1
|
Ding S, Li J, Fang Y, Zhuo X, Gu L, Zhang X, Yang Y, Wei M, Liao Z, Li Q. Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:35-45. [PMID: 39277139 DOI: 10.1016/j.pbiomolbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
Collapse
Affiliation(s)
- Shuxian Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Xingjie Zhuo
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuanxiao Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China.
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Hananeia N, Ebner C, Galanis C, Cuntz H, Opitz A, Vlachos A, Jedlicka P. Multi-scale modelling of location- and frequency-dependent synaptic plasticity induced by transcranial magnetic stimulation in the dendrites of pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601851. [PMID: 39005474 PMCID: PMC11244966 DOI: 10.1101/2024.07.03.601851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.
Collapse
Affiliation(s)
- Nicholas Hananeia
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Christian Ebner
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Charité · NeuroCure (NCRC), Charité Universitätsmedizin Berlin
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Cuntz
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
3
|
Zhang Z, Ding C, Fu R, Wang J, Zhao J, Zhu H. Low-frequency rTMS modulated the excitability and high-frequency firing in hippocampal neurons of the Alzheimer's disease mouse model. Brain Res 2024; 1831:148822. [PMID: 38408558 DOI: 10.1016/j.brainres.2024.148822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, holds potential for applications in the treatment of Alzheimer's disease (AD). This study aims to compare the therapeutic effects of rTMS at different frequencies on Alzheimer's disease and explore the alterations in neuronal electrophysiological properties throughout this process. APP/PS1 AD mice were subjected to two rTMS treatments at 0.5 Hz and 20 Hz, followed by assessments of therapeutic outcomes through the Novel Object Recognition (NOR) and Morris Water Maze (MWM) tests. Following this, whole-cell patch-clamp techniques were used to record action potential, voltage-gated sodium channel currents, and voltage-gated potassium channel currents in dentate gyrus granule neurons. The results show that AD mice exhibit significant cognitive decline compared to normal mice, along with a pronounced reduction in neuronal excitability and ion channel activity. Both frequencies of rTMS treatment partially reversed these changes, demonstrating similar therapeutic efficacy. Furthermore, the investigation indicates that low-frequency magnetic stimulation inhibited the concentrated firing of early action potentials in AD.
Collapse
Affiliation(s)
- Ze Zhang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Chong Ding
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin 300130, China.
| | - Rui Fu
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Jiale Wang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Junqiao Zhao
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Haijun Zhu
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
4
|
Shakhawat AM, Foltz JG, Nance AB, Bhateja J, Raymond JL. Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561013. [PMID: 37873217 PMCID: PMC10592955 DOI: 10.1101/2023.10.05.561013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2Db (MH-CI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.
Collapse
Affiliation(s)
- Amin Md Shakhawat
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jacqueline G Foltz
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | | | - Jaydev Bhateja
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| |
Collapse
|
5
|
Sun W, Wu Q, Gao L, Zheng Z, Xiang H, Yang K, Yu B, Yao J. Advancements in Transcranial Magnetic Stimulation Research and the Path to Precision. Neuropsychiatr Dis Treat 2023; 19:1841-1851. [PMID: 37641588 PMCID: PMC10460597 DOI: 10.2147/ndt.s414782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has become increasingly popular in clinical practice in recent years, and there have been significant advances in the principles and stimulation modes of TMS. With the development of multi-mode and precise stimulation technology, it is crucial to have a comprehensive understanding of TMS. The neuroregulatory effects of TMS can vary depending on the specific mode of stimulation, highlighting the importance of exploring these effects through multimodal application. Additionally, the use of precise TMS therapy can help enhance our understanding of the neural mechanisms underlying these effects, providing us with a more comprehensive perspective. This article aims to review the mechanism of action, stimulation mode, multimodal application, and precision of TMS.
Collapse
Affiliation(s)
- Wei Sun
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Qiao Wu
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Li Gao
- Department of Neurology, The Third People’s Hospital of Chengdu, Chengdu Institute of Neurological Diseases, Chengdu City, Sichuan Province, People’s Republic of China
| | - Zhong Zheng
- Neurobiological Detection Center, West China Hospital Affiliated to Sichuan University, Chengdu City, Sichuan Province, People’s Republic of China
| | - Hu Xiang
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Kun Yang
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Bo Yu
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Jing Yao
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| |
Collapse
|
6
|
Zhu H, Yin X, Yang H, Fu R, Hou W, Ding C, Xu G. Repetitive transcranial magnetic stimulation enhances the neuronal excitability of mice by regulating dynamic characteristics of Granule cells' Ion channels. Cogn Neurodyn 2023; 17:431-443. [PMID: 37007191 PMCID: PMC10050517 DOI: 10.1007/s11571-022-09837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022] Open
Abstract
This study aims to explore the effects of acute high-frequency repetitive transcranial magnetic stimulation (hf-rTMS) on neuronal excitability of granule cells in the hippocampal dentate gyrus, as well as the underlying intrinsic mediating mechanisms by which rTMS regulates neuronal excitability. First, high-frequency single TMS was used to measure the motor threshold (MT) of mice. Then, rTMS with different intensities of 0 MT (control), 0.8 MT, and 1.2 MT were applied to acute mice brain slices. Next, patch-clamp technique was used to record the resting membrane potential and evoked nerve discharge of granule cells, as well as the voltage-gated sodium current (I Na) of voltage-gated sodium channels (VGSCs), transient outward potassium current (I A) and delayed rectifier potassium current (I K) of voltage-gated potassium channels (Kv). Results showed that acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly activated I Na and inhibited I A and I K compared with control group, due to the changes of dynamic characteristics of VGSCs and Kv. Acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly increased membrane potential and nerve discharge frequency. Therefore, changing dynamic characteristics of VGSCs and Kv, activating I Na and inhibiting I A and I K might be one of the intrinsic mediating mechanisms by which rTMS enhanced the neuronal excitability of granular cells, and this regulatory effect increased with the increase of stimulus intensity.
Collapse
Affiliation(s)
- Haijun Zhu
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002 China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Xiaonan Yin
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Huilan Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Rui Fu
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Wentao Hou
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Chong Ding
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
7
|
Wang T, Wu H, Jiang Y, Huang W, Yu D, Zhang X, Mu Q. Effects of rTMS in Postpartum Depression: A Meta-Analysis. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Ye H, Hendee J, Ruan J, Zhirova A, Ye J, Dima M. Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities. J Neuroeng Rehabil 2022; 19:116. [PMID: 36329492 PMCID: PMC9632094 DOI: 10.1186/s12984-022-01094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Neuromodulation with electromagnetic stimulation is widely used for the control of abnormal neural activity, and has been proven to be a valuable alternative to pharmacological tools for the treatment of many neurological diseases. Tremendous efforts have been focused on the design of the stimulation apparatus (i.e., electrodes and magnetic coils) that delivers the electric current to the neural tissue, and the optimization of the stimulation parameters. Less attention has been given to the complicated, dynamic properties of the neurons, and their context-dependent impact on the stimulation effects. This review focuses on the neuronal factors that influence the outcomes of electromagnetic stimulation in neuromodulation. Evidence from multiple levels (tissue, cellular, and single ion channel) are reviewed. Properties of the neural elements and their dynamic changes play a significant role in the outcome of electromagnetic stimulation. This angle of understanding yields a comprehensive perspective of neural activity during electrical neuromodulation, and provides insights in the design and development of novel stimulation technology.
Collapse
Affiliation(s)
- Hui Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jenna Hendee
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Joyce Ruan
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Alena Zhirova
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jayden Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Maria Dima
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| |
Collapse
|
9
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Cellular mechanisms underlying state-dependent neural inhibition with magnetic stimulation. Sci Rep 2022; 12:12131. [PMID: 35840656 PMCID: PMC9287388 DOI: 10.1038/s41598-022-16494-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity in a state-dependent manner. It inhibited neurons in slow-firing states, but spared neurons from fast-firing states, when the same magnetic stimuli were applied. Using a multi-compartment NEURON model, we found that dynamics of voltage-dependent sodium and potassium channels were significantly altered by the magnetic stimulation in the slow-firing neurons, but not in the fast-firing neurons. Variability in neural activity should be monitored and explored to optimize the outcome of magnetic stimulation in basic laboratory research and clinical practice. If selective stimulation can be programmed to match the appropriate neural state, prosthetic implants and brain-machine interfaces can be designed based on these concepts to achieve optimal results.
Collapse
|
11
|
Ye H. Finding the Location of Axonal Activation by a Miniature Magnetic Coil. Front Comput Neurosci 2022; 16:932615. [PMID: 35847967 PMCID: PMC9276924 DOI: 10.3389/fncom.2022.932615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetic stimulation for neural activation is widely used in clinical and lab research. In comparison to electric stimulation using an implanted electrode, stimulation with a large magnetic coil is associated with poor spatial specificity and incapability to stimulate deep brain structures. Recent developments in micromagnetic stimulation (μMS) technology mitigates some of these shortcomings. The sub-millimeter coils can be covered with soft, biocompatible material, and chronically implanted. They can provide highly specific neural stimulation in the deep neural structure. Although the μMS technology is expected to provide a precise location of neural stimulation, the exact site of neural activation is difficult to determine. Furthermore, factors that could cause the shifting of the activation site during μMS have not been fully investigated. To estimate the location of axon activation in μMS, we first derived an analytical expression of the activating function, which predicts the location of membrane depolarization in an unmyelinated axon. Then, we developed a multi-compartment, Hodgkin-Huxley (H-H) type of NEURON model of an unmyelinated axon to test the impact of several important coil parameters on the location of axonal activation. The location of axonal activation was dependent on both the parameters of the stimulus and the biophysics properties of the targeted axon during μMS. The activating function analysis predicted that the location of membrane depolarization and activation could shift due to the reversal of the coil current and the change in the coil-axon distance. The NEURON modeling confirmed these predictions. Interestingly, the NEURON simulation further revealed that the intensity of stimulation played a significant role in the activation location. Moderate or strong coil currents activated the axon at different locations, mediated by two distinct ion channel mechanisms. This study reports several experimental factors that could cause a potential shift in the location of neural activation during μMS, which is essential for further development of this novel technology.
Collapse
|
12
|
Luo J, Feng Y, Li M, Yin M, Qin F, Hu X. Repetitive Transcranial Magnetic Stimulation Improves Neurological Function and Promotes the Anti-inflammatory Polarization of Microglia in Ischemic Rats. Front Cell Neurosci 2022; 16:878345. [PMID: 35496902 PMCID: PMC9039226 DOI: 10.3389/fncel.2022.878345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke (IS) is a severe neurological disease that is difficult to recovery. Previous studies have shown that repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic approach, while the exact therapy mechanisms of rTMS in improving neural functional recovery remain unclear. Furthermore, the inflammatory environment may influence the rehabilitation efficacy. Our study shows that long-term rTMS stimulation will significantly promote neurogenesis, inhibit apoptosis, and control inflammation. rTMS inhibits the activation of transcription factors nuclear factor kappa b (NF-κB) and signal transducer and activator of transcription 6 (STAT6) and promotes the anti-inflammatory polarization of microglia. Obvious promotion of anti-inflammatory cytokines production is observed both in vitro and in vivo through rTMS stimulation on microglia. In addition, neural stem cells (NSCs) cultured in conditioned medium (CM) from microglia treated with rTMS showed downregulation of apoptosis and upregulation of neuronal differentiation. Overall, our results illustrate that rTMS can modulate microglia with anti-inflammatory polarization variation, promote neurogenesis, and improve neural function recovery.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Qin
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Feng Qin,
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiquan Hu,
| |
Collapse
|
13
|
Application of Repetitive Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex in Alzheimer's Disease: A Pilot Study. J Clin Med 2022; 11:jcm11030798. [PMID: 35160250 PMCID: PMC8836442 DOI: 10.3390/jcm11030798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is reportedly a potential tool to understand the neural network; however, the pathophysiological mechanisms underlying cognitive function change remain unclear. This study aimed to explore the cognitive function changes by rTMS over the bilateral dorsolateral prefrontal cortex (DLPFC) in Alzheimer’s disease (AD). We evaluated the feasibility of rTMS application for mild cognitive dysfunction in patients with AD in an open-label trial (UMIN000027013). An rTMS session involved 15 trains at 120% resting motor threshold on each side (40 pulses/train at 10 Hz). Efficacy outcome measures were changes from baseline in cognitive function, assessed based on the AD Assessment Scale-cognitive subscale, Mini-Mental State Examination, Japanese version of Montreal Cognitive Assessment (MoCA-J), Behavioral and Psychological Symptom of Dementia, and Instrumental Activity of Daily Living scores. Sixteen patients with AD underwent five daily sessions of high-frequency rTMS over the bilateral DLPFC for 2 weeks. All participants completed the study; no major adverse effects were recorded. The MoCA-J score increased by 1.4 points (±0.15%) following 2 weeks of stimulation. At 1 month following rTMS cessation, all cognitive functional scores returned to the original state. Our findings suggest that the DLPFC plays an important role in the neural network in AD.
Collapse
|
14
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Xia X, Fomenko A, Nankoo JF, Zeng K, Wang Y, Zhang J, Lozano AM, Chen R. Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. Neuroimage 2021; 243:118557. [PMID: 34487826 DOI: 10.1016/j.neuroimage.2021.118557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique that can modulate the excitability of cortical and deep brain structures with a high degree of focality. Previous human studies showed that TUS decreases motor cortex (M1) excitability measured by transcranial magnetic stimulation (TMS), but whether the effects appear beyond sonication and whether TUS affects the excitability of other interconnected cortical areas is not known. The time course of M1 TUS on ipsilateral and contralateral M1 excitability was investigated in 22 healthy human subjects via TMS-induced motor-evoked potentials. With sonication duration of 500 ms, we found suppression of M1 excitability from 10 ms before to 20 ms after the end of sonication, and the effects were stronger with blocked design compared to interleaved design. There was no significant effect on contralateral M1 excitability. Using ex-vivo measurements, we showed that the ultrasound transducer did not affect the magnitude or time course of the TMS-induced electromagnetic field. We conclude that the online-suppressive effects of TUS on ipsilateral M1 cortical excitability slightly outlast the sonication but did not produce long-lasting effects. The absence of contralateral effects may suggest that there are little tonic interhemispheric interactions in the resting state, or the intensity of TUS was too low to induce transcallosal inhibition.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yanqiu Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Abstract
Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Lauryn Barrett
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
17
|
Immediate and cumulative effects of high-frequency repetitive transcranial magnetic stimulation on cognition and neuronal excitability in mice. Neurosci Res 2021; 173:90-98. [PMID: 34111441 DOI: 10.1016/j.neures.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
This study primarily explored the potential effects of high-frequency (20 Hz) repetitive transcranial magnetic stimulation (rTMS) with different intervention protocols on cognition and neuronal excitability in mice. Mice were randomly divided into 4 groups: a control group that received sham stimulation, an rTMS in vitro group whose acute brain slices received high-frequency stimulation, an rTMS 1 d group that received high-frequency stimulation for only 1 d, and an rTMS 15 d group that received high-frequency stimulation for 15 d. The novel object recognition and step-down tests were used to assess cognitive ability. The patch-clamp technique was used to record the membrane potentials and neural discharges of dentate gyrus granule cells to evaluate neuronal excitability. Results revealed that cognition and neuronal excitability in the rTMS 15 d group were significantly increased than that in the control and rTMS 1 d groups. The neuronal excitability in the rTMS in vitro group was also significantly increased than that in the control and rTMS 1 d groups. No significant changes were observed between the control and rTMS 1 d groups. These results suggested that high-frequency rTMS applied to the acute brain slices of mice in vitro exerted an immediate effect on increasing neuronal excitability. Chronic high-frequency rTMS applied to the brain of mice in vivo exerted a cumulative effect in improving cognition and increasing neuronal excitability.
Collapse
|
18
|
Single Point Mutation from E22-to-K in A β Initiates Early-Onset Alzheimer's Disease by Binding with Catalase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:4981204. [PMID: 33425208 PMCID: PMC7775154 DOI: 10.1155/2020/4981204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Amyloid-beta (Aβ) is a critical etiological factor for late-onset familial Alzheimer's disease (AD). However, an early-onset AD has been found to be related with an Aβ mutation in glutamic acid 22-to-lysine (Italian type E22K). Why only one single point mutation at E22 residue induces AD remains unclear. Here, we report that a Chinese familial AD pedigree with E22K mutation was associated with higher levels of serum hydrogen peroxide (H2O2) and lower activity of catalase (a H2O2 degrading enzyme) than controls. Further, we found that E22K binding with catalase caused more severe H2O2 accumulation in the brains of E22K-injected rats than Aβ-injected rats. Unexpectedly, H2O2 bound with the mutation site 22K residue of E22K and elicited more rapid aggregation of E22K than Aβ in vitro. Moreover, H2O2 acted with E22K synergistically to induce higher cellular toxicity than with Aβ. Notably, intrahippocampal infusion of E22K led to more severe plaque deposition, neuron death, and more rapid memory decline than Aβ-injected rats. However, L-cysteine, a H2O2 scavenger, not only prevented self-aggregation of E22K but also reduced H2O2-promoted E22K assembly in vitro; subsequently, it alleviated Alzheimer-related phenotypes. Hence, E22K binding with catalase promotes the early onset of familial AD, and L-cys may reverse this disease.
Collapse
|
19
|
Skach J, Conway C, Barrett L, Ye H. Axonal blockage with microscopic magnetic stimulation. Sci Rep 2020; 10:18030. [PMID: 33093520 PMCID: PMC7582966 DOI: 10.1038/s41598-020-74891-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials in the unmyelinated axons from the marine mollusk Aplysia californica. Using a multi-compartment model of the Aplysia axon, we demonstrate that the miniature coil causes a significant local depolarization in the axon, alters activation dynamics of the sodium channels, and prevents the traveling of the invading action potentials. With improved biocompatibility and capability of emitting high-frequency stimuli, micro coils provide an interesting alternative for electric blockage of axonal conductance in clinical settings.
Collapse
Affiliation(s)
- Jordan Skach
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Catherine Conway
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Lauryn Barrett
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, USA. .,Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| |
Collapse
|
20
|
Pfeiffer F, Benali A. Could non-invasive brain-stimulation prevent neuronal degeneration upon ion channel re-distribution and ion accumulation after demyelination? Neural Regen Res 2020; 15:1977-1980. [PMID: 32394944 PMCID: PMC7716036 DOI: 10.4103/1673-5374.282234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fast and efficient transmission of electrical signals in the nervous system is mediated through myelinated nerve fibers. In neuronal diseases such as multiple sclerosis, the conduction properties of axons are disturbed by the removal of the myelin sheath, leaving nerve cells at a higher risk of degenerating. In some cases, the protective myelin sheath of axons can be rebuilt by remyelination through oligodendroglial cells. In any case, however, changes in the ion channel organization occur and may help to restore impulse conduction after demyelination. On the other hand, changes in ion channel distribution may increase the energy demand of axons, thereby increasing the probability of axonal degeneration. Many attempts have been made or discussed in recent years to increase remyelination of affected axons in demyelinating diseases such as multiple sclerosis. These approaches range from pharmacological treatments that reduce inflammatory processes or block ion channels to the modulation of neuronal activity through electrical cortical stimulation. However, these treatments either affect the entire organism (pharmacological) or exert a very local effect (electrodes). Current results show that neuronal activity is a strong regulator of oligodendroglial development. To bridge the gap between global and very local treatments, non-invasive transcranial magnetic stimulation could be considered. Transcranial magnetic stimulation is externally applied to brain areas and experiments with repetitive transcranial magnetic stimulation show that the neuronal activity can be modulated depending on the stimulation parameters in both humans and animals. In this review, we discuss the possibilities of influencing ion channel distribution and increasing neuronal activity by transcranial magnetic stimulation as well as the effect of this modulation on oligodendroglial cells and their capacity to remyelinate previously demyelinated axons. Although the physiological mechanisms underlying the effects of transcranial magnetic stimulation clearly need further investigations, repetitive transcranial magnetic stimulation may be a promising approach for non-invasive neuronal modulation aiming at enhancing remyelination and thus reducing neurodegeneration.
Collapse
Affiliation(s)
- Friederike Pfeiffer
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Alia Benali
- Werner Reichardt Centre for Integrative Neuroscience (CIN); Section for Computational Sensomotorics, Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Moretti J, Poh EZ, Rodger J. rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front Neurosci 2020; 14:137. [PMID: 32210744 PMCID: PMC7068681 DOI: 10.3389/fnins.2020.00137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cocaine use disorder and methamphetamine use disorder are chronic, relapsing disorders with no US Food and Drug Administration-approved interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool that has been increasingly investigated as a possible therapeutic intervention for substance use disorders. rTMS may have the ability to induce beneficial neuroplasticity in abnormal circuits and networks in individuals with addiction. The aim of this review is to highlight the rationale and potential for rTMS to treat cocaine and methamphetamine dependence: we synthesize the outcomes of studies in healthy humans and animal models to identify and understand the neurobiological mechanisms of rTMS that seem most involved in addiction, focusing on the dopaminergic and glutamatergic systems. rTMS-induced changes to neurotransmitter systems include alterations to striatal dopamine release and metabolite levels, as well as to glutamate transporter and receptor expression, which may be relevant for ameliorating the aberrant plasticity observed in individuals with substance use disorders. We also discuss the clinical studies that have used rTMS in humans with cocaine and methamphetamine use disorders. Many such studies suggest changes in network connectivity following acute rTMS, which may underpin reduced craving following chronic rTMS. We suggest several possible future directions for research relating to the therapeutic potential of rTMS in addiction that would help fill current gaps in the literature. Such research would apply rTMS to animal models of addiction, developing a translational pipeline that would guide evidence-based rTMS treatment of cocaine and methamphetamine use disorder.
Collapse
Affiliation(s)
- Jessica Moretti
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eugenia Z Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
22
|
Endogenous formaldehyde is a memory-related molecule in mice and humans. Commun Biol 2019; 2:446. [PMID: 31815201 PMCID: PMC6884489 DOI: 10.1038/s42003-019-0694-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Gaseous formaldehyde is an organic small molecule formed in the early stages of earth’s evolution. Although toxic in high concentrations, formaldehyde plays an important role in cellular metabolism and, unexpectedly, is found even in the healthy brain. However, its pathophysiological functions in the brain are unknown. Here, we report that under physiological conditions, spatial learning activity elicits rapid formaldehyde generation from mitochondrial sarcosine dehydrogenase (SARDH). We find that elevated formaldehyde levels facilitate spatial memory formation by enhancing N-methyl-D-aspartate (NMDA) currents via the C232 residue of the NMDA receptor, but that high formaldehyde concentrations gradually inactivate the receptor by cross-linking NR1 subunits to NR2B. We also report that in mice with aldehyde dehydrogenase-2 (ALDH2) knockout, formaldehyde accumulation due to hypofunctional ALDH2 impairs memory, consistent with observations of Alzheimerʼs disease patients. We also find that formaldehyde deficiency caused by mutation of the mitochondrial SARDH gene in children with sarcosinemia or in mice with Sardh deletion leads to cognitive deficits. Hence, we conclude that endogenous formaldehyde regulates learning and memory via the NMDA receptor. Ai et al. report that endogenous formaldehyde bidirectionally modulates cognition via the NMDA-R receptor, with both insufficiency and overabundance resulting in cognitive defects. The target site of formaldehyde enhancing NMDA-currents is cysteine C232 residue in amino terminal domain sequence of the NR2B subunit of NMDA-R and excessive formaldehyde suppresses NMDA-R activity by cross-linking NR1 to NR2B residues.
Collapse
|
23
|
Zhu H, Xu G, Fu L, Li Y, Fu R, Zhao D, Ding C. The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice. Electromagn Biol Med 2019; 39:9-19. [DOI: 10.1080/15368378.2019.1696358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Haijun Zhu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Lingdi Fu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Yang Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Rui Fu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Dongshuai Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Chong Ding
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| |
Collapse
|
24
|
Repetitive magnetic stimulation protects corneal epithelium in a rabbit model of short-term exposure keratopathy. Ocul Surf 2019; 18:64-73. [PMID: 31574316 DOI: 10.1016/j.jtos.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the effect of repetitive magnetic stimulation (RMS) on corneal epithelial permeability in a rabbit model of exposure keratopathy. METHODS 61 female New Zealand White (NZW) rabbits were treated on one eye with repetitive magnetic stimulation (RMS) at a frequency of 20 Hz for 15 min. The other eye was untreated. Rabbit eyes were kept open for 2 h to induce acute corneal desiccation. The extent of fluorescein corneal staining was evaluated using EpiView software and the concentration of fluorescein in the anterior chamber was determined by a fluorometer. Safety was evaluated by electroretinogram, spectral domain optical coherence tomography (SD-OCT) and histopathology. Expression pattern of corneal cell markers was determined by immunofluorescence. RESULTS A significant decrease in fluorescein concentration in the anterior chamber (54 ± 8.4 ng/ml vs. 146.5 ± 18.6 ng/ml, p = 0.000001) and in corneal surface fluorescein staining score (1.7 ± 0.2 vs. 4.6 ± 0.6, p = 0.00001) was obtained in RMS-treated eyes compared with control eyes, respectively. RMS treatment reduced by nearly 4 fold the percentage of corneal area with epithelial erosions by anterior segment SD-OCT. The therapeutic effect was maintained for at least 3 months. Increased expression of epithelial tight junction protein Zo-1 was observed in treated eyes. SD-OCT and histopathology analysis revealed no pathological changes in the treated or non-treated eyes. CONCLUSIONS RMS treatment decreases epithelial corneal erosions in a rabbit model of exposure keratopathy, with no indication of pathological changes. RMS may present a novel treatment for protection of corneal epithelium from desiccation.
Collapse
|
25
|
Ye H, Kaszuba S. Neuromodulation with electromagnetic stimulation for seizure suppression: From electrode to magnetic coil. IBRO Rep 2019; 7:26-33. [PMID: 31360792 PMCID: PMC6639724 DOI: 10.1016/j.ibror.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Non-invasive brain tissue stimulation with a magnetic coil provides several irreplaceable advantages over that with an implanted electrode, in altering neural activities under pathological situations. We reviewed clinical cases that utilized time-varying magnetic fields for the treatment of epilepsy, and the safety issues related to this practice. Animal models have been developed to foster understanding of the cellular/molecular mechanisms underlying magnetic control of epileptic activity. These mechanisms include (but are not limited to) (1) direct membrane polarization by the magnetic field, (2) depolarization blockade by the deactivation of ion channels, (3) alteration in synaptic transmission, and (4) interruption of ephaptic interaction and cellular synchronization. Clinical translation of this technology could be improved through the advancement of magnetic design, optimization of stimulation protocols, and evaluation of the long-term safety. Cellular and molecular studies focusing on the mechanisms of magnetic stimulation are of great value in facilitating this translation.
Collapse
Key Words
- 4-AP, 4-aminopyridine
- Animal models
- CD50, convulsant dose
- Cellular mechanisms
- DBS, deep brain stimulation
- EEG, electroencephalography
- ELF-MF, extremely low frequency magnetic fields
- EcoG, electrocorticography
- Epilepsy
- GABA, gamma-aminobutyric acid
- HFS, high frequency stimulation
- KA, kainic acid
- LD50, lethal dose
- LTD, long-term depression
- LTP, long-term potential
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Magnetic stimulation
- NMDAR, N-methyl-d-aspartate receptor
- PTZ, pentylenetetrazol
- REM, rapid eye movement
- SMF, static magnetic field
- TES, transcranial electrical stimulation
- TLE, temporal lobe epilepsy
- TMS, transcranial magnetic stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tDCS, transcranial direct-current stimulation
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, 1032 W. Sheridan Rd., IL, 60660, United States
| | - Stephanie Kaszuba
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL, 60064, United States
| |
Collapse
|
26
|
Tan T, Wang W, Xu H, Huang Z, Wang YT, Dong Z. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Front Cell Neurosci 2018. [PMID: 29541022 PMCID: PMC5835518 DOI: 10.3389/fncel.2018.00046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1-9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.
Collapse
Affiliation(s)
- Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Xu
- Wuhan Yiruide Medical Equipment Co., Ltd., Wuhan, China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Zhao N, Zhang J, Qiu M, Wang C, Xiang Y, Wang H, Xie J, Liu S, Wu J. Scalp acupuncture plus low-frequency rTMS promotes repair of brain white matter tracts in stroke patients: A DTI study. J Integr Neurosci 2018. [DOI: 10.3233/jin-170043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ning Zhao
- Department of Rehabilitation Medicine, Shenzhen Nanshan Hospital, Shenzhen University, Shenzhen, 518052, China
- Department of Rehabilitation Medicine, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Jingna Zhang
- College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Mingguo Qiu
- College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Chunrong Wang
- Department of Radiology, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Yun Xiang
- Department of Rehabilitation Medicine, Shenzhen Nanshan Hospital, Shenzhen University, Shenzhen, 518052, China
- Department of Rehabilitation Medicine, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Hui Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingwen Xie
- Department of Radiology, Shenzhen Nanshan District People’s Hospital, Shenzhen, 518052, China
| | - Shu Liu
- Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jing Wu
- Hunan University of Chinese Medicine, Changsha, 410007, China
| |
Collapse
|
28
|
Yoon CW, Jung H, Goo K, Moon S, Koo KM, Lee NS, Weitz AC, Shung KK. Low-Intensity Ultrasound Modulates Ca 2+ Dynamics in Human Mesenchymal Stem Cells via Connexin 43 Hemichannel. Ann Biomed Eng 2017; 46:48-59. [PMID: 29086222 DOI: 10.1007/s10439-017-1949-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/20/2017] [Indexed: 11/24/2022]
Abstract
In recent years, ultrasound has gained attention in new biological applications due to its ability to induce specific biological responses at the cellular level. Although the biophysical mechanisms underlying the interaction between ultrasound and cells are not fully understood, many agree on a pivotal role of Ca2+ signaling through mechanotransduction pathways. Because Ca2+ regulates a vast range of downstream cellular processes, a better understanding of how ultrasound influences Ca2+ signaling could lead to new applications for ultrasound. In this study, we investigated the mechanism of ultrasound-induced Ca2+ mobilization in human mesenchymal stem cells using 47 MHz focused ultrasound to stimulate single cells at low intensities (~ 110 mW/cm2). We found that ultrasound exposure triggers opening of connexin 43 hemichannels on the plasma membrane, causing release of ATP into the extracellular space. That ATP then binds to G-protein-coupled P2Y1 purinergic receptors on the membrane, in turn activating phospholipase C, which evokes production of inositol trisphosphate and release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hayong Jung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kyosuk Goo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sunho Moon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kweon Mo Koo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nan Sook Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Andrew C Weitz
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Yi GS, Wang J, Deng B, Wei XL. Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study. Sci Rep 2017; 7:3210. [PMID: 28607422 PMCID: PMC5468310 DOI: 10.1038/s41598-017-03547-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023] Open
Abstract
Responses of different neurons to electric field (EF) are highly variable, which depends on intrinsic properties of cell type. Here we use multi-compartmental biophysical models to investigate how morphologic features affect EF-induced responses in hippocampal CA1 pyramidal neurons. We find that the basic morphologies of neuronal elements, including diameter, length, bend, branch, and axon terminals, are all correlated with somatic depolarization through altering the current sources or sinks created by applied field. Varying them alters the EF threshold for triggering action potentials (APs), and then determines cell sensitivity to suprathreshold field. Introducing excitatory postsynaptic potential increases cell excitability and reduces morphology-dependent EF firing threshold. It is also shown that applying identical subthreshold EF results in distinct polarizations on cell membrane with different realistic morphologies. These findings shed light on the crucial role of morphologies in determining field-induced neural response from the point of view of biophysical models. The predictions are conducive to better understanding the variability in modulatory effects of EF stimulation at the cellular level, which could also aid the interpretations of how applied fields activate central nervous system neurons and affect relevant circuits.
Collapse
Affiliation(s)
- Guo-Sheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Xi-Le Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
30
|
Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure. Brain Res 2016; 1646:207-218. [PMID: 27256401 DOI: 10.1016/j.brainres.2016.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sevoflurane might be harmful to the developing brain. Therefore, it is essential to reverse sevoflurane-induced brain injury. OBJECTIVE This study aimed to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) can regulate L-type Ca(2+) channel activity, which is inhibited by early sevoflurane exposure. METHODS Rats were randomly divided into three groups: control, sevoflurane, and rTMS groups. A Whole-cell patch clamp technique was applied to record L-type Ca(2+) channel currents. The I-V curve, steady-state activation and inactivation curves were studied in rats of each group at different ages (1 week, 2 weeks, 3 weeks, 4 weeks and 5 weeks old). RESULTS In the control group, L-type Ca(2+) channel current density significantly increased from week 2 to week 3. Compared with the control group, L-type Ca(2+) channel currents of rats in the sevoflurane group were significantly inhibited from week 1 to week 3. Activation curves of L-type Ca(2+) channel shifted significantly towards depolarization at week 1 and week 2. Moreover, steady-state inactivation curves shifted towards hyperpolarization from week 1 to week 3. Compared with the sevoflurane group, rTMS significantly increased L-type Ca(2+) channel currents at week 2 and week 3. Activation curves of L-type Ca(2+) channel significantly shifted towards hyperpolarization at week 2. Meanwhile, steady-state inactivation curves significantly shifted towards depolarization at week 2. CONCLUSIONS The period between week 2 and week 3 is critical for the development of L-type Ca(2+) channels. Early sevoflurane exposure inhibits L-type Ca(2+) channel activity and rTMS can regulate L-type Ca(2+) channel activity inhibited by sevoflurane.
Collapse
|
31
|
Suppa A, Huang YZ, Funke K, Ridding M, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell J. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul 2016; 9:323-335. [DOI: 10.1016/j.brs.2016.01.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 01/08/2023] Open
|
32
|
Rajan TS, Cuzzocrea S, Bruschetta D, Quartarone A. Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury. Methods Mol Biol 2016; 1462:433-443. [PMID: 27604732 DOI: 10.1007/978-1-4939-3816-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury (TBI) in humans causes a broad range of structural damage and functional deficits due to both primary and secondary injury mechanisms. Over the past three decades, animal models have been established to replicate the diverse changes of human TBI, to study the underlying pathophysiology and to develop new therapeutic strategies. However, drugs that were identified as neuroprotective in animal brain injury models were not successful in clinical trials phase II or phase III. Repetitive transcranial magnetic stimulation (rTMS) is a powerful noninvasive approach to excite cortical neurons in humans and animals, widely applied for therapeutic purpose in patients with brain diseases. In addition, recent animal studies showed rTMS as a strong neuroprotective tool. In this chapter, we discuss the rationale and mechanisms related to rTMS as well as therapeutic applications and putative molecular mechanisms. Furthermore, relevant biochemical studies and neuroprotective effect in animal models and possible application of rTMS as a novel treatment for rodent brain injury models are discussed.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- Department of Neurosciences, Policlinico Universitario, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- Manchester Biomedical Research Center, University of Manchester, Manchester, UK
| | - Daniele Bruschetta
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Department of Neurosciences, Policlinico Universitario, University of Messina, Messina, Italy.
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY, USA.
| |
Collapse
|
33
|
Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 2015; 14:659-68. [PMID: 25866202 PMCID: PMC4531079 DOI: 10.1111/acel.12345] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 11/30/2022] Open
Abstract
A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer’s disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.
Collapse
Affiliation(s)
- Yufei Mei
- Alzheimer's disease Center Beijing Institute for Brain Disorders Capital Medical University Beijing 100069 China
- Section of Environmental Biomedicine Hubei Key Laboratory of Genetic Regulation and Integrative Biology College of Life Sciences Central China Normal University Wuhan 430079 China
| | - Chun Jiang
- Neuroscience Research Institute & Department of Neurobiology School of Basic Medical Sciences Peking University Beijing 100191 China
| | - You Wan
- Neuroscience Research Institute & Department of Neurobiology School of Basic Medical Sciences Peking University Beijing 100191 China
| | - Jihui Lv
- Beijing Geriatric Hospital Beijing 100049 China
| | - Jianping Jia
- Alzheimer's disease Center Beijing Institute for Brain Disorders Capital Medical University Beijing 100069 China
| | - Xiaomin Wang
- Alzheimer's disease Center Beijing Institute for Brain Disorders Capital Medical University Beijing 100069 China
| | - Xu Yang
- Section of Environmental Biomedicine Hubei Key Laboratory of Genetic Regulation and Integrative Biology College of Life Sciences Central China Normal University Wuhan 430079 China
| | - Zhiqian Tong
- Alzheimer's disease Center Beijing Institute for Brain Disorders Capital Medical University Beijing 100069 China
| |
Collapse
|
34
|
Acute pentobarbital treatment impairs spatial learning and memory and hippocampal long-term potentiation in rats. Physiol Behav 2015; 149:169-73. [PMID: 26056078 DOI: 10.1016/j.physbeh.2015.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/15/2015] [Accepted: 05/29/2015] [Indexed: 11/20/2022]
Abstract
Reports of the effects of pentobarbital on learning and memory are contradictory. Some studies have not shown any interference with learning and memory, whereas others have shown that pentobarbital impairs memory and that these impairments can last for long periods. However, it is unclear whether acute local microinjections of pentobarbital affect learning and memory, and if so, the potential mechanisms are also unclear. Here, we reported that the intra-hippocampal infusion of pentobarbital (8.0mM, 1μl per side) significantly impaired hippocampus-dependent spatial learning and memory retrieval. Moreover, in vitro electrophysiological recordings revealed that these behavioral changes were accompanied by impaired hippocampal CA1 long-term potentiation (LTP) and suppressed neuronal excitability as reflected by a decrease in the number of action potentials (APs). These results suggest that acute pentobarbital application causes spatial learning and memory deficits that might be attributable to the suppression of synaptic plasticity and neuronal excitability.
Collapse
|
35
|
Shojaei A, Semnanian S, Janahmadi M, Moradi-Chameh H, Firoozabadi S, Mirnajafi-Zadeh J. Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons. Neuroscience 2014; 280:181-92. [DOI: 10.1016/j.neuroscience.2014.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
|
36
|
Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, Deller T, Müller-Dahlhaus F, Jedlicka P, Vlachos A. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3323-37. [DOI: 10.1007/s00429-014-0859-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|