L5 nerve root is 3.67 ± 0.15 mm, which is suitable for electrophysiological research on nerve root compression injury. After a series of electrophysiological study of L5 nerve roots, our results showed that nerve root function was almost unaffected at a low degree of compression (10 g). Nerve root function loss began at 30 g compression, and was severe at 60 g compression. The degree of neurological loss was therefore positively correlated with the degree of compression. Combining biomechanical testing of the lumbosacral nerve roots, finite element analysis and neuroelectrophysiological research, we concluded when the sacral foramina deformation is >22.94%, the sacral nerves lose function. When the compression exceeds 33.16%, early recovery of nerve function is difficult even after decompression.Conclusion: In this study, we found that the neurological loss was positively correlated with the degree of compression. After early decompression, nerve root function recovery is possible after moderate compression; however, in severe compression group, the nerve function would not recover. Furthermore, FEA was used to simulate nerve compression during sacral fracture, as well as calculate force loading on nerve with different deformation rates. The relationship between sacral fractures and neurological loss can be analyzed in combination with neurophysiological test results.
Collapse
Affiliation(s)
- Zisheng Xu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yifei Jiang
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Weidong Mu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wenlong Li
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Laiwu People’s Hospital, Jinan, China
| | - Guanjun Zhang
- Laiwu People’s Hospital, Jinan, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
| | - Shichao Jiang
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Peng Xu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Peng Xu,
| |
Collapse
|
4
|
Crosio A, Ronchi G, Fornasari BE, Odella S, Raimondo S, Tos P. Experimental Methods to Simulate and Evaluate Postsurgical Peripheral Nerve Scarring. J Clin Med 2021; 10:jcm10081613. [PMID: 33920209 PMCID: PMC8070420 DOI: 10.3390/jcm10081613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023] Open
Abstract
As a consequence of trauma or surgical interventions on peripheral nerves, scar tissue can form, interfering with the capacity of the nerve to regenerate properly. Scar tissue may also lead to traction neuropathies, with functional dysfunction and pain for the patient. The search for effective antiadhesion products to prevent scar tissue formation has, therefore, become an important clinical challenge. In this review, we perform extensive research on the PubMed database, retrieving experimental papers on the prevention of peripheral nerve scarring. Different parameters have been considered and discussed, including the animal and nerve models used and the experimental methods employed to simulate and evaluate scar formation. An overview of the different types of antiadhesion devices and strategies investigated in experimental models is also provided. To successfully evaluate the efficacy of new antiscarring agents, it is necessary to have reliable animal models mimicking the complications of peripheral nerve scarring and also standard and quantitative parameters to evaluate perineural scars. So far, there are no standardized methods used in experimental research, and it is, therefore, difficult to compare the results of the different antiadhesion devices.
Collapse
Affiliation(s)
- Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Piazza Andrea Ferrari 1, 20122 Milano, Italy; (A.C.); (S.O.); (P.T.)
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (B.E.F.)
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (B.E.F.)
| | - Simonetta Odella
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Piazza Andrea Ferrari 1, 20122 Milano, Italy; (A.C.); (S.O.); (P.T.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (B.E.F.)
- Correspondence: ; Tel.: +39-011-670-5433
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Piazza Andrea Ferrari 1, 20122 Milano, Italy; (A.C.); (S.O.); (P.T.)
| |
Collapse
|
5
|
Heinzel J, Längle G, Oberhauser V, Hausner T, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury – a systematic review. J Neurosci Methods 2020; 345:108889. [DOI: 10.1016/j.jneumeth.2020.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
|
6
|
Liu H, Huang H, Bi W, Tan X, Li R, Wen W, Song W, Zhang Y, Zhang F, Hu M. Effect of chitosan combined with hyaluronate on promoting the recovery of postoperative facial nerve regeneration and function in rabbits. Exp Ther Med 2018; 16:739-745. [PMID: 30116328 PMCID: PMC6090212 DOI: 10.3892/etm.2018.6238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
To determine better solutions for postoperative nerve functional recovery, the effects of chitosan and hyaluronate on perineural scar formation and neural function recovery were investigated in 40 rabbits. Rabbits were randomized into 4 groups: A (chitosan), B (chitosan + hyaluronate), C (hyaluronate) and D (control). The rabbits underwent the same parotidectomy surgery, but different materials were used to cover the operated nerves. By evaluating specific indicators, including vibrissae motion tests, neural electrophysiological examinations and extraneural examinations, it was revealed that the amplitude of vibrissae motion of all groups had increased 6 weeks after surgery. The recovery of Group B was superior compared with all other groups at 4 and 12 weeks post-surgery; however no significant differences were detected. Group B exhibited a great number of nerve fibers, thicker myelin sheath and greater nerve conduction velocity. In summary, the use of a chitosan conduit combined with sodium hyaluronate gel may prevent perineural scar formation in facial nerves and promote nerve functional recovery.
Collapse
Affiliation(s)
- Huawei Liu
- Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Haitao Huang
- Department of Stomatology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wenting Bi
- Department of Stomatology, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, P.R. China
| | - Xinying Tan
- Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Runxin Li
- Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Weisheng Wen
- Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wenling Song
- Department of Quality Control, Beijing Yierkang Bioengineering Development Center, Beijing 102600, P.R. China
| | - Yanhua Zhang
- Department of Quality Control, Beijing Yierkang Bioengineering Development Center, Beijing 102600, P.R. China
| | - Feng Zhang
- Department of Quality Control, Beijing Yierkang Bioengineering Development Center, Beijing 102600, P.R. China
| | - Min Hu
- Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
7
|
Enzymatic phosphorylation of mannose by glucomannokinase from Mycobacterium phlei using inorganic polyphosphate. Enzyme Microb Technol 2017. [PMID: 28648175 DOI: 10.1016/j.enzmictec.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mannose-6-phosphate is an important phosphor-sugar, which is involved in many physiological functions and it is used to treat many diseases. Its production is however expensive since it requires costly substrate ATP as phosphorylation agent. This study has focused upon the direct synthesis of M6P by glucomannokinase using inorganic polyphosphate without involvement of ATP. The gene cloned for glucomannokinase has been sequenced from Mycobacterium phlei and it is transformed into Escherichia coli for expression. After purification involving affinity chromatography, a band of 30kDa corresponding to the enzyme has been isolated from induced crude supernatant. A total amount of 0.69mg/ml of enzyme has been successively obtained and the purity exceeds 90%. The kinetic assay studies show that this enzyme has more affinity towards polyphosphate and glucose than ATP and mannose respectively. The KM values of the enzyme for glucose, mannose, ATP and hexametaphosphate derived from experiments are 9.5, 203.7, 4.6, 1.7μM, respectively. The enzyme has shown a maximum production of mannose-6-phosphate at optimized conditions of pH 8.5, 25°C, poly(P)/mannose ratio 3:1 and in the presence of bivalent ion Mg2+. The results reveal that the glucomannokinase from Mycobacterium phlei suitable for further production of mannose-6-phosphate.
Collapse
|
8
|
Piao CD, Yang K, Li P, Luo M. Autologous nerve graft repair of different degrees of sciatic nerve defect: stress and displacement at the anastomosis in a three-dimensional fnite element simulation model. Neural Regen Res 2015; 10:804-7. [PMID: 26109958 PMCID: PMC4468775 DOI: 10.4103/1673-5374.156986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the magnitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. Therefore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anastomosis after autologous nerve grafting.
Collapse
Affiliation(s)
- Cheng-Dong Piao
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Kun Yang
- Basic Department, Air Force Aviation University of Chinese PLA, Changchun, Jilin Province, China
| | - Peng Li
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, Jilin Province, China
| | - Min Luo
- Department of Pain, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Schilter H, Cantemir-Stone CZ, Leksa V, Ohradanova-Repic A, Findlay AD, Deodhar M, Stockinger H, Song X, Molloy M, Marsh CB, Jarolimek W. The mannose-6-phosphate analogue, PXS64, inhibits fibrosis via TGF-β1 pathway in human lung fibroblasts. Immunol Lett 2015; 165:90-101. [DOI: 10.1016/j.imlet.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
10
|
Pateman CJ, Harding AJ, Glen A, Taylor CS, Christmas CR, Robinson PP, Rimmer S, Boissonade FM, Claeyssens F, Haycock JW. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 2015; 49:77-89. [DOI: 10.1016/j.biomaterials.2015.01.055] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 12/24/2022]
|
11
|
Zhang J, Wong MG, Wong M, Gross S, Chen J, Pollock C, Saad S. A cationic-independent mannose 6-phosphate receptor inhibitor (PXS64) ameliorates kidney fibrosis by inhibiting activation of transforming growth factor-β1. PLoS One 2015; 10:e0116888. [PMID: 25658916 PMCID: PMC4319899 DOI: 10.1371/journal.pone.0116888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
The activity of transforming growth factor-β1 (TGF-β1) is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR), as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2) cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ1+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO) model was used and the following experimental groups were studied: (i) Sham operated, (ii) UUO, (iii) UUO + telmisartan (iv) UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1) and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β1. PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β1.
Collapse
Affiliation(s)
- Jie Zhang
- Kolling Institute of Medical Research, Sydney, Australia
| | - Muh Geot Wong
- Kolling Institute of Medical Research, Sydney, Australia
| | - May Wong
- Kolling Institute of Medical Research, Sydney, Australia
| | - Simon Gross
- Kolling Institute of Medical Research, Sydney, Australia
| | - Jason Chen
- Royal North Shore Hospital, St. Leonards, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney, Australia
- * E-mail:
| |
Collapse
|
12
|
Yang Q, Luo M, Li P, Jin H. Transplantation of human amniotic epithelial cells repairs brachial plexus injury: pathological and biomechanical analyses. Neural Regen Res 2015; 9:2159-63. [PMID: 25657737 PMCID: PMC4316449 DOI: 10.4103/1673-5374.147947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 02/02/2023] Open
Abstract
A brachial plexus injury model was established in rabbits by stretching the C6 nerve root. Immediately after the stretching, a suspension of human amniotic epithelial cells was injected into the injured brachial plexus. The results of tensile mechanical testing of the brachial plexus showed that the tensile elastic limit strain, elastic limit stress, maximum stress, and maximum strain of the injured brachial plexuses were significantly increased at 24 weeks after the injection. The treatment clearly improved the pathological morphology of the injured brachial plexus nerve, as seen by hematoxylin eosin staining, and the functions of the rabbit forepaw were restored. These data indicate that the injection of human amniotic epithelial cells contributed to the repair of brachial plexus injury, and that this technique may transform into current clinical treatment strategies.
Collapse
Affiliation(s)
- Qi Yang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Min Luo
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng Li
- Department of Mechanics, School of Mechanical Science and Engineering, Jilin University, Changchun, Jilin Province, China
| | - Hai Jin
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
13
|
Liu G, Zhang Q, Jin Y, Gao Z. Stress and strain analysis on the anastomosis site sutured with either epineurial or perineurial sutures after simulation of sciatic nerve injury. Neural Regen Res 2014; 7:2299-304. [PMID: 25538753 PMCID: PMC4268732 DOI: 10.3969/j.issn.1673-5374.2012.29.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/24/2012] [Indexed: 02/03/2023] Open
Abstract
The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciatic nerves from fresh adult cadavers were used to create models of sciatic nerve injury. The denervated specimens underwent epineurial and perineurial suturing. The elastic modulus (40.96 ± 2.59 MPa) and Poisson ratio (0.37 ± 0.02) of the normal sciatic nerve were measured by strain electrical measurement. A resistance strain gauge was pasted on the front, back, left, and right of the edge of the anastomosis site after suturing. Strain electrical measurement results showed that the stress and strain values of the sciatic nerve following perineurial suturing were lower than those following epineurial suturing. Scanning electron microscopy revealed that the sciatic nerve fibers were disordered following epineurial compared with perineurial suturing. These results indicate that the effect of perineurial suturing in sciatic nerve injury repair is better than that of epineurial suturing.
Collapse
Affiliation(s)
- Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| | - Qiao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| | - Yan Jin
- Department of Ophthalmology, Second Hospital, Jilin University, Changchun 130041, Jilin Province, China
| | - Zhongli Gao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| |
Collapse
|
14
|
Harding AJ, Christmas CR, Ferguson MWJ, Loescher AR, Robinson PP, Boissonade FM. Mannose-6-phosphate facilitates early peripheral nerve regeneration in thy-1-YFP-H mice. Neuroscience 2014; 279:23-32. [PMID: 25173153 PMCID: PMC4204175 DOI: 10.1016/j.neuroscience.2014.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 01/29/2023]
Abstract
We have visualized and quantified nerve regeneration at an axonal level. Axons cross the repair site more directly following mannose-6-phosphate treatment. Mannose-6-phosphate alters axon sprouting just distal to axon entry into the graft. Mannose-6-phosphate may enable more favorable collagen fibril alignment. Our data add further evidence that mannose-6-phosphate improves nerve regeneration.
The formation of scar tissue following nerve injury has been shown to adversely affect nerve regeneration and evidence suggests that mannose-6-phosphate (M6P), a potential scar reducing agent that affects transforming growth factor (TGF)-β activation, may enhance nerve regeneration. In this study we utilized thy-1-YFP-H mice – a transgenic strain expressing yellow fluorescent protein (YFP) within a subset of axons – to enable visual analysis of axons regenerating through a nerve graft. Using this strain of mouse we have developed analysis techniques to visualize and quantify regeneration of individual axons across the injury site following the application of either M6P or vehicle to the site of nerve injury. No significant differences were found in the proportion of axons regenerating through the graft between M6P- and vehicle-treated grafts at any point along the graft length. Maximal sprouting occurred at 1.0 mm from the proximal graft ending in both groups. The maximum change in sprouting levels for both treatment groups occurred between the graft start and 0.5-mm interval for both treatment groups. The difference between repair groups was significant at this point with a greater increase seen in the vehicle group than the M6P group. The average length of axons regenerating across the initial graft entry was significantly shorter in M6P- than in vehicle-treated grafts, indicating that they encountered less impedance. Application of M6P appears to reduce the disruption of regenerating axons and may therefore facilitate quicker recovery; this is likely to result from altered scar tissue formation in M6P grafts in the early stages of recovery. This study also establishes the usefulness of our methods of analysis using the thy-1-YFP-H mouse strain to visualize and quantify regeneration at the level of the individual axon.
Collapse
Affiliation(s)
- A J Harding
- Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | - C R Christmas
- Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | - M W J Ferguson
- Renovo Group plc, Core Technology Facility, 48 Grafton Street, Manchester M13 9XX, UK.
| | - A R Loescher
- Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | - P P Robinson
- Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | - F M Boissonade
- Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| |
Collapse
|
15
|
Arno AI, Gauglitz GG, Barret JP, Jeschke MG. New molecular medicine-based scar management strategies. Burns 2014; 40:539-51. [PMID: 24438742 DOI: 10.1016/j.burns.2013.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/21/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Keloids and hypertrophic scars are prevalent disabling conditions with still suboptimal treatments. Basic science and molecular-based medicine research have contributed to unravel new bench-to-bedside scar therapies and to dissect the complex signalling pathways involved. Peptides such as the transforming growth factor beta (TGF-β) superfamily, with Smads, Ski, SnoN, Fussels, endoglin, DS-Sily, Cav-1p, AZX100, thymosin-β4 and other related molecules may emerge as targets to prevent and treat keloids and hypertrophic scars. The aim of this review is to describe the basic complexity of these new molecular scar management strategies and point out new fibrosis research lines.
Collapse
Affiliation(s)
- Anna I Arno
- Ross Tilley Burn Centre and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gerd G Gauglitz
- Department of Dermatology and Allergology, Ludwig Maximilians University, Munich, Germany
| | - Juan P Barret
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc G Jeschke
- Ross Tilley Burn Centre and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Yuan Q, Su H, Chiu K, Lin ZX, Wu W. Assessment of the rate of spinal motor axon regeneration by choline acetyltransferase immunohistochemistry following sciatic nerve crush injury in mice. J Neurosurg 2013; 120:502-8. [PMID: 24032704 DOI: 10.3171/2013.8.jns121648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECT The purpose of this study was to examine whether choline acetyltransferase (ChAT) staining can be used for assessing the rate of motor neuron regeneration at an early phase of axon outgrowth. METHODS The authors developed a new sciatic nerve crush model in adult mice. In this model, in addition to performing a sciatic nerve crush injury, the authors excised the ipsilateral lumbar L3-6 dorsal root ganglion (DRG), which resulted in degeneration of the sensory fibers entering into the sciatic nerve. Crushed nerve sections obtained at Day 3 or Day 7 postinjury were analyzed by means of immunostaining. RESULTS The immunostaining showed that ChAT, a motor axon-specific antigen, was totally co-localized with growth-associated protein 43 (GAP-43), which is expressed in regenerating nerves and transported into growth cones. CONCLUSIONS Our results suggest that measuring the length of motor axon outgrowth by ChAT immunostaining is reliable. ChAT staining provides a more convenient method for evaluating the rate of motor axon outgrowth in a mixed nerve.
Collapse
Affiliation(s)
- Qiuju Yuan
- School of Chinese Medicine, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
17
|
Nagasaka H, Yorifuji T, Bandsma RHJ, Takatani T, Asano H, Mochizuki H, Takuwa M, Tsukahara H, Inui A, Tsunoda T, Komatsu H, Hiejima E, Fujisawa T, Hirano KI, Miida T, Ohtake A, Taguchi T, Miwa I. Sustained high plasma mannose less sensitive to fluctuating blood glucose in glycogen storage disease type Ia children. J Inherit Metab Dis 2013; 36:75-81. [PMID: 22971957 DOI: 10.1007/s10545-012-9514-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 06/03/2012] [Accepted: 06/26/2012] [Indexed: 01/18/2023]
Abstract
Plasma mannose is suggested to be largely generated from liver glycogen-oriented glucose-6-phosphate. This study examined plasma mannose in glycogen storage disease type Ia (GSD Ia) lacking conversion of glucose-6-phosphate to glucose in the liver. We initially examined fasting--and postprandial 2 h--plasma mannose and other blood carbohydrates and lipids for seven GSD Ia children receiving dietary interventions using cornstarch and six healthy age-matched children. Next, one-day successive intra-individual parameter changes were examined for six affected and two control children. Although there were no significant differences in fasting--and postprandial 2 h--glucose and insulin levels, the mannose level of the affected group was invariably much higher than that of the control group (p < 0.001): the fasting level of the affected group was about two-fold that of the control group; the postprandial-2 h level remained almost unchanged in the affected group, although it was one-half of the fasting level in the control group. Inter-individual analyses revealed that the GSD Ia group mannose level was significantly and positively correlated with lactate and triglycerides levels at both time points (p < 0.01). In each control, mannose levels fluctuated greatly, maintaining strong and significant negative correlations with glucose and insulin levels (p < 0.001). Correlations were lower or nonexistent in GSD Ia children. In individuals with high lactate and triglycerides levels, strikingly high mannose levels never changed against glucose and insulin fluctuations. Plasma mannose is less sensitive to blood glucose and insulin in GSD Ia children. Its basal level and the fluctuation pattern differ by their metabolic activity.
Collapse
Affiliation(s)
- Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka 665-0827, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The mid-gestation fetus is capable of regenerative healing with wound healing indistinguishable from surrounding skin. This review aims to evaluate the current knowledge of how the mid-gestation fetus heals without scar and the implications of these findings in efforts to recapitulate the fetal regenerative phenotype in the postnatal environment. RECENT FINDINGS It has been over 30 years since the empirical observation that the fetus heals without scar; yet, the underlying mechanisms of this phenomenon have not been elucidated. Fetal wound healing is characterized by a distinct growth factor profile, an attenuated inflammatory response with an anti-inflammatory cytokine profile, an extracellular matrix rich in type III collagen and hyaluronan, attenuated biomechanical stress, and a potential role for stem cells. Current therapies to minimize scarring in postnatal wounds have attempted to recapitulate singular aspects of the fetal regenerative phenotype and have met with varying degrees of clinical success. We now have the molecular tools to more completely comprehend the fundamental mechanisms of fetal regenerative wound repair, which has the potential to provide insights into the identification of therapeutic targets to minimize the scar formation. SUMMARY Successful therapies that help minimize postnatal scar formation can be realized through understanding the cellular and molecular mechanisms of fetal regenerative wound healing. These insights will have implications not only for cutaneous wound healing, but also potentially for any disease process characterized by excessive fibroplasia.
Collapse
|
19
|
Ngeow WC, Atkins S, Morgan CR, Metcalfe AD, Boissonade FM, Loescher AR, Robinson PP. Histomorphometric changes in repaired mouse sciatic nerves are unaffected by the application of a scar-reducing agent. J Anat 2011; 219:638-45. [PMID: 21812777 PMCID: PMC3222843 DOI: 10.1111/j.1469-7580.2011.01419.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 01/30/2023] Open
Abstract
Microsurgical repair of transected peripheral nerves is compromised by the formation of scar tissue and the development of a neuroma, thereby limiting the success of regeneration. The aim of this study was to quantify histomorphometrically the structural changes in neural tissue that result from repair, and determine the effect of mannose-6-phosphate (M6P), a scar-reducing agent previously shown to enhance regeneration. In anaesthetised C57-black-6 mice, the left sciatic nerve was sectioned and repaired using four epineurial sutures. Either 100 μL of 600 mm M6P (five animals) or 100 μL of phosphate-buffered saline (placebo controls, five animals) was injected into and around the nerve repair site. A further group acted as sham-operated controls. After recovery for 6 weeks, the nerve was harvested for analysis using light and electron microscopy. Analysis revealed that when compared with sham controls, myelinated axons had smaller diameters both proximal and distal to the repair. Myelinated axon counts, axonal density and size all decreased across the repair site. There were normal numbers and densities of non-myelinated axons both proximal and distal to the repair. However, there were more Remak bundles distal to the repair site, and fewer non-myelinated axons per Remak bundle. Application of M6P did not affect any of these parameters.
Collapse
Affiliation(s)
- Wei Cheong Ngeow
- Unit of Oral & Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|