1
|
Clayman CL, Hwang C, Connaughton VP. Ethanol and caffeine age-dependently alter brain and retinal neurochemical levels without affecting morphology of juvenile and adult zebrafish (Danio rerio). PLoS One 2023; 18:e0286596. [PMID: 37405983 PMCID: PMC10321635 DOI: 10.1371/journal.pone.0286596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Adolescent alcohol exposure in humans is predictive of adult development of alcoholism. In rodents, caffeine pre-exposure enhances adult responsiveness to ethanol via a pathway targeted by both compounds. Embryonic exposure to either compound adversely affects development, and both compounds can alter zebrafish behaviors. Here, we evaluate whether co-exposure to caffeine and/or alcohol in adolescence exerts neurochemical changes in retina and brain. Zebrafish (Danio rerio) were given daily 20 min treatments to ethanol (1.5% v/v), caffeine (25-100 mg/L), or caffeine + ethanol for 1 week during mid-late adolescence (53-92 days post fertilization (dpf)) or early adulthood (93-142 dpf). Immediately after exposure, anatomical measurements were taken, including weight, heart rate, pigment density, length, girth, gill width, inner and outer eye distance. Brain and retinal tissue were subsequently collected either (1) immediately, (2) after a short interval (2-4d) following exposure, or (3) after a longer interval that included an acute 1.5% ethanol challenge. Chronic ethanol and/or caffeine exposure did not alter anatomical parameters. However, retinal and brain levels of tyrosine hydroxylase were elevated in fish sacrificed after the long interval following exposure. Protein levels of glutamic acid decarboxylase were also increased, with the highest levels observed in 70-79 dpf fish exposed to caffeine. The influence of ethanol and caffeine exposure on neurochemistry demonstrates specificity of their effects during postembryonic development. Using the zebrafish model to assess neurochemistry relevant to reward and anxiety may inform understanding of the mechanisms that reinforce co-addiction to alcohol and stimulants.
Collapse
Affiliation(s)
- Carly L. Clayman
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| | - Christina Hwang
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| | - Victoria P. Connaughton
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| |
Collapse
|
2
|
Gasparyan A, Navarrete F, Navarro D, Manzanares J. Cannabidiol regulates behavioral and brain alterations induced by spontaneous alcohol withdrawal. Neuropharmacology 2023; 233:109549. [PMID: 37085012 DOI: 10.1016/j.neuropharm.2023.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The main goal of this study was to evaluate if the administration of cannabidiol (CBD) regulates behavioral and gene expression alterations induced by spontaneous alcohol withdrawal (SAW) in mice. Increasing doses of ethanol were administered to C57BL/6J male mice for 15 days (2.5, 3 and 3.5 g/kg/12 h, p. o.), and SAW was studied at 6, 12, 24, and 72 h after the last ethanol administration. The efficacy of acute CBD (10, 20, and 40 mg/kg, i. p.) to regulate behavioral changes induced by SAW was explored at 6 h. Gene expression analyses of cannabinoid receptors 1 (Cnr1) and 2 (Cnr2), mu-opioid receptor (Opmr1), and proopiomelanocortin (Pomc) in the nucleus accumbens (NAcc), and Pomc and tyrosine hydroxylase (Th) in the ventral tegmental area (VTA), were carried out by real time-PCR. Pearson correlation was used to identify potential associations between the gene expression data and the anxiety-like behaviors. Biostatistical studies suggest associations between gene expression data and the anxiogenic behaviors in mice exposed to the SAW model and treated with VEH and 40 mg/kg of CBD. Mice exposed to the SAW model showed significant somatic withdrawal signs, anxiety-like behaviors, and remarkable changes in the gene expression of all brain targets at 6 h. CBD dose-dependently normalized the behavioral, somatic withdrawal signs and anxiety-like behaviors and modulated gene expression changes in the NAcc, but not in the VTA. The results of this study suggest that CBD may regulate specific alcohol withdrawal-associated alterations. However, further studies are required to explore the possible mechanisms involved.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
Nadia H, Fabienne M, Pierard C, Nicole M, Daniel B. Preventive Effects of Baclofen but Not Diazepam on Hippocampal Memory and Glucocorticoid Alterations After Prolonged Alcohol Withdrawal in Mice. Front Psychiatry 2022; 13:799225. [PMID: 35686185 PMCID: PMC9171496 DOI: 10.3389/fpsyt.2022.799225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Our study aims at comparing in C57/Bl male mice, the impact of repeated injections of baclofen (an agonist of GABAB receptor) or diazepam (a benzodiazepine acting through a positive allosteric modulation of GABAA receptor) administered during the alcohol-withdrawal period on hippocampus-dependent memory impairments and brain regional glucocorticoid dysfunction after a short (1-week) or a long (4-week) abstinence. Hence, mice were submitted to a 6-month alcohol consumption (12%v/v) and were progressively withdrawn to water. Then, after a 1- or 4-weeks abstinence, they were submitted to a contextual memory task followed by measurements of corticosterone concentrations in the dorsal hippocampus (dHPC), the ventral hippocampus (vHPC) and the prefrontal cortex (PFC). Results showed that 1- and 4-week withdrawn mice exhibited a severe memory deficit and a significant abnormal rise of the test-induced increase of corticosterone (TICC) in the dHPC, as compared to water-controls or to mice still under alcohol consumption. Repeated daily systemic administrations of decreasing doses of diazepam (ranged from 0.5 to 0.12 mg/kg) or baclofen (ranged from 1.5 to 0.37 mg/kg) during the last 15 days of the withdrawal period, normalized both memory and TICC scores in the dHPC in 1-week withdrawn animals; in contrast, only baclofen-withdrawn mice showed both normal memory performance and TICC scores in the dHPC after a 4-week withdrawal period. In conclusion, the memory improvement observed in 4-week withdrawn mice administered with baclofen stem from the protracted normalization of glucocorticoid activity in the dHPC, a phenomenon encountered only transitorily in diazepam-treated withdrawn mice.
Collapse
Affiliation(s)
- Henkous Nadia
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| | - Martins Fabienne
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| | - Christophe Pierard
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, Brétigny-sur-Orge, France
| | - Mons Nicole
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| | - Beracochea Daniel
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| |
Collapse
|
4
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
5
|
Micheli L, Spitoni S, Di Cesare Mannelli L, Bilia AR, Ghelardini C, Pallanti S. Bacopa monnieri
as augmentation therapy in the treatment of anhedonia, preclinical and clinical evaluation. Phytother Res 2020; 34:2331-2340. [DOI: 10.1002/ptr.6684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section University of Florence Florence Italy
| | - Silvia Spitoni
- Department Neurofarba, Psychiatry Section University of Florence Florence Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section University of Florence Florence Italy
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” University of Florence Florence Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section University of Florence Florence Italy
| | - Stefano Pallanti
- Department Neurofarba, Psychiatry Section University of Florence Florence Italy
- Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine New York New York USA
- Institute of Neuroscience Florence Italy
| |
Collapse
|
6
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
7
|
Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Aguirre CA, Singh M, Ehlers CL, Conti B. Time Course of Blood and Brain Cytokine/Chemokine Levels Following Adolescent Alcohol Exposure and Withdrawal in Rats. Alcohol Clin Exp Res 2019; 43:2547-2558. [PMID: 31589333 PMCID: PMC6904424 DOI: 10.1111/acer.14209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adolescence is a critical period for neural development, and alcohol exposure during adolescence can lead to an elevated risk for health consequences as well as alcohol use disorders. Clinical and experimental data suggest that chronic alcohol exposure may produce immunomodulatory effects that can lead to the activation of pro-inflammatory cytokine pathways as well as microglial markers. The present study evaluated, in brain and blood, the effects of adolescent alcohol exposure and withdrawal on microglia and on the most representative pro- and anti-inflammatory cytokines and major chemokines that can contribute to the establishing of a neuroinflammatory environment. METHODS Wistar rats (males, n = 96) were exposed to ethanol (EtOH) vapors, or air control, for 5 weeks over adolescence (PD22-PD58). Brains and blood samples were collected at 3 time points: (i) after 35 days of vapor/air exposure (PD58); (ii) after 1 day of withdrawal (PD59), and (iii) 28 days after withdrawal (PD86). The ionized calcium-binding adapter molecule 1 (Iba-1) was used to index microglial activation, and cytokine/chemokine responses were analyzed using magnetic bead panels. RESULTS After 35 days of adolescent vapor exposure, a significant increase in Iba-1 immunoreactivity was seen in amygdala, frontal cortex, hippocampus, and substantia nigra. However, Iba-1 density returned to control levels at both 1 day and 28 days of withdrawal except in the hippocampus where Iba-1 density was significantly lower than controls. In serum, adolescent EtOH exposure induced a reduction in IL-13 and an increase in fractalkine at day 35. After 1 day of withdrawal, IL-18 was reduced, and IP-10 was elevated, whereas both IP-10 and IL-10 were elevated at 28 days following withdrawal. In the frontal cortex, adolescent EtOH exposure induced an increase in IL-1β at day 35, and 28 days of withdrawal, and IL-10 was increased after 28 days of withdrawal. CONCLUSION These data demonstrate that EtOH exposure during adolescence produces significant microglial activation; however, inflammatory markers seen in the blood appear to differ from those observed in the brain.
Collapse
Affiliation(s)
| | - William Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Simone Mori
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Dennis Otero
- Infectious and Inflammatory Disease Center and National Cancer Institute (NCI)-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, California
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Mona Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Bruno Conti
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
8
|
Pereira PA, Gonçalves E, Silva A, Millner T, Madeira MD. Effects of chronic alcohol consumption and withdrawal on the cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei of the rat: An unbiased stereological study. Neurotoxicology 2019; 76:58-66. [PMID: 31634498 DOI: 10.1016/j.neuro.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
The brain cholinergic system comprises two main recognized subdivisions, the basal forebrain and the brainstem cholinergic systems. The effects of chronic alcohol consumption on the basal forebrain cholinergic nuclei have been investigated extensively, but there is only one study that has examined those effects on the brainstem cholinergic nuclei. The last one comprises the pedunculopontine tegmental (PPT) and the laterodorsal tegmental (LDT) nuclei, which are known to give origin to the main cholinergic projection to the ventral tegmental area, a key brain region of the neural circuit, the mesocorticolimbic system, that mediates several behavioral and physiological processes, including reward. In the present study, we have examined, using stereological methods, the effects of chronic alcohol consumption (6 months) and subsequent withdrawal (2 months) on the total number and size of PPT and LDT choline acetyltransferase (ChAT)-immunoreactive neurons. The total number of PPT and LDT ChAT-immunoreactive neurons was unchanged in ethanol-treated and withdrawn rats. However, ChAT-immunoreactive neurons were significantly hypertrophied in ethanol-treated rats, an alteration that did not revert 2 months after ethanol withdrawal. These results show that prolonged exposure to ethanol leads to long-lasting, and potentially irreversible, cytoarchitectonic and neurochemical alterations in the brainstem cholinergic nuclei. These alterations suggest that the alcohol-induced changes in the brainstem cholinergic nuclei might play a role in the mechanisms underlying the development of addictive behavior to alcohol.
Collapse
Affiliation(s)
- Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Eugénio Gonçalves
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Tiago Millner
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - M Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
9
|
Peltier MR, Verplaetse TL, Mineur YS, Petrakis IL, Cosgrove KP, Picciotto MR, McKee SA. Sex differences in stress-related alcohol use. Neurobiol Stress 2019; 10:100149. [PMID: 30949562 PMCID: PMC6430711 DOI: 10.1016/j.ynstr.2019.100149] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/12/2023] Open
Abstract
Rates of alcohol use disorder (AUD) have increased in women by 84% over the past ten years relative to a 35% increase in men. This substantive increase in female drinking is alarming given that women experience greater alcohol-related health consequences compared to men. Stress is strongly associated with all phases of alcohol addiction, including drinking initiation, maintenance, and relapse for both women and men, but plays an especially critical role for women. The purpose of the present narrative review is to highlight what is known about sex differences in the relationship between stress and drinking. The critical role stress reactivity and negative affect play in initiating and maintaining alcohol use in women is addressed, and the available evidence for sex differences in drinking for negative reinforcement as it relates to brain stress systems is presented. This review discusses the critical structures and neurotransmitters that may underlie sex differences in stress-related alcohol use (e.g., prefrontal cortex, amygdala, norepinephrine, corticotropin releasing factor, and dynorphin), the involvement of sex and stress in alcohol-induced neurodegeneration, and the role of ovarian hormones in stress-related drinking. Finally, the potential avenues for the development of sex-appropriate pharmacological and behavioral treatments for AUD are identified. Overall, women are generally more likely to drink to regulate negative affect and stress reactivity. Sex differences in the onset and maintenance of alcohol use begin to develop during adolescence, coinciding with exposure to early life stress. These factors continue to affect alcohol use into adulthood, when reduced responsivity to stress, increased affect-related psychiatric comorbidities and alcohol-induced neurodegeneration contribute to chronic and problematic alcohol use, particularly for women. However, current research is limited regarding the examination of sex in the initiation and maintenance of alcohol use. Probing brain stress systems and associated brain regions is an important future direction for developing sex-appropriate treatments to address the role of stress in AUD.
Collapse
Affiliation(s)
| | | | - Yann S. Mineur
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ismene L. Petrakis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Sherry A. McKee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
10
|
Rabat Y, Henkous N, Corio M, Nogues X, Beracochea D. Baclofen but Not Diazepam Alleviates Alcohol-Seeking Behavior and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Stressed Withdrawn Mice. Front Psychiatry 2019; 10:238. [PMID: 31105600 PMCID: PMC6492502 DOI: 10.3389/fpsyt.2019.00238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
This study compares the impact of repeated injections of baclofen (an agonist of GABAB receptors) or diazepam (a benzodiazepine having an agonist action on GABAA receptors) given during the alcohol-withdrawal period on the stress-induced restoration of alcohol-seeking behavior and hypothalamic-pituitary-adrenal (HPA) axis dysfunction after a long (4 weeks) abstinence. Thus, C57BL/6 mice were submitted to a 6-month alcohol consumption [12% volume/volume (v/v)] and were progressively withdrawn to water before testing. Diazepam (Valium®, Roche) and baclofen (Baclofen®, Mylan) were administered intraperitoneally for 15 consecutive days (1 injection/day) during the withdrawal period at decreasing doses ranging from 1.0 mg/kg (Day 15) to 0.25 mg/kg (Day 1) for diazepam and from 1.5 mg/kg (Day 15) to 0.37 mg/kg (Day 1) for baclofen. Alcohol-seeking behavior was evaluated by alcohol-place preference in an odor recognition task. In the stress condition, mice received three electric footshocks 45 min before behavioral testing. Blood was sampled immediately after behavioral testing, and plasma corticosterone concentrations were measured by commercial enzyme immunoassay kits. Results showed that non-stressed withdrawn mice did not exhibit alcohol-place preference or alteration of plasma corticosterone concentrations relative to water controls. After stress, however, withdrawn mice exhibited a significant alcohol-place preference and higher circulating corticosterone concentrations as compared to stressed water controls. Interestingly, repeated administration during the withdrawal phase of baclofen but not diazepam suppressed both the alcohol-place preference and normalized corticosterone levels in stressed withdrawn animals. In conclusion, this study evidences that a pre-treatment with baclofen but not with diazepam during the withdrawal phase normalized, even after a long period of abstinence, the HPA axis response to stress, which contributes to the long-term preventing effects of this compound on alcohol-seeking behavior.
Collapse
Affiliation(s)
- Yolaine Rabat
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Pessac, France
| | - Nadia Henkous
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Pessac, France
| | - Marc Corio
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Pessac, France
| | | | - Daniel Beracochea
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Pessac, France
| |
Collapse
|
11
|
Leal S, Ricardo Jorge DO, Joana B, Maria S, Isabel S. Heavy Alcohol Consumption Effects on Blood Pressure and on Kidney Structure Persist After Long-Term Withdrawal. Kidney Blood Press Res 2017; 42:664-675. [DOI: 10.1159/000482022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
|
12
|
Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation. Neurotoxicology 2017; 60:107-115. [PMID: 28408342 DOI: 10.1016/j.neuro.2017.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol.
Collapse
|
13
|
Systematic Analysis of the Cytokine and Anhedonia Response to Peripheral Lipopolysaccharide Administration in Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9085273. [PMID: 27504457 PMCID: PMC4967699 DOI: 10.1155/2016/9085273] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/07/2023]
Abstract
Inflammatory processes may cause depression in subsets of vulnerable individuals. Inflammation-associated behavioral changes are commonly modelled in rodents by administration of bacterial lipopolysaccharide (LPS). However, the time frame in which immune activation and depressive-like behavior occur is not very clear. In this study, we showed that systemic administration of LPS robustly increased circulating levels of corticosterone, leptin, pro- and anti-inflammatory cytokines, and chemokines. Serum concentrations of most analytes peaked within the first 6 h after LPS injection and returned to baseline values by 24 h. Chemokine levels, however, remained elevated for up to 96 h. Using an optimized sucrose preference test (SPT) we showed that sickness behavior was present from 2 to 24 h. LPS-induced anhedonia, as measured by decreased sucrose preference, lasted up to 96 h. To mimic the human situation, where depression develops after chronic inflammation, rats were preexposed to repeated LPS administration or subchronic restraint stress and subsequently challenged with LPS. While these procedures did not increase the duration of anhedonia, our results do indicate that inflammation may cause depressive symptoms such as anhedonia. Using our SPT protocol, more elaborate rodent models can be developed to study the mechanisms underlying inflammation-associated depression in humans.
Collapse
|
14
|
Rebouças ECC, Leal S, Silva SM, Sá SI. Changes in the female arcuate nucleus morphology and neurochemistry after chronic ethanol consumption and long-term withdrawal. J Chem Neuroanat 2016; 77:30-40. [PMID: 27154870 DOI: 10.1016/j.jchemneu.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/26/2022]
Abstract
Ethanol is a macronutrient whose intake is a form of ingestive behavior, sharing physiological mechanisms with food intake. Chronic ethanol consumption is detrimental to the brain, inducing gender-dependent neuronal damage. The hypothalamic arcuate nucleus (ARN) is a modulator of food intake that expresses feeding-regulatory neuropeptides, such as alpha melanocyte-stimulating hormone (α-MSH) and neuropeptide Y (NPY). Despite its involvement in pathways associated with eating disorders and ethanol abuse, the impact of ethanol consumption and withdrawal in the ARN structure and neurochemistry in females is unknown. We used female rat models of 20% ethanol consumption for six months and of subsequent ethanol withdrawal for two months. Food intake and body weights were measured. ARN morphology was stereologically analyzed to estimate its volume, total number of neurons and total number of neurons expressing NPY, α-MSH, tyrosine hydroxylase (TH) and estrogen receptor alpha (ERα). Ethanol decreased energy intake and body weights. However, it did not change the ARN morphology or the expression of NPY, α-MSH and TH, while increasing ERα expression. Withdrawal induced a significant volume and neuron loss that was accompanied by an increase in NPY expression without affecting α-MSH and TH expression. These findings indicate that the female ARN is more vulnerable to withdrawal than to excess alcohol. The data also support the hypothesis that the same pathways that regulate the expression of NPY and α-MSH in long-term ethanol intake may regulate food intake. The present model of long-term ethanol intake and withdrawal induces new physiological conditions with adaptive responses.
Collapse
Affiliation(s)
- Elce C C Rebouças
- Department of Natural Sciences, State University of Southwestern Bahia, Praça Primavera, 40-Bairro Primavera, Itapetinga, BA 45700-000, Brazil; Department of Anatomy, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Sandra Leal
- Department of Anatomy, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Department of Sciences, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, CRL, R. Central da Gandra 1317, 4585-116 Gandra, Portugal.
| | - Susana M Silva
- Department of Anatomy, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Susana I Sá
- Department of Anatomy, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
15
|
Abstract
The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences.
Collapse
Affiliation(s)
- Jill B Becker
- Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)
| | - George F Koob
- Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)
| |
Collapse
|
16
|
Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 2016; 68:142-67. [PMID: 26721702 PMCID: PMC4709508 DOI: 10.1124/pr.114.010090] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
17
|
Sex differences in adult Wistar rats in the voluntary consumption of ethanol after pre-exposure to ethanol-induced flavor avoidance learning. Pharmacol Biochem Behav 2015. [PMID: 26216835 DOI: 10.1016/j.pbb.2015.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vulnerability to ethanol abuse may be a function of the balance between the opposing (aversive and rewarding) motivational effects of the drug. The study of these effects is particularly important for understanding alcohol addiction. Research in this field seems to point out that ethanol effects are determined by a set of internal factors (sex, ethanol intake history, etc.), as well as by environmental conditions surrounding the individual (i.e., stress) and, of course, the interactions between all these factors. This work explores sex differences in sensitivity to aversive effects of ethanol using the procedure of flavor avoidance learning (FAL), as well as the effect of this learning experience on subsequent voluntary ethanol consumption, in adult rats. The results obtained indicated a slight sex based difference in the amount of FAL acquired in that females acquisition was weaker (experiment 1), and a differing influence of previous experience with the aversive effects of ethanol on the voluntary consumption of the drug for each sex (experiment 2). In particular, it was observed that female ethanol-naive rats showed a higher intake level and preference for ethanol than both ethanol-experienced female rats and ethanol-naive male rats. In contrast, the ethanol-experienced male rats showed a greater consumption of and preference for ethanol than ethanol-naive male rats and ethanol-experienced female rats. These data are discussed noting a range of possible explicative factors (sex hormones, hedonic processing, etc.), but further studies are warranted to elucidate the mechanisms by which ethanol pre-exposure influences the subsequent intake of ethanol differently by sex.
Collapse
|
18
|
Retson TA, Reyes B, Van Bockstaele EJ. Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:66-74. [PMID: 25149913 PMCID: PMC4258542 DOI: 10.1016/j.pnpbp.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
Understanding the neurobiological bases for sex differences in alcohol dependence is needed to help guide the development of individualized therapies for alcohol abuse disorders. In the present study, alcohol-induced adaptations in (1) anxiety-like behavior, (2) patterns of c-Fos activation and (3) subcellular distribution of corticotropin releasing factor receptor in locus coeruleus (LC) neurons was investigated in male and female Sprague-Dawley rats that were chronically exposed to ethanol using a liquid diet. Results confirm and extend reports by others showing that chronic ethanol exposure produces an anxiogenic-like response in both male and female subjects. Ethanol-induced sex differences were observed with increased c-Fos expression in LC neurons of female ethanol-treated subjects compared to controls or male subjects. Results also reveal sex differences in the subcellular distribution of the CRFr in LC-noradrenergic neurons with female subjects exposed to ethanol exhibiting a higher frequency of plasmalemmal CRFrs. These adaptations have implications for LC neuronal activity and its neural targets across the sexes. Considering the important role of the LC in ethanol-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis, the present results indicate important sex differences in feed-forward regulation of the HPA axis that may render alcohol dependent females more vulnerable to subsequent stress exposure.
Collapse
Affiliation(s)
- T. A. Retson
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - B.A. Reyes
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102
| | - E. J. Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102
| |
Collapse
|
19
|
Collier AD, Khan KM, Caramillo EM, Mohn RS, Echevarria DJ. Zebrafish and conditioned place preference: a translational model of drug reward. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:16-25. [PMID: 24887295 DOI: 10.1016/j.pnpbp.2014.05.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 02/03/2023]
Abstract
Addiction and substance abuse are found ubiquitously throughout human society. In the United States, these disorders are responsible for amassing hundreds of billions of dollars in annual costs associated with healthcare, crime and lost productivity. Efficacious treatments remain few in number, the development of which will be facilitated by comprehension of environmental, genetic, pharmacological and neurobiological mechanisms implicated in the pathogenesis of addiction. Animal models such as the zebrafish (Danio rerio) have gained momentum within various domains of translational research, and as a model of complex brain disorders (e.g., drug abuse). Behavioral quantification within the conditioned place preference (CPP) paradigm serves as a measure of the rewarding qualities of a given substance. If the animal develops an increase in preference for the drug paired environment, it is inferred that the drug has positive-reinforcing properties. This paper discusses the utility of the zebrafish model in conjunction with the CPP paradigm and reports CPP behavior following acute exposure to 0.0%, 0.25%, 0.50%, and 1.00% alcohol, and 0 mg/L, 50 mg/L, 100 mg/L and 150 mg/L caffeine.
Collapse
Affiliation(s)
- Adam D Collier
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| | - Kanza M Khan
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| | - Erika M Caramillo
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| | - Richard S Mohn
- Department of Educational Studies and Research, The University of Southern Mississippi, 118 College Drive, Box 5093, Hattiesburg, MS 39406, USA.
| | - David J Echevarria
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| |
Collapse
|
20
|
Surkin PN, Ossola CÁ, Mohn CE, Elverdin JC, Fernández-Solari J. Chronic alcohol consumption alters periodontal health in rats. Alcohol Clin Exp Res 2014; 38:2001-7. [PMID: 24931716 DOI: 10.1111/acer.12436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to assess the effects of chronic alcohol consumption on periodontitis development in rats. METHODS Periodontal disease was experimentally induced by lipopolysaccharide (LPS; 2 mg/ml) injections into the gingival tissue around first upper and lower molar's neck, and into the interdental space between first and second molars. This protocol was repeated for 6 weeks on days 1, 3, and 5 of each week. Chronic alcohol consumption was induced by 20% ethanol (EtOH) as the only liquid source during 4 months. RESULTS Chronic alcohol consumption by itself increased alveolar bone loss and biological mediators of periodontal disease such as prostaglandin E2 (PGE2 ) content on gingival tissue, and inducible nitric oxide synthase activity plus PGE2 content in submandibular gland. Unexpectedly, alcohol consumption did not increase the damage evoked by the proved model of LPS injections for periodontitis induction. CONCLUSIONS Results suggest 20% alcohol consumption during 4 months generates differential effects on oral health of rats, depending on its pathophysiological state: It would exacerbate the inflammatory condition when periodontal damage is absent, but it would not when damage is installed.
Collapse
Affiliation(s)
- Pablo N Surkin
- Laboratory of Oral Physiology, Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
21
|
Vitlic A, Lord JM, Phillips AC. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9631. [PMID: 24562499 PMCID: PMC4082590 DOI: 10.1007/s11357-014-9631-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/11/2014] [Indexed: 05/29/2023]
Abstract
The immune response is essential for keeping an organism healthy and for defending it from different types of pathogens. It is a complex system that consists of a large number of components performing different functions. The adequate and controlled interaction between these components is necessary for a robust and strong immune response. There are, however, many factors that interfere with the way the immune response functions. Stress and ageing now consistently appear in the literature as factors that act upon the immune system in the way that is often damaging. This review focuses on the role of stress and ageing in altering the robustness of the immune response first separately, and then simultaneously, discussing the effects that emerge from their interplay. The special focus is on the psychological stress and the impact that it has at different levels, from the whole system to the individual molecules, resulting in consequences for physical health.
Collapse
Affiliation(s)
- Ana Vitlic
- />School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT England UK
- />MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, England UK
| | - Janet M. Lord
- />MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, England UK
- />School of Immunity and Infection, University of Birmingham, Birmingham, England UK
| | - Anna C. Phillips
- />School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT England UK
- />MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, England UK
| |
Collapse
|
22
|
Pang TY, Du X, Catchlove WA, Renoir T, Lawrence AJ, Hannan AJ. Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption. Front Pharmacol 2013; 4:93. [PMID: 23898297 PMCID: PMC3722512 DOI: 10.3389/fphar.2013.00093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 11/13/2022] Open
Abstract
Depression is a commonly reported co-morbidity during rehabilitation from alcohol use disorders and its presence is associated with an increased likelihood of relapse. Interventions which impede the development of depression could be of potential benefit if incorporated into treatment programs. We previously demonstrated an ameliorative effect of physical exercise on depressive behaviors in a mouse model of alcohol abstinence. Here, we show that environmental enrichment (cognitive and social stimulation) has a similar beneficial effect. The hypothalamic-pituitary-adrenal (HPA) axis is a key physiological system regulating stress responses and its dysregulation has been separably implicated in the pathophysiology of depression and addiction disorders. We performed a series of dexamethasone challenges and found that mice undergoing 2 weeks of alcohol abstinence had significantly greater corticosterone and ACTH levels following a DEX-CRH challenge compared to water controls. Environmental enrichment during alcohol abstinence corrected the abnormal DEX-CRH corticosterone response despite a further elevation of ACTH levels. Examination of gene expression revealed abstinence-associated alterations in glucocorticoid receptor (Gr), corticotrophin releasing hormone (Crh) and pro-opiomelanocortin (Pomc1) mRNA levels which were differentially modulated by environmental enrichment. Overall, our study demonstrates a benefit of environmental enrichment on alcohol abstinence-associated depressive behaviors and HPA axis dysregulation.
Collapse
Affiliation(s)
- Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Sex differences in neuroadaptation to alcohol and withdrawal neurotoxicity. Pflugers Arch 2013; 465:643-54. [PMID: 23559099 DOI: 10.1007/s00424-013-1266-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/28/2022]
Abstract
Recent work suggests that sex differences exist with regard to both the nature of neuroadaptation to alcohol during the development of dependence, and possibly, the neurodegenerative consequences of alcohol dependence. Volumetric studies in human samples show that females may demonstrate increased volumetric brain loss with equal or lesser dependence histories than males. Furthermore, animal studies demonstrate sex differences in glutamatergic, GABAergic, and adenosinergic receptor signaling and endocrine responses following prolonged alcohol exposure. These differences may influence the development of dependence, neuronal function, and viability, particularly during alcohol withdrawal. The present review discusses the current state of knowledge in this regard. It is concluded that there exists a clear need for a more extensive examination of potential sex differences in neurodegenerative consequences of alcohol dependence in men and women, particularly with regard to the role that alterations in amino acid signaling and hypothalamic-pituitary-adrenal axis function may play. Furthermore, we note the need for expanded examination of the unique role that alcohol withdrawal-associated neuronal activity may have in the development of dependence-associated neurotoxicity.
Collapse
|
24
|
Logrip ML, Rivier C, Lau C, Im S, Vaughan J, Lee S. Adolescent alcohol exposure alters the rat adult hypothalamic-pituitary-adrenal axis responsiveness in a sex-specific manner. Neuroscience 2013; 235:174-86. [PMID: 23337533 DOI: 10.1016/j.neuroscience.2012.12.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 01/04/2023]
Abstract
Exposure to alcohol during adolescence exerts long-term effects on the adult brain stress circuits, causing many changes that persist into adulthood. Here we examined the consequences of adolescent intermittent ethanol (AIE, administered from postnatal day (PND) 28-42) on the hypothalamic-pituitary-adrenal (HPA) axis-related brain circuitry of rats challenged with intragastric (ig) administration of alcohol in adulthood (PND 70-71). Both male and female adolescent rats were exposed to alcohol vapors, while controls did not receive the drug, to assess whether AIE alters adult alcohol response in a sex-specific manner. We demonstrated that AIE increased paraventricular nucleus (PVN) Avp mRNA levels during late (PND 42) but not middle (PND 36) adolescence in males. While an alcohol challenge administered to 70-71-day-old rats increased Crf mRNA levels in males and Avp mRNA levels in females, AIE blunted both effects. These results suggest that AIE produced long-lasting changes in the responsiveness of the HPA axis to a subsequent alcohol challenge in a sex-specific manner. Furthermore, AIE altered adrenergic brain stem nuclei involved in stress responses in adulthood, resulting in increased numbers of phenylethanolamine N-methyltransferase (PNMT) neurons in male C2 and female C1 regions. This tended to enhance activation of the male C2 nucleus upon alcohol challenge. Collectively, these results suggest that AIE exerts long-term effects on the ability of the PVN to respond to an alcohol challenge in adulthood, possibly mediated by catecholaminergic input from the brain stem to the PVN.
Collapse
Affiliation(s)
- M L Logrip
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|