1
|
Weible AP, Yavorska I, Narayanan A, Wehr M. A genetically identified population of layer 4 neurons in auditory cortex that contributes to pre-pulse inhibition of the acoustic startle response. Front Neural Circuits 2022; 16:972157. [PMID: 36160948 PMCID: PMC9492996 DOI: 10.3389/fncir.2022.972157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
A fundamental task faced by the auditory system is the detection of events that are signaled by fluctuations in sound. Spiking in auditory cortical neurons is critical for sound detection, but the causal roles of specific cell types and circuits are still mostly unknown. Here we tested the role of a genetically identified population of layer 4 auditory cortical neurons in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle. We used a Gpr26-Cre driver line, which we found expressed predominantly in layer 4 of auditory cortex. Photostimulation of these cells, which were responsive to gaps in noise, was sufficient to attenuate the startle reflex. Photosuppression of these cells reduced neural responses to gaps throughout cortex, and impaired behavioral gap detection. These data demonstrate that cortical Gpr26 neurons are both necessary and sufficient for top–down modulation of the acoustic startle reflex, and are thus likely to be involved in sound detection.
Collapse
|
2
|
Weible AP, Wehr M. Amyloid Pathology in the Central Auditory Pathway of 5XFAD Mice Appears First in Auditory Cortex. J Alzheimers Dis 2022; 89:1385-1402. [PMID: 36031901 PMCID: PMC10097438 DOI: 10.3233/jad-220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Effective treatment of Alzheimer’s disease (AD) will hinge on early detection. This has led to the search for early biomarkers that use non-invasive testing. One possible early biomarker is auditory temporal processing deficits, which reflect central auditory pathway dysfunction and precede cognitive and memory declines in AD. Gap detection is a measure of auditory temporal processing, is impaired in human AD, and is also impaired in the 5XFAD mouse model of AD. Gap detection deficits appear as early as postnatal day 60 in 5XFAD mice, months before cognitive deficits or cell death, supporting gap detection as an early biomarker. However, it remains unclear how gap detection deficits relate to the progression of amyloid pathology in the auditory system. Objective: To determine the progression of amyloid pathology throughout the central auditory system and across age in 5XFAD mice. Methods: We quantified intracellular and extracellular antibody labelling of Aβ 42 in 6 regions of the central auditory system from p14 to p150. Results: Pathology appeared first in primary auditory cortex (A1) as intracellular accumulation of Aβ 42 in layer 5 pyramidal neurons by age p21. Extracellular plaques appeared later, by age p90, in A1, medial geniculate body, and inferior colliculus. Auditory brainstem structures showed minimal amyloid pathology. We also observed pathology in the caudal pontine reticular nucleus, a brainstem structure that is outside of the central auditory pathway but which is involved in the acoustic startle reflex. Conclusion: These results suggest that Aβ 42 accumulation, but not plaques, may impair gap detection.
Collapse
Affiliation(s)
- Aldis P. Weible
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Manohar S, Chen GD, Ding D, Liu L, Wang J, Chen YC, Chen L, Salvi R. Unexpected Consequences of Noise-Induced Hearing Loss: Impaired Hippocampal Neurogenesis, Memory, and Stress. Front Integr Neurosci 2022; 16:871223. [PMID: 35619926 PMCID: PMC9127992 DOI: 10.3389/fnint.2022.871223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing, China
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
Kadowaki S, Morimoto T, Okamoto H. Auditory steady state responses elicited by silent gaps embedded within a broadband noise. BMC Neurosci 2022; 23:27. [PMID: 35524192 PMCID: PMC9074354 DOI: 10.1186/s12868-022-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/24/2022] [Indexed: 11/15/2022] Open
Abstract
Background Auditory temporal processing plays an important role in speech comprehension. Usually, behavioral tests that require subjects to detect silent gaps embedded within a continuous sound are used to assess the ability of auditory temporal processing in humans. To evaluate auditory temporal processing objectively, the present study aimed to measure the auditory steady state responses (ASSRs) elicited by silent gaps of different lengths embedded within a broadband noise. We presented a broadband noise with 40-Hz silent gaps of 3.125, 6.25, and 12.5 ms. Results The 40-Hz silent gaps of 3.125, 6.25, and 12.5 ms elicited clear ASSRs. Longer silent gaps elicited larger ASSR amplitudes and ASSR phases significantly differed between conditions. Conclusion The 40 Hz gap-evoked ASSR contributes to our understanding of the neural mechanisms underlying auditory temporal processing and may lead to the development of objective measures of auditory temporal acuity in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00712-0.
Collapse
Affiliation(s)
- Seiichi Kadowaki
- Department of Physiology, International University of Health and Welfare Faculty of Medicine Graduate School of Medicine, 4-3 Kozunomori, Narita, 286-8686, Japan
| | - Takashi Morimoto
- Department of Audiological Engineering, RION Co., Ltd., Tokyo, 185-8533, Japan
| | - Hidehiko Okamoto
- Department of Physiology, International University of Health and Welfare Faculty of Medicine Graduate School of Medicine, 4-3 Kozunomori, Narita, 286-8686, Japan.
| |
Collapse
|
5
|
Weible AP, Yavorska I, Kayal D, Duckler U, Wehr M. A Layer 3→5 Circuit in Auditory Cortex That Contributes to Pre-pulse Inhibition of the Acoustic Startle Response. Front Neural Circuits 2020; 14:553208. [PMID: 33192336 PMCID: PMC7661757 DOI: 10.3389/fncir.2020.553208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Abstract
While connectivity within sensory cortical circuits has been studied extensively, how these connections contribute to perception and behavior is not well understood. Here we tested the role of a circuit between layers 3 and 5 of auditory cortex in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle. We used the Nr5a-Cre driver line, which we found drove expression in the auditory cortex restricted predominantly to layer 3. Photoactivation of these cells evoked short-latency, highly reliable spiking in downstream layer 5 neurons, and attenuated startle responses similarly to gaps in noise. Photosuppression of these cells did not affect behavioral gap detection. Our data provide the first demonstration that direct activation of auditory cortical neurons is sufficient to attenuate the acoustic startle response, similar to the detection of a sound.
Collapse
Affiliation(s)
- Aldis P Weible
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Iryna Yavorska
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Donna Kayal
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Ulysses Duckler
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
6
|
Boorman DC, Brown R, Keay KA. Periaqueductal gray inputs to the paraventricular nucleus of the thalamus: Columnar topography and glucocorticoid (in)sensitivity. Brain Res 2020; 1750:147171. [PMID: 33132167 DOI: 10.1016/j.brainres.2020.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/01/2023]
Abstract
The ability to cope with a novel acute stressor in the context of ongoing chronic stress is of critical adaptive value. The hypothalamic-pituitary-adrenal (HPA) axis contributes to the integrated physiological and behavioural responses to stressors. Under conditions of chronic stress, the posterior portion of the paraventricular thalamic nucleus (pPVT) mediates the 'habituation' of HPA-axis responses, and also facilitates HPA-axis reactivation to novel acute stressors amidst this habituation. Since pPVT neurons are sensitive to the inhibitory effects of circulating glucocorticoids, a glucocorticoid-insensitive neural pathway to the pPVT is likely essential for this reactivation process. The pPVT receives substantial inputs from neurons of the periaqueductal gray (PAG) region, which is organised into longitudinal columns critical for processing acute and/or chronic stressors. We investigated the columnar organisation of PAG → pPVT projections and for the first time determined their glucocorticoid sensitivity. Retrograde tracer injections were made into different rostro-caudal regions of the pPVT, and their PAG columnar inputs compared. Glucocorticoid receptor immunoreactivity (GR-ir) was quantified in these projection neurons. We found that the dorsolateral PAG projected most strongly to rostral pPVT and the ventrolateral PAG most strongly to the caudal pPVT. Despite abundant GR-ir in the PAG, we report a striking absence of GR-ir in PAG → pPVT neurons. Our data suggests that these pathways, which are insensitive to the direct actions of circulating glucocorticoids, likely play an important role in both the habituation of HPA-axis to chronic stressors and its facilitation to acute stressors in chronically stressed rats.
Collapse
Affiliation(s)
- Damien C Boorman
- School of Medical Sciences (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Rebecca Brown
- School of Medical Sciences (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Newsom RJ, Stafford J, Garcia RJ, Campeau S. Endocannabinoid signaling as an intrinsic component of the circuits mediating adaptive responses to repeated stress exposure in adult male sprague dawley rats. Stress 2020; 23:174-189. [PMID: 31506004 PMCID: PMC7054150 DOI: 10.1080/10253890.2019.1655538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence implicates the endocannabinoid (eCB) system as a negative modulator of neural and endocrine responses to acute stressors. Recently, eCB signaling was also reported to contribute to habituation of hypothalamo-pituitary-adrenal (HPA) axis responses to repeated homotypic stress. The present studies were initiated to distinguish a potential role of eCB signaling in the expression vs. the acquisition of habituation of the HPA axis response to repeated stress. In each of three experiments, adult male Sprague Dawley rats were exposed to daily, 30-minute sessions of loud white noise (95 dB), which resulted in a progressive decrease in HPA axis response over successive days. Cannabinoid receptor 1 (CB1) antagonist AM251 (0.5, 1.0 or 2.0 mg/kg, i.p.) was used to examine the role of eCB signaling in homotypic stressor habituation and heterotypic (novel) stressor cross-sensitization of neuroendocrine activity. Pretreatment with high dose (2.0 mg/kg) AM251 before each of 7 consecutive, daily loud noise exposures (acquisition of habituation) resulted in potentiation of stress-induced HPA axis activation and disruption of habituation. After an 8th loud noise exposure without AM251 pretreatment, the same group of rats displayed a habituated plasma corticosterone (CORT) level similar to that of controls, indicating that CB1 receptor antagonist pretreatments did not disrupt the acquisition of habituation. In two additional experiments, rats acquired habituation to loud noise drug free, then lower doses of AM251 (0.5 and 1.0 mg.kg) were administered before a final exposure (expression of habituation) to the homotypic stressor and/or a novel heterotypic stressor. CB1 receptor antagonism disrupted the expression of CORT response habituation and some of the c-fos mRNA reduction associated with it and facilitated novel stressor sensitization in doses that did not potentiate acute responses to these stressors. Collectively, these data suggest a progressive intensification of neural eCB signaling at CB1 receptors with repeated stress exposures.
Collapse
Affiliation(s)
- Ryan J. Newsom
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Jacob Stafford
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Robert J. Garcia
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Serge Campeau
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| |
Collapse
|
8
|
Remote CB1 receptor antagonist administration reveals multiple sites of tonic and phasic endocannabinoid neuroendocrine regulation. Psychoneuroendocrinology 2020; 113:104549. [PMID: 31884322 PMCID: PMC7566018 DOI: 10.1016/j.psyneuen.2019.104549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/21/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022]
Abstract
Endogenous cannabinoids (endocannabinoids, eCB) are expressed throughout the body and contribute to regulation of the hypothalamo-pituitary-adrenal (HPA) axis and general stress reactivity. This study assessed the contributions of CB1 receptors (CB1R) in the modulation of basal and stress-induced neural and HPA axis activities. Catheterized adult male rats were placed in chambers to acclimate overnight, with their catheters connected and exteriorized from the chambers for relatively stress-free remote injections. The next morning, the CB1R antagonist AM251 (1 or 2 mg/kg) or vehicle was administered, and 30 min later, rats were exposed to loud noise stress (30 min) or no noise (basal condition). Blood, brains, pituitary and adrenal glands were collected immediately after the procedures for analysis of c-fos and CB1R mRNAs, corticosterone (CORT) and adrenocorticotropin hormone (ACTH) plasma levels. Basally, CB1R antagonism induced c-fos mRNA in the basolateral amygdala (BLA) and auditory cortex (AUD) and elevated plasma CORT, indicating disruption of eCB-mediated constitutive inhibition of activity. CB1R blockade also potentiated stress-induced hormone levels and c-fos mRNA in several regions such as the bed nucleus of the stria terminalis (BST), lateral septum (LS), and basolateral amygdala (BLA) and the paraventricular nucleus of the hypothalamus (PVN). CB1R mRNA was detected in all central tissues investigated, and the adrenal cortex, but at very low levels in the anterior pituitary gland. Interestingly, CB1R mRNA was rapidly and bidirectionally regulated in response to stress and/or antagonist treatment in some regions. eCBs therefore modulate the HPA axis by regulating both constitutive and activity-dependent inhibition at multiple levels.
Collapse
|
9
|
Weible AP, Yavorska I, Wehr M. A Cortico-Collicular Amplification Mechanism for Gap Detection. Cereb Cortex 2020; 30:3590-3607. [PMID: 32055848 DOI: 10.1093/cercor/bhz328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Auditory cortex (AC) is necessary for the detection of brief gaps in ongoing sounds, but not for the detection of longer gaps or other stimuli such as tones or noise. It remains unclear why this is so, and what is special about brief gaps in particular. Here, we used both optogenetic suppression and conventional lesions to show that the cortical dependence of brief gap detection hinges specifically on gap termination. We then identified a cortico-collicular gap detection circuit that amplifies cortical gap termination responses before projecting to inferior colliculus (IC) to impact behavior. We found that gaps evoked off-responses and on-responses in cortical neurons, which temporally overlapped for brief gaps, but not long gaps. This overlap specifically enhanced cortical responses to brief gaps, whereas IC neurons preferred longer gaps. Optogenetic suppression of AC reduced collicular responses specifically to brief gaps, indicating that under normal conditions, the enhanced cortical representation of brief gaps amplifies collicular gap responses. Together these mechanisms explain how and why AC contributes to the behavioral detection of brief gaps, which are critical cues for speech perception, perceptual grouping, and auditory scene analysis.
Collapse
Affiliation(s)
- Aldis P Weible
- Department of Psychology, Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Iryna Yavorska
- Department of Psychology, Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
10
|
Wigestrand MB, Schiff HC, Fyhn M, LeDoux JE, Sears RM. Primary auditory cortex regulates threat memory specificity. Learn Mem 2017; 24:55-58. [PMID: 27980076 PMCID: PMC5159661 DOI: 10.1101/lm.044362.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023]
Abstract
Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used muscimol infusions in rats to show that discriminatory threat learning requires Au1 activity specifically during memory acquisition and retrieval, but not during consolidation. Memory specificity was similarly disrupted by infusion of PKMζ inhibitor peptide (ZIP) during memory storage. Our findings show that Au1 is required at critical memory phases and suggest that Au1 plasticity enables stimulus discrimination.
Collapse
Affiliation(s)
- Mattis B Wigestrand
- Center for Neuroscience, New York University, New York, New York 10003, USA
- Department of Molecular Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Hillary C Schiff
- Center for Neuroscience, New York University, New York, New York 10003, USA
| | - Marianne Fyhn
- Department of Molecular Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Joseph E LeDoux
- Center for Neuroscience, New York University, New York, New York 10003, USA
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| | - Robert M Sears
- Center for Neuroscience, New York University, New York, New York 10003, USA
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
11
|
Salehi MS, Namavar MR, Tamadon A, Bahmani R, Jafarzadeh Shirazi MR, Khazali H, Dargahi L, Pandamooz S, Mohammad-Rezazadeh F, Rashidi FS. The Effects of Acoustic White Noise on the Rat Central Auditory System During the Fetal and Critical Neonatal Periods: A Stereological Study. Noise Health 2017; 19:24-30. [PMID: 28164936 PMCID: PMC5397999 DOI: 10.4103/1463-1741.199239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
AIM To evaluate the effects of long-term, moderate level noise exposure during crucial periods of rat infants on stereological parameters of medial geniculate body (MGB) and auditory cortex. MATERIALS AND METHODS Twenty-four male offspring of 12 pregnant rats were divided into four groups: fetal-to-critical period group, which were exposed to noise from the last 10 days of fetal life till postnatal day (PND) 29; fetal period group that exposed to noise during the last 10 days of fetal life; critical period group, exposed to noise from PND 15 till PND 29, and control group. White noise at 90 dB for 2 h per day was used. STATISTICAL ANALYSIS USED Variance for variables was performed using Proc GLM followed by mean comparison by Duncan's multiple range test. RESULTS Numerical density of neurons in MGB of fetal-to-critical period group was lower than control group. Similar results were seen in numerical density of neurons in layers IV and VI of auditory cortex. Furthermore, no significant difference was observed in the volume of auditory cortex among groups, and only MGB volume in fetal-to-critical period group was higher than other groups. Estimated total number of neurons in MGB was not significantly different among groups. CONCLUSION It seems necessary to prevent long-term moderate level noise exposure during fetal-to-critical neonatal period.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Animal Sciences, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Tamadon
- Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raziyeh Bahmani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Homayoun Khazali
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
13
|
Nyhuis TJ, Masini CV, Day HEW, Campeau S. Evidence for the Integration of Stress-Related Signals by the Rostral Posterior Hypothalamic Nucleus in the Regulation of Acute and Repeated Stress-Evoked Hypothalamo-Pituitary-Adrenal Response in Rat. J Neurosci 2016; 36:795-805. [PMID: 26791210 PMCID: PMC4719015 DOI: 10.1523/jneurosci.3413-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/02/2015] [Accepted: 12/02/2015] [Indexed: 02/08/2023] Open
Abstract
A likely adaptive process mitigating the effects of chronic stress is the phenomenon of stress habituation, which frequently reduces multiple stress-evoked responses to the same (homotypic) stressor experienced repeatedly. The current studies investigated putative brain circuits that may coordinate the reduction of stress-related responses associated with stress habituation, a process that is inadequately understood. Initially, two rat premotor regions that respectively regulate neuroendocrine (medial parvicellular region of the paraventricular hypothalamic nucleus [PaMP]) and autonomic (rostral medullary raphe pallidus [RPa]) responses were targeted with distinguishable retrograde tracers. Two to 3 weeks later, injected animals underwent loud noise stress, and their brains were processed for fluorescent immunohistochemical detection of the tracers and the immediate early gene Fos. A rostral region of the posterior hypothalamic nucleus (rPH), and to a lesser extent, the median preoptic nucleus, exhibited the highest numbers of retrogradely labeled cells from both the RPa and PaMP that were colocalized with loud noise-induced Fos expression. Injections of an anterograde tracer in the rPH confirmed these connections and suggested that this region may contribute to the coordination of multiple stress-related responses. This hypothesis was partially tested by posterior hypothalamic injections of small volumes of muscimol, which disrupts normal synaptic functions, before acute and repeated loud noise or restraint exposures. In addition to significantly reduced corticosterone release in response to these two distinct stressors, rPH muscimol disrupted habituation to each stressor modality, suggesting a novel and important contribution of the rostral posterior hypothalamic nucleus in this category of adaptive processes. Significance statement: Habituation to stress is a process that possibly diminishes the detrimental health consequences of chronic stress by reducing the amplitude of many responses when the same challenging conditions are experienced repeatedly. Stress elicits a highly coordinated set of neuroendocrine, autonomic, and behavioral responses that are independently and relatively well defined; however, how the brain achieves coordination of these responses and their habituation-related declines is not well understood. The current studies provide some of the first anatomical and functional results suggesting that a specific region of the hypothalamus, the rostral posterior hypothalamic nucleus, targets multiple premotor regions and contributes to the regulation of acute neuroendocrine responses and their habituation to repeated stress.
Collapse
Affiliation(s)
- Tara J Nyhuis
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| | - Cher V Masini
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| |
Collapse
|
14
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
15
|
Rabasa C, Gagliano H, Pastor-Ciurana J, Fuentes S, Belda X, Nadal R, Armario A. Adaptation of the hypothalamus-pituitary-adrenal axis to daily repeated stress does not follow the rules of habituation: A new perspective. Neurosci Biobehav Rev 2015; 56:35-49. [PMID: 26112129 DOI: 10.1016/j.neubiorev.2015.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023]
Abstract
Repeated exposure to a wide range of stressors differing in nature and intensity results in a reduced response of prototypical stress markers (i.e. plasma levels of ACTH and adrenaline) after an acute challenge with the same (homotypic) stressor. This reduction has been considered to be a habituation-like phenomenon. However, direct experimental evidence for this assumption is scarce. In the present work we demonstrate in adult male rats that adaptation of the hypothalamus-pituitary-adrenal (HPA) axis to repeated stress does not follow some of the critical rules of habituation. Briefly, adaptation was stronger and faster with more severe stressors, maximally observed even with a single exposure to severe stressors, extremely long-lasting, negatively related to the interval between the exposures and positively related to the length of daily exposure. We offer a new theoretical view to explain adaptation to daily repeated stress.
Collapse
Affiliation(s)
- Cristina Rabasa
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Jordi Pastor-Ciurana
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Silvia Fuentes
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Roser Nadal
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain.
| |
Collapse
|
16
|
Zhang L, Gong JT, Zhang HQ, Song QH, Xu GH, Cai L, Tang XD, Zhang HF, Liu FE, Jia ZS, Zhang HW. Melatonin Attenuates Noise Stress-induced Gastrointestinal Motility Disorder and Gastric Stress Ulcer: Role of Gastrointestinal Hormones and Oxidative Stress in Rats. J Neurogastroenterol Motil 2015; 21:189-99. [PMID: 25537679 PMCID: PMC4398253 DOI: 10.5056/jnm14119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS There are increasing evidences for gastrointestinal motility disorder (GIMD) and gastric stress ulcer induced by noise stress. The present study was to investigate the reversed effect of melatonin on GIMD and gastric stress ulcer induced by noise stress and potential mechanism. METHODS Noise stress was induced on rats, and melatonin (15 mg/kg) was administered to rats by intraperitoneal injection. Differences were assessed in gastric residual rate (GRR), small intestine propulsion rate (SPR), Guth injury score, cortisol, gastrointestinal hormones (calcitonin-gene-related peptide and motilin) and oxidative stress markers (superoxide dismutase and malondialde hyde) in blood plasma as well as gastric mucosa homogenate with or without melatonin. The pathological examination of gastric mucosa was also performed. RESULTS The GRR and SPR were improved by noise stress compared with control (P < 0.05). The pathological examination and Guth injury score revealed gastric stress ulcer. Moreover, the levels of cortisol, motilin and malondialdehyde in blood plasma and ma-londialdehyde in gastric mucosa homogenate were increased by noise stress (P < 0.05). CGRP and superoxide dismutase activ-ity in both of blood plasma and gastric mucosa homogenate were significantly decreased (P< 0.05). Furthermore, melatonin reversed changes in GRR, SPR, pathological examination, Guth injury score, cortisol, motilin, CGRP, superoxide dismutase activity and malondialdehyde (P < 0.05). CONCLUSIONS Melatonin is effective in reversing the GIMD and gastric stress ulcer induced by noise stress. The underlying mechanism may be involved in oxidative stress and gastrointestinal hormones.
Collapse
Affiliation(s)
- Lei Zhang
- Experiment Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi'an, Shan Xi province, China.,Department of General Surgery, No.406 hospital, Da Lian, Liao Ning Province, China.,State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shan Xi Province, China
| | - Ji T Gong
- Department of Otorhinolaryngology, Baoji Hospital of Chinese Medicine, Shan Xi Province, China
| | - Hu Q Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shan Xi Province, China
| | - Quan H Song
- Department of General Surgery, No.406 hospital, Da Lian, Liao Ning Province, China
| | - Guang H Xu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shan Xi Province, China
| | - Lei Cai
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shan Xi Province, China
| | - Xiao D Tang
- Department of General Surgery, No.406 hospital, Da Lian, Liao Ning Province, China
| | - Hai F Zhang
- Experiment Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi'an, Shan Xi province, China
| | - Fang-E Liu
- Experiment Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi'an, Shan Xi province, China
| | - Zhan S Jia
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Hong W Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shan Xi Province, China
| |
Collapse
|
17
|
Babb JA, Masini CV, Day HEW, Campeau S. Habituation of hypothalamic-pituitary-adrenocortical axis hormones to repeated homotypic stress and subsequent heterotypic stressor exposure in male and female rats. Stress 2014; 17:224-34. [PMID: 24635729 PMCID: PMC8162918 DOI: 10.3109/10253890.2014.905534] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding potential sex differences in repeated stress-induced hypothalamic-pituitary-adrenocortical (HPA) axis habituation could provide insight into the sex-biased prevalence of certain affective disorders such as anxiety and depression. Therefore in these studies, male and female rats were exposed to 30 min of either audiogenic or restraint stress daily for 10 days in order to determine whether sex regulates the extent to which HPA axis hormone release is attenuated upon repeated homotypic stressor presentation. In response to the initial exposure, both stressors robustly increased plasma concentrations of both adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in both sexes. Acutely, females displayed higher ACTH and CORT concentrations following restraint stress, whereas males exhibited higher hormone concentrations following loud noise stress. HPA axis hormone responses to both stressors decreased incrementally over successive days of exposure to each respective stressor. Despite the differential effect of sex on acute hormone responses, the extent to which HPA axis hormone response was attenuated did not differ between male and female animals following either stressor. Furthermore, ACTH and CORT responses to a novel environment were not affected by prior exposure to stress of either modality in either male or female rats. These experiments demonstrate that despite the acute stress response, male and female rats exhibit similar habituation of HPA axis hormones upon repeated homotypic stressor presentations, and that exposure to repeated stress does not produce exaggerated HPA axis hormone responses to a novel environment in either female or male rats.
Collapse
Affiliation(s)
- Jessica A Babb
- Department of Psychology and Neuroscience, University of Colorado at Boulder , Boulder, CO , USA
| | | | | | | |
Collapse
|
18
|
Babb JA, Masini CV, Day HEW, Campeau S. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry. Stress 2013; 16:664-77. [PMID: 23992519 PMCID: PMC8162912 DOI: 10.3109/10253890.2013.840282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.
Collapse
Affiliation(s)
- Jessica A Babb
- Department of Psychology and Neuroscience, University of Colorado at Boulder , Boulder, CO , USA
| | | | | | | |
Collapse
|