1
|
Lu Y, Kenkel E, Zimmerman K, Weiss RM, Roghair RD, Haskell SE. Sertraline-induced 5-HT dysregulation in mouse cardiomyocytes and the impact on calcium handling. Am J Physiol Heart Circ Physiol 2024; 327:H1559-H1576. [PMID: 39423037 DOI: 10.1152/ajpheart.00692.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are prescribed in 15% of pregnancies in the United States for depression. Maternal use of SSRIs has been linked to an increased risk of congenital heart defects, but the exact mechanism of pathogenesis is unknown. SSRIs, including sertraline, are permeable to the placenta and can produce direct fetal exposure. Previously, we have shown decreased cardiomyocyte proliferation, left ventricle size, and cardiac expression of the serotonin receptor 5-HT2B in the offspring of mice exposed to the SSRI sertraline relative to the offspring of saline-exposed mice. Using a mouse model of in utero plus neonatal sertraline exposure, we observed lengthened peak-to-peak time of calcium oscillation (saline 784 ± 76 ms; sertraline 1,121 ± 130 ms, P < 0.001) and decreased expression of critical genes in calcium regulation. We also observed significant upregulation of specific microRNAs (miRNAs) that modulate serotonin signaling in neonatal cardiac tissues (Slc6a4: miR-223-5p, miR-92a-2-5p, miR-182-5p; Htr2a: miR-34b-5p, miR-182-5p; Htr2b: miR-223-5p, miR-92a-2-5p, miR-337-5p) (P < 0.05) with corresponding levels of the target mRNAs downregulated (Slc6a4 0.73 ± 0.05; Htr2a 0.67 ± 0.04; Htr2b 0.72 ± 0.03; all P < 0.01), resulting in decreased production of the cognate proteins. Adult mice at 10 wk showed altered cardiac parameters including decreased heart rates in males (saline 683 ± 8 vs. sertraline 666 ± 6 beats/min, P < 0.05) and ejection fraction in females (saline 83.9 ± 0.6% vs. sertraline 80.6 ± 1.1%, P < 0.05). These findings raise the question of whether sertraline exposure during development may increase the potential risk for cardiac disease when subjected to stress.NEW & NOTEWORTHY Sertraline exposure during development decreased the expression of critical genes in calcium regulation and lengthened periods in calcium oscillation in neonatal cardiomyocytes. Sertraline upregulated specific microRNAs that may modulate serotonin signaling in neonatal cardiac tissues, which corresponded with a decrease in the levels of the corresponding target mRNAs. Although the echocardiograms in our adult mice suggest a mild phenotype associated with sertraline exposure, these upregulated microRNAs (miRNAs) have been linked to adult cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Yongjun Lu
- Division of Pediatric Critical Care, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Elizabeth Kenkel
- Division of Neonatology, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Bristol-Myers Squibb, Seattle, Washington, United States
| | - Kathy Zimmerman
- Division of Cardiology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Robert M Weiss
- Division of Cardiology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Cardiology Section, Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Robert D Roghair
- Division of Neonatology, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Sarah E Haskell
- Division of Pediatric Critical Care, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Seyedhosseini Tamijani SM, Beirami E, Dargahi S, Ahmadiani A, Dargahi L. Neuroprotective effect of thyroid hormones on methamphetamine-induced neurotoxicity via cell surface receptors. Neurosci Lett 2023; 794:137009. [PMID: 36493898 DOI: 10.1016/j.neulet.2022.137009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/03/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Thyroid hormones (THs) have an essential role in normal brain development and function. Methamphetamine (MA) is a widely abused psychostimulant that induces irreversible damages to neuronal cells. In the current study, we used rat primary hippocampal neurons (PHNs) to investigate the neuroprotective effect of THs against MA neurotoxicity. PHNs were prepared from 18-day rat embryos and cell viability was assessed using MTT assay, following treatment with various concentrations of MA, T3, T4 or tetrac, an integrin αvβ3 cell surface receptor antagonist. Our results showed that 7 mM MA induced an approximately 50 % reduction in the PHNs viability. Treatment with 800 nM T3 or 8 μM T4 protected PHNs against MA toxicity, an effect which was blocked in the presence of tetrac. These findings suggest that THs protect PHNs against MA-induced cell death by the activation of integrin αvβ3 cell surface receptors. So, targeting integrin αvβ3 receptors or using THs can be considered as promising therapeutic strategies to overcome MA neurotoxicity.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Saina Dargahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yang JS, Jeon S, Jang HJ, Yoon SH. Group 1 metabotropic glutamate receptor 5 is involved in synaptically-induced Ca 2+-spikes and cell death in cultured rat hippocampal neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:531-540. [PMID: 36302627 PMCID: PMC9614404 DOI: 10.4196/kjpp.2022.26.6.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Group 1 metabotropic glutamate receptors (mGluRs) can positively affect postsynaptic neuronal excitability and epileptogenesis. The objective of the present study was to determine whether group 1 mGluRs might be involved in synaptically-induced intracellular free Ca2+ concentration ([Ca2+]i) spikes and neuronal cell death induced by 0.1 mM Mg2+ and 10 µM glycine in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague–Dawley rats using imaging methods for Ca2+ and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays for cell survival. Reduction of extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM induced repetitive [Ca2+]i spikes within 30 sec at day 11.5. The mGluR5 antagonist 6-Methyl-2-(phenylethynyl) pyridine (MPEP) almost completely inhibited the [Ca2+]i spikes, but the mGluR1 antagonist LY367385 did not. The group 1 mGluRs agonist, 3,5-dihydroxyphenylglycine (DHPG), significantly increased the [Ca2+]i spikes. The phospholipase C inhibitor U73122 significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The IP3 receptor antagonist 2-aminoethoxydiphenyl borate or the ryanodine receptor antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate also significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The TRPC channel inhibitors SKF96365 and flufenamic acid significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The mGluR5 antagonist MPEP significantly increased the neuronal cell survival, but mGluR1 antagonist LY367385 did not. These results suggest a possibility that mGluR5 is involved in synaptically-induced [Ca2+]i spikes and neuronal cell death in cultured rat hippocampal neurons by releasing Ca2+ from IP3 and ryanodine-sensitive intracellular stores and activating TRPC channels.
Collapse
Affiliation(s)
- Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Sujeong Jeon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
4
|
Atef RM, Abdel Fattah IO, Mahmoud OM, Abdel-Rahman GM, Salem NA. Protective effects of Rosemary extract and/or Fluoxetine on Monosodium Glutamate-induced hippocampal neurotoxicity in rat. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:169-177. [PMID: 34609419 PMCID: PMC8597363 DOI: 10.47162/rjme.62.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of Monosodium Glutamate (MSG) as a food flavor enhancer is increasing worldwide despite its neurotoxic effects. Fluoxetine (FLX) and Rosemary extract (RE) are known to have beneficial neuroprotective properties. Rats were divided into five groups: control group; MSG group, rats received 2 g/kg/day intraperitoneal (i.p.) injections of MSG for seven days; RE/MSG group, rats received 50 mg/kg/day of oral RE for 28 days starting prior to MSG; FLX/MSG group, rats received 10 mg/kg/day of oral FLX for 28 days beginning before MSG; and RE/FLX/MSG group, received combined treatments as mentioned above. Rats underwent the Barnes maze test, in addition to histopathological, immunohistochemical, morphometric and ultrastructural evaluations for their hippocampi. MSG increased the number of errors and escaped latency in the Barnes maze test that was significantly minimized in the three treatment groups. The MSG group exhibited pyramidal cell (PC) degeneration, shrunken glial cells and massive vascular dilatation that were improved with RE and/or FLX treatment. The number of glial fibrillary acidic protein (GFAP)-immunopositive cells were increased, and the number of PCs was decreased in the MSG group, while these values were significantly reversed with the three treatment groups with the most significant improvement at RE/FLX/MSG one. Ultrastructurally, PCs were shrunken with degenerated nuclei, dilated endoplasmic reticulum, swollen mitochondria, and vacuolations in the MSG group that were improved with RE and/or FLX. In conclusion, the combined RE and FLX treatment can ameliorate the toxic effect of MSG on rat hippocampus probably through its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Reham Mohammed Atef
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt;
| | | | | | | | | |
Collapse
|
5
|
Henkel AW, Mouihate A, Welzel O. Differential Release of Exocytosis Marker Dyes Indicates Stimulation-Dependent Regulation of Synaptic Activity. Front Neurosci 2019; 13:1047. [PMID: 31632237 PMCID: PMC6783566 DOI: 10.3389/fnins.2019.01047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023] Open
Abstract
There is a general consensus that synaptic vesicular release by a full collapse process is the primary machinery of synaptic transmission. However, competing view suggests that synaptic vesicular release operates via a kiss-and-run mechanism. By monitoring the release dynamics of a synaptic vesicular marker, FM1-43 from individual synapses in hippocampal neurons, we found evidence that the release of synaptic vesicle was delayed by several seconds after the start of field stimulation. This phenomenon was associated with modified opening kinetics of fusion pores. Detailed analysis revealed that some synapses were completely inactive for a few seconds after stimulation, despite immediate calcium influx. This delay in vesicular release was modulated by various stimulation protocols and different frequencies, indicating an activity-dependent regulation mechanism for neurotransmitter exocytosis. Staurosporine, a drug known to induce “kiss-and-run” exocytosis, increased the proportion of delayed synapses as well as the delay duration, while fluoxetine acted contrarily. Besides being a serotonin reuptake inhibitor, it directly enhanced vesicle mobilization and reduced synaptic fatigue. Exocytosis was never delayed, when it was monitored with pH-sensitive probes, synaptopHlourin and αSyt-CypHerE5 antibody, indicating an instantaneous formation of a fusion pore that allowed rapid equilibration of vesicular lumenal pH but prevented FM1-43 release because of its slow dissociation from the inner vesicular membrane. Our observations suggest that synapses operate via a sequential “kiss-and-run” and “full-collapse” exocytosis mechanism. The initially narrow vesicular pore allows the equilibration of intravesicular pH which then progresses toward full fusion, causing FM1-43 release.
Collapse
Affiliation(s)
- Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Yi H, Huang G, Zhang K, Liu S, Xu W. HSP70 protects rats and hippocampal neurons from central nervous system oxygen toxicity by suppression of NO production and NF-κB activation. Exp Biol Med (Maywood) 2019; 243:770-779. [PMID: 29763367 DOI: 10.1177/1535370218773982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
Collapse
Affiliation(s)
- Hongjie Yi
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyang Huang
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Kun Zhang
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Shulin Liu
- Department of Aviation Medicine, Naval Medical University, Shanghai 200433, China
| | - Weigang Xu
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Alboghobeish S, Naghizadeh B, Kheirollah A, Ghorbanzadeh B, Mansouri MT. Fluoxetine increases analgesic effects of morphine, prevents development of morphine tolerance and dependence through the modulation of L-type calcium channels expression in mice. Behav Brain Res 2018; 361:86-94. [PMID: 30550947 DOI: 10.1016/j.bbr.2018.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
Here, we aimed to investigate the effects of fluoxetine on morphine-induced analgesia, as well as preventive effects of it on morphine induced tolerance and dependence in mice. We also elucidate the involvement of L-type Ca2+ channels in these phenomena. To induce morphine tolerance, mice were treated with morphine (50 mg/kg) for 3 consecutive days. To evaluate the involvement of the calcium channel in the effects of fluoxetine (5, 20 mg/kg), combination ineffective doses of the two L-type calcium channel blockers, nimodipine (5 mg/kg) or diltiazem (20 mg/kg) with flouxetine were used with each morphine dose. Nociceptive behavior was evaluated using hot-plate test, while physical dependence assessed by naloxone-precipitated withdrawal on the fourth day of experiment. The expression of Cav1.2 and Cav1.3 subunits of the L-type calcium channels in cortex and mesolimbic tissues were measured using western immunoassay. Results showed that co-administration of fluoxetine (20 mg/kg) with morphine increased its acute analgesia effect and prevented the induction of morphine antinociceptive tolerance and physical dependence in mice. Moreover, these effects was potentiated by pre-treatment with diltiazem or nimodipine. Results also showed up-regulation of the Cav1.3 and Cav1.2 expression in the cerebral cortex and mesolimbic regions through the development of morphine dependence. Moreover, chronic administration of fluoxetine with morphine reduced the observed up-regulation of Cav1.3 and Cav1.2 expression in cortex and mesolimbic tissues. Our data indicated that co-administering of fluoxetine with morphine could potentiate the antinociceptive effect of morphine, prevent morphine analgesia tolerance and attenuated the morphine withdrawal signs during induction phases. Moreover, we also pointed out for the first time the role of L-type Ca2+ channel channels in the modulatory effects of fluoxetine on the morphine-related effects.
Collapse
Affiliation(s)
- Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahareh Naghizadeh
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Cellular &Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Neuroanesthesia Laboratory, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Yang JS, Jeon S, Yoon KD, Yoon SH. Cyanidin-3-glucoside inhibits amyloid β 25-35-induced neuronal cell death in cultured rat hippocampal neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:689-696. [PMID: 30402029 PMCID: PMC6205939 DOI: 10.4196/kjpp.2018.22.6.689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/16/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023]
Abstract
Increasing evidence implicates changes in [Ca2+]i and oxidative stress as causative factors in amyloid beta (Aβ)-induced neuronal cell death. Cyanidin-3-glucoside (C3G), a component of anthocyanin, has been reported to protect against glutamate-induced neuronal cell death by inhibiting Ca2+ and Zn2+ signaling. The present study aimed to determine whether C3G exerts a protective effect against Aβ25–35-induced neuronal cell death in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague-Dawley rats using MTT assay for cell survival, and caspase-3 assay and digital imaging methods for Ca2+, Zn2+, MMP and ROS. Treatment with Aβ25–35 (20 µM) for 48 h induced neuronal cell death in cultured rat pure hippocampal neurons. Treatment with C3G for 48 h significantly increased cell survival. Pretreatment with C3G for 30 min significantly inhibited Aβ25–35-induced [Zn2+]i increases as well as [Ca2+]i increases in the cultured rat hippocampal neurons. C3G also significantly inhibited Aβ25–35-induced mitochondrial depolarization. C3G also blocked the Aβ25–35-induced formation of ROS. In addition, C3G significantly inhibited the Aβ25–35-induced activation of caspase-3. These results suggest that cyanidin-3-glucoside protects against amyloid β-induced neuronal cell death by reducing multiple apoptotic signals.
Collapse
Affiliation(s)
- Ji Seon Yang
- Department of Physiology, College of Medicine, Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Sujeong Jeon
- Department of Physiology, College of Medicine, Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
9
|
Fluoxetine, not donepezil, reverses anhedonia, cognitive dysfunctions and hippocampal proteome changes during repeated social defeat exposure. Eur Neuropsychopharmacol 2018; 28:195-210. [PMID: 29174946 DOI: 10.1016/j.euroneuro.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/17/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
While anhedonia is considered a core symptom of major depressive disorder (MDD), less attention has been paid to cognitive dysfunctions. We evaluated the behavioural and molecular effects of a selective serotonin re-uptake inhibitor (SSRI, fluoxetine) and an acetylcholinesterase inhibitor (AChEI, donepezil) on emotional-cognitive endophenotypes of depression and the hippocampal proteome. A chronic social defeat (SD) procedure was followed up by "reminder" sessions of direct and indirect SD. Anhedonia-related behaviour was assessed longitudinally by intracranial self-stimulation (ICSS). Cognitive dysfunction was analysed by an object recognition test (ORT) and extinction of fear memory. Tandem mass spectrometry (MSE) and protein-protein-interaction (PPI) network modelling were used to characterise the underlying biological processes of SD and SSRI/AChEI treatment. Independent selected reaction monitoring (SRM) was conducted for molecular validation. Repeated SD resulted in a stable increase of anhedonia-like behaviour as measured by ICSS. Fluoxetine treatment reversed this phenotype, whereas donepezil showed no effect. Fluoxetine improved recognition memory and inhibitory learning in a stressor-related context, whereas donepezil only improved fear extinction. MSE and PPI network analysis highlighted functional SD stress-related hippocampal proteome changes including reduced glutamatergic neurotransmission and learning processes, which were reversed by fluoxetine, but not by donepezil. SRM validation of molecular key players involved in these pathways confirmed the hypothesis that fluoxetine acts via increased AMPA receptor signalling and Ca2+-mediated neuroplasticity in the amelioration of stress-impaired reward processing and memory consolidation. Our study highlights molecular mediators of SD stress reversed by SSRI treatment, identifying potential viable future targets to improve cognitive dysfunctions in MDD patients.
Collapse
|
10
|
Ratheesh A, Cotton SM, Davey CG, Adams S, Bechdolf A, Macneil C, Berk M, McGorry PD. Ethical considerations in preventive interventions for bipolar disorder. Early Interv Psychiatry 2017; 11:104-112. [PMID: 27027848 DOI: 10.1111/eip.12340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/17/2016] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
AIM Early intervention and prevention of serious mental disorders such as bipolar disorder has the promise of decreasing the burden associated with these disorders. With increasing early and preventive intervention efforts among cohorts such as those with a familial risk for bipolar disorder, there is a need to examine the associated ethical concerns. The aim of this review was to examine the ethical issues underpinning the clinical research on pre-onset identification and preventive interventions for bipolar disorder. METHODS We undertook a PubMed search updated to November 2014 incorporating search terms such as bipolar, mania, hypomania, ethic*(truncated), early intervention, prevention, genetic and family. RESULTS Fifty-six articles that were identified by this method as well as other relevant articles were examined within a framework of ethical principles including beneficence, non-maleficence, respect for autonomy and justice. The primary risks associated with research and clinical interventions include stigma and labelling, especially among familial high-risk youth. Side effects from interventions are another concern. The benefits of preventive or early interventions were in the amelioration of symptoms as well as the possibility of minimizing disability, cognitive impairment and progression of the illness. Supporting the autonomy of individuals and improving access to stigma-free care may help moderate the potential challenges associated with the risks of interventions. CONCLUSIONS Concerns about the risks of early identification and pre-onset interventions should be balanced against the potential benefits, the individuals' right to choice and by improving availability of services that balance such dilemmas.
Collapse
Affiliation(s)
- Aswin Ratheesh
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan M Cotton
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher G Davey
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sophie Adams
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Andreas Bechdolf
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Vivantes Hospital am Urban and Vivantes Hospital im Friedrichshain, Charite Universitätsmedizin, Berlin, Germany
| | - Craig Macneil
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Deakin University, Geelong, Victoria, Australia.,IMPACT Strategic Research Centre, Geelong, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Jeong I, Yang JS, Hong YJ, Kim HJ, Hahn SJ, Yoon SH. Dapoxetine induces neuroprotective effects against glutamate-induced neuronal cell death by inhibiting calcium signaling and mitochondrial depolarization in cultured rat hippocampal neurons. Eur J Pharmacol 2017; 805:36-45. [PMID: 28322832 DOI: 10.1016/j.ejphar.2017.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have an inhibitory effect on various ion channels including Ca2+ channels. We used fluorescent dye-based digital imaging, whole-cell patch clamping and cytotoxicity assays to examine whether dapoxetine, a novel rapid-acting SSRI, affect glutamate-induced calcium signaling, mitochondrial depolarization and neuronal cell death in cultured rat hippocampal neurons. Pretreatment with dapoxetine for 10min inhibited glutamate-induced intracellular free Ca2+ concentration ([Ca2+]i) increases in a concentration-dependent manner (Half maximal inhibitory concentration=4.79µM). Dapoxetine (5μM) markedly inhibited glutamate-induced [Ca2+]i increases, whereas other SSRIs such as fluoxetine and citalopram only slightly inhibited them. Dapoxetine significantly inhibited the glutamate-induced [Ca2+]i responses following depletion of intracellular Ca2+ stores by treatment with thapsigargin. Dapoxetine markedly inhibited the metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine-induced [Ca2+]i increases. Dapoxetine significantly inhibited the glutamate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced [Ca2+]i responses in either the presence or absence of nimodipine. Dapoxetine also significantly inhibited AMPA-evoked currents. However, dapoxetine slightly inhibited N-methyl-D-aspartate (NMDA)-induced [Ca2+]i increases. Dapoxetine markedly inhibited 50mMK+-induced [Ca2+]i increases. Dapoxetine significantly inhibited glutamate-induced mitochondrial depolarization. In addition, dapoxetine significantly inhibited glutamate-induced neuronal cell death and its neuroprotective effect was significantly greater than fluoxetine. These data suggest that dapoxetine reduces glutamate-induced [Ca2+]i increases by inhibiting multiple pathways mainly through AMPA receptors, voltage-gated L-type Ca2+ channels and metabotropic glutamate receptors, which are involved in neuroprotection against glutamate-induced cell death through mitochondrial depolarization.
Collapse
Affiliation(s)
- Imju Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea; Catholic Neuroscience Institute, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Yi Jae Hong
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, South Korea.
| | - Sang June Hahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea; Catholic Neuroscience Institute, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea; Catholic Neuroscience Institute, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| |
Collapse
|
12
|
Harris JJ, Reynell C. How do antidepressants influence the BOLD signal in the developing brain? Dev Cogn Neurosci 2016; 25:45-57. [PMID: 28089656 PMCID: PMC6987820 DOI: 10.1016/j.dcn.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons – adolescent versus adult, depressed versus healthy, medicated versus non-medicated – rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.
Collapse
Affiliation(s)
- Julia J Harris
- Life Sciences Department, Imperial College London, SW7 2AZ, UK; Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| | - Clare Reynell
- Département de Neurosciences, Université de Montréal, H3C 3J7, Canada.
| |
Collapse
|
13
|
Ortuño MJ, Robinson ST, Subramanyam P, Paone R, Huang YY, Guo XE, Colecraft HM, Mann JJ, Ducy P. Serotonin-reuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect. Nat Med 2016; 22:1170-1179. [PMID: 27595322 PMCID: PMC5053870 DOI: 10.1038/nm.4166] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
The use of selective serotonin-reuptake inhibitors (SSRIs) has been associated with an increased risk of bone fracture, raising concerns about their increasingly broader usage. This deleterious effect is poorly understood, and thus strategies to avoid this side effect remain elusive. We show here that fluoxetine (Flx), one of the most-prescribed SSRIs, acts on bone remodeling through two distinct mechanisms. Peripherally, Flx has anti-resorptive properties, directly impairing osteoclast differentiation and function through a serotonin-reuptake-independent mechanism that is dependent on intracellular Ca2+ levels and the transcription factor Nfatc1. With time, however, Flx also triggers a brain-serotonin-dependent rise in sympathetic output that increases bone resorption sufficiently to counteract its local anti-resorptive effect, thus leading to a net effect of impaired bone formation and bone loss. Accordingly, neutralizing this second mode of action through co-treatment with the β-blocker propranolol, while leaving the peripheral effect intact, prevents Flx-induced bone loss in mice. Hence, this study identifies a dual mode of action of SSRIs on bone remodeling and suggests a therapeutic strategy to block the deleterious effect on bone homeostasis from their chronic use.
Collapse
Affiliation(s)
- María José Ortuño
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Samuel T. Robinson
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Riccardo Paone
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Yung-yu Huang
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - J. John Mann
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Patricia Ducy
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells. J Mol Neurosci 2016; 59:567-78. [DOI: 10.1007/s12031-016-0779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
15
|
Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats. Pharmacol Biochem Behav 2016; 140:1-7. [DOI: 10.1016/j.pbb.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022]
|
16
|
Kim HJ, Yang JS, Yoon SH. Brief low [Mg(2+)]o-induced Ca(2+) spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:101-9. [PMID: 26807029 PMCID: PMC4722183 DOI: 10.4196/kjpp.2016.20.1.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
Reducing [Mg2+]o to 0.1 mM can evoke repetitive [Ca2+]i spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM [Mg2+]o are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether Ca2+ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM [Mg2+]o for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type Ca2+ channel antagonist nimodipine, which blocked 0.1 mM [Mg2+]o-induced [Ca2+]i spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the [Ca2+]i spikes. The intracellular Ca2+ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the [Ca2+]i spikes. While Gö6976, a specific inhibitor of PKCα had no effect on the tolerance, both the PKCε translocation inhibitor and the PKCζ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the [Ca2+]i spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low [Mg2+]o preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the [Ca2+]i spike-induced activation of PKCε and PKCξ, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
17
|
Waller JA, Chen F, Sánchez C. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures. Neuropharmacology 2015; 103:143-54. [PMID: 26702943 DOI: 10.1016/j.neuropharm.2015.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/03/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
Cognitive dysfunction is prevalent in patients with major depressive disorder (MDD), and cognitive impairments can persist after relief of depressive symptoms. The multimodal-acting antidepressant vortioxetine is an antagonist at 5-HT3, 5-HT7, and 5-HT1D receptors, a partial agonist at 5-HT1B receptors, an agonist at 5-HT1A receptors, and an inhibitor of the serotonin (5-HT) transporter (SERT) and has pro-cognitive properties. In preclinical studies, vortioxetine enhances long-term potentiation (LTP), a cellular correlate of neuroplasticity, and enhances memory in various cognitive tasks. However, the molecular mechanisms by which vortioxetine augments LTP and memory remain unknown. Dendritic spines are specialized, actin-rich microdomains on dendritic shafts and are major sites of most excitatory synapses. Since dendritic spine remodeling is implicated in synaptic plasticity and spine size dictates the strength of synaptic transmission, we assessed if vortioxetine, relative to other antidepressants including ketamine, duloxetine, and fluoxetine, plays a role in the maintenance of dendritic spine architecture in vitro. We show that vortioxetine, ketamine, and duloxetine induce spine enlargement. However, only vortioxetine treatment increased the number of spines in contact with presynaptic terminals. In contrast, fluoxetine had no effect on spine remodeling. These findings imply that the various 5-HT receptor mechanisms of vortioxetine may play a role in its effect on spine dynamics and in increasing the proportion of potentially functional synaptic contacts.
Collapse
Affiliation(s)
- Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ 07652, USA
| | - Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Connie Sánchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ 07652, USA.
| |
Collapse
|
18
|
Gobin V, De Bock M, Broeckx B, Kiselinova M, De Spiegelaere W, Vandekerckhove L, Van Steendam K, Leybaert L, Deforce D. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores. Cell Calcium 2015; 58:254-63. [DOI: 10.1016/j.ceca.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/01/2015] [Accepted: 06/06/2015] [Indexed: 01/18/2023]
|
19
|
Koskimäki J, Matsui N, Umemori J, Rantamäki T, Castrén E. Nimodipine activates TrkB neurotrophin receptors and induces neuroplastic and neuroprotective signaling events in the mouse hippocampus and prefrontal cortex. Cell Mol Neurobiol 2015; 35:189-96. [PMID: 25204460 DOI: 10.1007/s10571-014-0110-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022]
Abstract
The L-type calcium channel blocker nimodipine improves clinical outcome produced by delayed cortical ischemia or vasospasm associated with subarachnoid hemorrhage. While vasoactive mechanisms are strongly implicated in these therapeutic actions of nimodipine, we sought to test whether nimodipine might also regulate neurotrophic and neuroplastic signaling events associated with TrkB neurotrophin receptor activation. Adult male mice were acutely treated with vehicle or nimodipine (10 mg/kg, s.c., 1.5 h) after which the phosphorylation states of TrkB, cyclic-AMP response element binding protein (CREB), protein kinase B (Akt), extracellular regulated kinase (ERK), mammalian target of rapamycin (mTor) and p70S6 kinase (p70S6k) from prefrontal cortex and hippocampus were assessed. Nimodipine increased the phosphorylation of the TrkB catalytic domain and the phosphoslipase-Cγ1 (PLCγ1) domain, whereas phosphorylation of the TrkB Shc binding site remained unaltered. Nimodipine-induced TrkB phosphorylation was associated with increased phosphorylation levels of Akt and CREB in the prefrontal cortex and the hippocampus whereas phosphorylation of ERK, mTor and p70S6k remained unaltered. Nimodipine-induced TrkB signaling was not associated with changes in BDNF mRNA or protein levels. These nimodipine-induced changes on TrkB signaling mimic those produced by antidepressant drugs and thus propose common mechanisms and long-term functional consequences for the effects of these medications. This work provides a strong basis for investigating the role of TrkB-associated signaling underlying the neuroprotective and neuroplastic effects of nimodipine in translationally relevant animal models of brain trauma or compromised synaptic plasticity.
Collapse
Affiliation(s)
- Janne Koskimäki
- Neuroscience Center, University of Helsinki, P.O. Box 56 (Viikinkaari 4), 00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
20
|
Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species. Brain Res 2015; 1606:9-20. [PMID: 25721794 DOI: 10.1016/j.brainres.2015.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death.
Collapse
|
21
|
Saba L, Viscomi MT, Caioli S, Pignataro A, Bisicchia E, Pieri M, Molinari M, Ammassari-Teule M, Zona C. Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis. Cereb Cortex 2015; 26:1512-28. [DOI: 10.1093/cercor/bhu317] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Barygin OI, Komarova MS, Tikhonova TB, Tikhonov DB. Non-classical mechanism of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor channel block by fluoxetine. Eur J Neurosci 2014; 41:869-77. [DOI: 10.1111/ejn.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Oleg I. Barygin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| | - Margarita S. Komarova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| | - Tatiana B. Tikhonova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| | - Denis B. Tikhonov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| |
Collapse
|
23
|
Uutela M, Lindholm J, Rantamäki T, Umemori J, Hunter K, Võikar V, Castrén ML. Distinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome. Front Cell Neurosci 2014; 8:150. [PMID: 24904293 PMCID: PMC4036306 DOI: 10.3389/fncel.2014.00150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
Fluoxetine is used as a therapeutic agent for autism spectrum disorder (ASD), including Fragile X syndrome (FXS). The treatment often associates with disruptive behaviors such as agitation and disinhibited behaviors in FXS. To identify mechanisms that increase the risk to poor treatment outcome, we investigated the behavioral and cellular effects of fluoxetine on adult Fmr1 knockout (KO) mice, a mouse model for FXS. We found that fluoxetine reduced anxiety-like behavior of both wild-type and Fmr1 KO mice seen as shortened latency to enter the center area in the open field test. In Fmr1 KO mice, fluoxetine normalized locomotor hyperactivity but abnormally increased exploratory activity. Reduced brain-derived neurotrophic factor (BDNF) and increased TrkB receptor expression levels in the hippocampus of Fmr1 KO mice associated with inappropriate coping responses under stressful condition and abolished antidepressant activity of fluoxetine. Fluoxetine response in the cell proliferation was also missing in the hippocampus of Fmr1 KO mice when compared with wild-type controls. The postnatal mRNA expression of serotonin transporter (SERT) was reduced in the thalamic nuclei of Fmr1 KO mice during the time of transient innervation of somatosensory neurons suggesting that developmental changes of SERT expression were involved in the differential cellular and behavioral responses to fluoxetine in wild-type and Fmr1 mice. The results indicate that changes of BDNF/TrkB signaling contribute to differential behavioral responses to fluoxetine among individuals with ASD.
Collapse
Affiliation(s)
- Marko Uutela
- Institute of Biomedicine/Physiology, University of Helsinki Helsinki, Finland
| | - Jesse Lindholm
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Tomi Rantamäki
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Juzoh Umemori
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Kerri Hunter
- Institute of Biomedicine/Physiology, University of Helsinki Helsinki, Finland
| | - Vootele Võikar
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Maija L Castrén
- Institute of Biomedicine/Physiology, University of Helsinki Helsinki, Finland ; Department of Child Neurology, Hospital for Children and Adolescents, University Hospital of Helsinki Helsinki, Finland
| |
Collapse
|
24
|
Rubio FJ, Ampuero E, Sandoval R, Toledo J, Pancetti F, Wyneken U. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield. Front Cell Neurosci 2013; 7:66. [PMID: 23675317 PMCID: PMC3648695 DOI: 10.3389/fncel.2013.00066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/20/2013] [Indexed: 01/31/2023] Open
Abstract
Antidepressant drugs are usually administered for several weeks for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long-term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine to naïve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs) in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of 0.7 mg/kg fluoxetine on long-term potentiation (LTP) and long-term depression (LTD) in the CA1 hippocampal subfield. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining and immunohistochemical experiments revealed decreased AMPA-R Ca(2+) permeability in the stratum radiatum (s.r.) together with increased GluA2-containing Ca(2+) impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.
Collapse
Affiliation(s)
- Francisco J Rubio
- Laboratorio de Neurociencias, Centro de Investigaciones Biológicas, Universidad de los Andes Santiago, Chile
| | | | | | | | | | | |
Collapse
|