1
|
Chen CW, Yeh WL, Charoensaensuk V, Lin C, Yang LY, Chen MK, Yeh T, Tsai CF, Lu DY. Oral administration of osthole mitigates maladaptive behaviors through PPARα activation in mice subjected to repeated social defeat stress. Neurochem Int 2024; 179:105811. [PMID: 39053771 DOI: 10.1016/j.neuint.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Psychological stress induces neuroinflammatory responses, which are associated with the pathogenesis of various psychiatric disorders, such as posttraumatic stress disorder and anxiety. Osthole-a natural coumarin isolated from the seeds of the Chinese herb Cnidium monnieri-exerts anti-inflammatory and antioxidative effects on the central nervous system. However, the therapeutic benefits of osthole against psychiatric disorders remain largely unknown. We previously demonstrated that mice subjected to repeated social defeat stress (RSDS) in the presence of aggressor mice exhibited symptoms of posttraumatic stress disorder, such as social avoidance and anxiety-like behaviors. In this study, we investigated the therapeutic effects of osthole and the underlying molecular mechanisms. Osthole exerted therapeutic effects on cognitive behaviors, mitigating anxiety-like behaviors and social avoidance in a mouse model of RSDS. The anti-inflammatory response induced by the oral administration of osthole was strengthened through the upregulation of heme oxygenase-1 expression. The expression of PPARα was inhibited in mice subjected to RSDS. Nonetheless, osthole treatment reversed the inhibition of PPARα expression. We identified a positive correlation between heme oxygenase-1 expression and PPARα expression in osthole-treated mice. In conclusion, osthole has potential as a Chinese herbal medicine for anxiety disorders. When designing novel drugs for psychiatric disorders, researchers should consider targeting the activation of PPARα.
Collapse
Affiliation(s)
- Chao-Wei Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Kai Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Tong Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
3
|
Karimi MA, Goudarzi M, Khodayar MJ, Khorsandi L, Mehrzadi S, Fatemi I. Gemfibrozil palliates adriamycin-induced testicular injury in male rats via modulating oxidative, endocrine and inflammatory changes in rats. Tissue Cell 2023. [PMID: 36863109 DOI: 10.1016/j.tice.2023.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Adriamycin (ADR), an antineoplastic drug, is widely used to treat different types of cancers. Yet, the usage is limited because of its severe side effects on testis. On the other hand, gemfibrozil (GEM), as an anti-hyperlipidemic drug, has other pharmacological effects independent of lipid- lowering activity including anti-inflammatory and antioxidant properties. The present experiment was designed to investigate the effect of GEM on ADR-induced testicular injury in male rats. A total of 28 male Wistar rats were divided into 4 equal groups: Control; ADR; ADR + GEM; GEM. Serum level of testosterone, luteinizing hormone and follicle stimulating hormone were assessed. Also, testicular tissue oxidant/antioxidant markers (malondialdehyde, total antioxidant capacity, nitric oxide, superoxide dismutase, catalase, glutathione peroxidase and glutathione) and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) were measured. Histopathological studies were conducted on testes. GEM improved hormonal profile and antioxidant defenses in comparison with ADR-treated animals. GEM, significantly reduced the production of proinflammatory cytokines compared with ADR-treated animals. Hormonal and biochemical results were further supported by testicular histopathological findings. Thus, GEM might represent a promising therapeutic modality for the attenuation of testicular injury induced by ADR in clinic.
Collapse
Affiliation(s)
- Mohammad Ali Karimi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Pharmacy school, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran.
| |
Collapse
|
4
|
Hakimizadeh E, Zamanian MY, Borisov VV, Giménez-Llort L, Ehsani V, Kaeidi A, Hassanshahi J, Khajehasani F, Movahedinia S, Fatemi I. Gemfibrozil, a lipid-lowering drug, reduces anxiety, enhances memory, and improves brain oxidative stress in d-galactose-induced aging mice. Fundam Clin Pharmacol 2022; 36:501-508. [PMID: 34989025 DOI: 10.1111/fcp.12752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/12/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Gemfibrozil (GFZ) is a lipid-lowering drug with several other effects, such as antioxidant and anti-inflammatory activities. In the current study, chronic d-galactose treatment (d-gal, 150 mg/kg/day; i.p., 6 weeks) induced a model of accelerated aging in male mice and was used to study the behavioral, anti-oxidative, and neuroprotective effects of GFZ (100 mg/kg/day; p.o.). Anxiety-like behaviors were assessed using the elevated plus-maze while working memory was measured by spontaneous alternation in a Y-maze. Brain oxidative stress was determined by measuring malondialdehyde (MDA) levels, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Neuropathological evaluation of the brain with hematoxylin-eosin and Masson's trichrome staining was also performed. The results demonstrated that the anxious-like phenotype and the cognitive impairments observed in d-gal-treated mice could be prevented in those animals coadministered with GFZ. Besides, the decrease in SOD and GPx antioxidant enzymatic activities and increase of MDA levels were also prevented in the brains of d-gal plus GFZ treated mice. Preliminary hematoxylin-eosin staining also suggested neuroprotective effects of GFZ. The results of Masson's trichrome staining showed no evidence of fibrosis in brain sections of different experimental groups. The current data provide novel insights into GFZ in the d-galactose-induced aging mouse model that open promising future research lines to determine inflammatory mediators and cell signaling underlying these effects.
Collapse
Affiliation(s)
- Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Yassin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,School of Nahavand Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vitaliy Viktorovich Borisov
- Department of Propaedeutics of Dental Diseases, Institute of Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, Barcelona, Spain
| | - Vahid Ehsani
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jalal Hassanshahi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Khajehasani
- Department of Radiology, Afzalipour Medicine School, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjadeh Movahedinia
- Department of Pathology, Afzalipour Medicine School, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
D’Amico R, Siracusa R, Fusco R, Cordaro M, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea S, Paola RD. Protective effects of Colomast ®, A New Formulation of Adelmidrol and Sodium Hyaluronate, in A Mouse Model of Acute Restraint Stress. Int J Mol Sci 2020; 21:E8136. [PMID: 33143356 PMCID: PMC7662642 DOI: 10.3390/ijms21218136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Stress is generally defined as a homeostatic disruption from actual or implied threats and alters the homeostatic balance of different body organs, such as gastrointestinal function and the hypothalamic-pituitary-adrenal axis (HPA), inducing the release of glucocorticoid hormones. Stress is also known to be a risk factor for the development of depression and anxiety. However, until today there are no suitable therapies for treating of stress. The aim of this study was to explore the protective effect of Colomast®, a new preparation containing Adelmidrol, an enhancer of physiological of palmitoylethanolamide (PEA), and sodium hyaluronate in an animal model of immobilization stress. Acute restraint stress (ARS) was induced in mice by fixation for 2 h of the four extremities with an adhesive tape and Colomast® (20 mg/kg) was administered by oral gavage 30 min before the immobilization. Colomast® pre-treatment was able to decrease histopathological changes in the gastrointestinal tract, cytokines expression, neutrophil infiltration, mast cell activation, oxidative stress, as well as modulate nuclear factor NF-kB and apoptosis pathways after ARS induction. Moreover, Colomast® was able to restore tight junction in both ileum and hippocampus and cortex. Additionally, we demonstrated that Colomast® ameliorated depression and anxiety-related behaviours, and modulate inflammatory and apoptosis pathways also in brain after ARS induction. In conclusion, our results suggest Colomast® to be a potential approach to ARS.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| |
Collapse
|
6
|
Karimi-Sales R, Ashiri M, Hafizi M, Kalanaky S, Maghsoudi AH, Fakharzadeh S, Maghsoudi N, Nazaran MH. Neuroprotective Effect of New Nanochelating-Based Nano Complex, ALZc3, Against Aβ (1-42)-Induced Toxicity in Rat: a Comparison with Memantine. Pharm Res 2020; 37:48. [PMID: 32020309 DOI: 10.1007/s11095-020-2773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The current drugs for Alzheimer's disease (AD) are only used to slow or delay the progression of the pathology. So using a novel technology is a necessity to synthesize more effective medications to control this most common cause of dementia. In this study, using nanochelating technology, ALZc3 was synthesized and its therapeutic effects were evaluated in comparison with memantine on a well-known rat model of AD, which is based on Amyloid-βeta (Aβ) injection into the brain. MATERIALS AND METHODS Aβ (1-42) was injected bilaterally into the CA1 area of the hippocampus of male rats and then animals were treated daily by oral administration of Alz-C3, memantine or their vehicles. Activities of antioxidant enzymes catalase and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels, as well as Bax/Bcl-2 ratio, caspase-3 activation, and TNF-α expression were evaluated 7 days after Aβ injection. Finally, learning and memory of the rats were assessed by Morris water maze test. RESULTS ALZc3 and memantine improved memory impairment and antioxidant activity and reduced TNF-α expression, caspase-3 activity and Bax/Bcl-2 ratio in the rat's hippocampus. The results showed a superiority of ALZC3 compared to memantine in reducing caspase-3, increasing CAT activity in Aβ (1-42)-injected groups and improving apoptosis factor in healthy mice. CONCLUSION These results indicated that ALZc3 could significantly prevent the memory impairment and Aβ (1-42) toxicity. Thus, ALZc3 could be a promising novel anti-AD agent.
Collapse
Affiliation(s)
- Ramin Karimi-Sales
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrafarin Ashiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Amir Hossein Maghsoudi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.,Humer Daroo, TUMS pharmaceutical incubation center, Kargar Shomali, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
7
|
Ryan KM, Patterson I, McLoughlin DM. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha in depression and the response to electroconvulsive therapy. Psychol Med 2019; 49:1859-1868. [PMID: 30191781 DOI: 10.1017/s0033291718002556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), termed the 'master regulator of mitochondrial biogenesis', has been implicated in stress and resilience to stress-induced depressive-like behaviours in animal models. However, there has been no study conducted to date to examine PGC-1α levels in patients with depression or in response to antidepressant treatment. Our aim was to assess PGC-1α mRNA levels in blood from healthy controls and patients with depression pre-/post-electroconvulsive therapy (ECT), and to examine the relationship between blood PGC-1α mRNA levels and clinical symptoms and outcomes with ECT. METHODS Whole blood PGC-1α mRNA levels were analysed in samples from 67 patients with a major depressive episode and 70 healthy controls, and in patient samples following a course of ECT using quantitative real-time polymerase chain reaction (qRT-PCR). Exploratory subgroup correlational analyses were carried out to determine the relationship between PGC-1α and mood scores. RESULTS PGC-1α levels were lower in patients with depression compared with healthy controls (p = 0.03). This lower level was predominantly accounted for by patients with psychotic unipolar depression (p = 0.004). ECT did not alter PGC-1α levels in the depressed group as a whole, though exploratory analyses revealed a significant increase in PGC-1α in patients with psychotic unipolar depression post-ECT (p = 0.045). We found no relationship between PGC-1α mRNA levels and depression severity or the clinical response to ECT. CONCLUSIONS PGC-1α may represent a novel therapeutic target for the treatment of depression, and be a common link between various pathophysiological processes implicated in depression.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin,Dublin,Ireland
| | - Ian Patterson
- Trinity College Institute of Neuroscience, Trinity College Dublin,Dublin,Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin,Dublin,Ireland
| |
Collapse
|
8
|
Yu H, Yuan B, Chu Q, Wang C, Bi H. Protective roles of isoastilbin against Alzheimer's disease via Nrf2‑mediated antioxidation and anti‑apoptosis. Int J Mol Med 2019; 43:1406-1416. [PMID: 30664148 PMCID: PMC6365075 DOI: 10.3892/ijmm.2019.4058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
By analyzing the L‑glutamic acid (L‑Glu)‑induced apoptosis of PC12 cells and an AlCl3 combined with D‑galactose (D‑gal)‑developed Alzheimer's disease (AD) mouse model, the protective effects of isoastilbin (IAB) against AD were systematically investigated in the present study. Pre‑incubation with IAB for 3 h prior to treatment with 25 mM L‑Glu decreased cell viability and inhibited apoptosis, suppressed the accumulation of intracellular reactive oxygen species, and restored mitochondrial membrane potential in PC12 cells induced by L‑Glu. In mice with AD, the reduced escape latency time in the water maze test, suppressed chronic movement in the center area of an open field test and enhanced ability to seek hidden food in a Y maze test indicated that abnormal behaviors had improved after 28 days of treatment with IAB. Furthermore, IAB reduced the deposition of amyloid β (Aβ) and the expression of phosphorylated‑Tau in the mouse brain and enhanced the serum levels of Aβ. IAB ameliorated the oxidative stress via modulating the levels of associated enzymes and improved the functioning of the central cholinergic system, as indicated by an increase in acetylcholine and choline acetyltransferase concentrations. The expression levels of acetylcholine esterase were reduced in the mouse brain in response to IAB pre‑treatment. In cells and brain tissue, IAB regulated the expression levels of pro‑ and anti‑apoptotic proteins and enhanced the nuclear levels of NF‑E2p45‑related factor 2 (Nrf2); subsequently, IAB further enhanced the expression of superoxide dismutase 1, catalase, and heme oxygenase‑1 and ‑2. The findings of the present study indicated that the protection of IAB against AD is at least partially associated with its antioxidation and anti‑apoptotic properties.
Collapse
Affiliation(s)
- Hong Yu
- Departments of Otolaryngology Head and Neck Surgery, Jilin 130021, P.R. China
| | - Bo Yuan
- Urology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiubo Chu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Chunyue Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Hui Bi
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Chen HJC, Lee JK, Yip T, Sernia C, Lavidis NA, Spiers JG. Sub-acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat hippocampus. Free Radic Biol Med 2019; 130:446-457. [PMID: 30445125 DOI: 10.1016/j.freeradbiomed.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that acute stress decreases neuronal nitric oxide synthase (NOS) expression in the hippocampus despite increased concentrations of nitric oxide which may indicate feedback inhibition of neuronal NOS expression via inducible NOS-derived nitric oxide. Moreover, the hippocampus undergoes an initial oxidative/nitrosative insult that is rapidly followed by upregulation of protective antioxidants, including the zinc-binding metallothioneins, in order to counter this and restore redox balance following acute stress exposure. In the present study, we have utilized indicators of oxidative/nitrosative stress, members of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, antioxidant metallothioneins, and neuroinflammatory markers to observe the changes occurring in the hippocampus following short term repeated stress exposure. Male Wistar rats were subjected to control conditions or 6 h of restraint stress applied for 1, 2, or 3 days (n = 8 per group) after which the hippocampus was isolated for redox assays and relative gene expression. The hippocampus showed increased oxidative stress, transient dys-homeostasis of total zinc, and increased expression of the Nrf2 pathway members. Moreover, repeated stress increased nitrosative status, nitric oxide metabolites, and 3-nitrotyrosine, indicative of nitrosative stress in the hippocampus. However, levels of neuronal NOS decreased over all stress treatment groups, while increases were observed in inducible NOS and xanthine dehydrogenase. In addition to inducible NOS, mRNA expression of other inflammatory markers including interleukin-6 and interleukin-1β also increased even in the presence of increased anti-inflammatory glucocorticoids. Together, these results demonstrate that despite increases in antioxidant expression, sub-acute stress causes an inflammatory phenotype in the hippocampus by inducing oxidative/nitrosative stress, zinc dys-homeostasis, and the accumulation of nitrotyrosinated proteins which is likely driven by increased inducible NOS signaling.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Johnny K Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Tsz Yip
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
10
|
Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective Effect of Gemfibrozil on Hepatotoxicity Induced by Acetaminophen in Mice: the Importance of Oxidative Stress Suppression. Adv Pharm Bull 2018; 8:331-339. [PMID: 30023335 PMCID: PMC6046434 DOI: 10.15171/apb.2018.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 03/10/2018] [Accepted: 04/08/2018] [Indexed: 12/24/2022] Open
Abstract
Purpose: Gemfibrozil (GEM) apart from agonist activity at peroxisome proliferator-activated receptor-alpha (PPAR-α) has antioxidant and anti-inflammatory properties. Accordingly, the present study was designed to investigate the protective effect of GEM on acute liver toxicity induced by acetaminophen (APAP) in mice. Methods: In this study, mice divided in seven groups include, control group, APAP group, GEM group, three APAP groups pretreated with GEM at the doses of 25, 50 and 100 mg/kg respectively and APAP group pretreated with N-Acetyl cysteine. GEM, NAC or vehicle were administered for 10 days. In last day, GEM and NAC were gavaged 1 h before and 1 h after APAP injection. Twenty four hours after APAP, mice were sacrificed. Serum parameters include alanine aminotransferase (ALT), aspartate aminotransferase (AST) and liver tissue markers including catalase enzyme activity, reactive oxygen species (ROS), malondialdehyde and reduced glutathione (GSH) levels determined and histopathological parameters measured. Results: GEM led to significant decrease in serum ALT and AST activities and increase in catalase activity and hepatic GSH level and reduces malondialdehyde and ROS levels in the liver tissue. In confirmation, histopathological findings revealed that GEM decrease degeneration, vacuolation and necrosis of hepatocytes and infiltration of inflammatory cells. Conclusion: Present data demonstrated that GEM has antioxidant properties and can protect the liver from APAP toxicity, just in the same pathway that toxicity occurs by toxic ROS and that GEM may be an alternative therapeutic agent to NAC in APAP toxicity.
Collapse
Affiliation(s)
- Hojatolla Nikravesh
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Dehbashi
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Zhang GM, Deng MT, Lei ZH, Wan YJ, Nie HT, Wang ZY, Fan YX, Wang F, Zhang YL. Effects of NRF1 on steroidogenesis and apoptosis in goat luteinized granulosa cells. Reproduction 2018. [PMID: 28624767 DOI: 10.1530/rep-16-0583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During goat follicular development, abnormal expression of nuclear respiratory factor 1 (NRF1) in granulosa cells may drive follicular atresia with unknown regulatory mechanisms. In this study, we investigated the effects of NRF1 on steroidogenesis and cell apoptosis by overexpressing or silencing it in goat luteinized granulosa cells (LGCs). Results showed that knockdown of NRF1 expression significantly inhibited the expression of STAR and CYP19A1, which are involved in sex steroid hormones synthesis, and led to lower estrogen levels. Knockdown of NRF1 resulted in an increased percentage of apoptosis, probably due to the release of cytochrome c from mitochondria, accompanied by upregulating mRNA and protein levels of apoptosis-related markers BAX, caspase 3 and caspase 9. These data indicate that NRF1 might be related with steroidogenesis and cell apoptosis. Furthermore, NRF1 silence reduced mitochondrial transcription factor A (TFAM) transcription activity, mtDNA copy number and ATP level. Simultaneously, knockdown of NRF1 suppressed the transcription and translation levels of SOD, GPx and CAT, decreased glutathione level and increased 8-OHdG level. However, the overexpression of NRF1 in LGCs or gain of TFAM in NRF1 silenced LGCs increased the expression of genes involved in mitochondrial function and biogenesis, and elevated the antioxidant stress system and steroids synthesis. Taken together, aberrant expression of NRF1 could induce mitochondrial dysfunction and disturb the cellular redox balance, which lead to disturbance of steroid hormone synthesis, and trigger LGC apoptosis through the mitochondria-dependent pathway. These findings will be helpful for understanding the role of NRF1 in goat ovarian follicular development and atresia.
Collapse
Affiliation(s)
- Guo-Min Zhang
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, China.,Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Ming-Tian Deng
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Zhi-Hai Lei
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Hai-Tao Nie
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Zi-Yu Wang
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Yi-Xuan Fan
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| | - Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering LaboratoryNanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Ni YF, Wang H, Gu QY, Wang FY, Wang YJ, Wang JL, Jiang B. Gemfibrozil has antidepressant effects in mice: Involvement of the hippocampal brain-derived neurotrophic factor system. J Psychopharmacol 2018. [PMID: 29534628 DOI: 10.1177/0269881118762072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major depressive disorder has become one of the most serious neuropsychiatric disorders worldwide. However, currently available antidepressants used in clinical practice are ineffective for a substantial proportion of patients and always have side effects. Besides being a lipid-regulating agent, gemfibrozil is an agonist of peroxisome proliferator-activated receptor-α (PPAR-α). We investigated the antidepressant effects of gemfibrozil on C57BL/6J mice using the forced swim test (FST) and tail suspension test (TST), as well as the chronic unpredictable mild stress (CUMS) model of depression. The changes in brain-derived neurotrophic factor (BDNF) signaling cascade in the brain after CUMS and gemfibrozil treatment were further assessed. Pharmacological inhibitors and lentivirus-expressed short hairpin RNA (shRNA) were also used to clarify the antidepressant mechanisms of gemfibrozil. Gemfibrozil exhibited significant antidepressant actions in the FST and TST without affecting the locomotor activity of mice. Chronic gemfibrozil administration fully reversed CUMS-induced depressive-like behaviors in the FST, TST and sucrose preference test. Gemfibrozil treatment also restored CUMS-induced inhibition of the hippocampal BDNF signaling pathway. Blocking PPAR-α and BDNF but not the serotonergic system abolished the antidepressant effects of gemfibrozil on mice. Gemfibrozil produced antidepressant effects in mice by promoting the hippocampal BDNF system.
Collapse
Affiliation(s)
- Yu-Fei Ni
- 1 Nantong Maternal and Child Health Care Hospital, China
| | - Hao Wang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| | - Qiu-Yan Gu
- 1 Nantong Maternal and Child Health Care Hospital, China
| | - Fei-Ying Wang
- 1 Nantong Maternal and Child Health Care Hospital, China
| | - Ying-Jie Wang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| | - Jin-Liang Wang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| | - Bo Jiang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| |
Collapse
|
13
|
Xu X, Lv H, Xia Z, Fan R, Zhang C, Wang Y, Wang D. Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. Altern Ther Health Med 2017; 17:140. [PMID: 28264680 PMCID: PMC5340037 DOI: 10.1186/s12906-017-1655-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
Background The brain is secondarily harmed by pathological, physiological, and biological reactions that are caused by traumatic brain injury (TBI). Rhein, a significant composition of Rhubarb, is a well-known traditional Chinese treatment method and has a strong oxidation-resisting characteristic, but Rhein’s mechanism remains unclear. Methods This study aimed to identify Rhein in the brain tissues of TBI model of rats, and confirm whether Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb. First, the ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was applied to identify Rhein in the brain tissue of the controlled cortical impact (CCI) rats after intra-gastric administration of Rhubarb. Further, for the purpose of calculating the oxidant stress of the CCI rats, the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione disulfide (GSSG), as well as the proportion of glutathione (GSH)/GSSG were measured in the brain tissues. Results The results showed that Rhein was absorbed in the brain tissues of CCI rats. Rhubarb and rhein elevated the SOD, CAT activities, GSH level, and GSH/GSSG ratio, and diminished the MDA and GSSG levels. Conclusion The data demonstrated that Rhubarb and Rhein had the potential to be used as a neuroprotective drug for TBI, and that Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb.
Collapse
|
14
|
Zhang GM, Deng MT, Zhang YL, Fan YX, Wan YJ, Nie HT, Wang ZY, Wang F, Lei ZH. Effect of PGC-1α overexpression or silencing on mitochondrial apoptosis of goat luteinized granulosa cells. J Bioenerg Biomembr 2016; 48:493-507. [PMID: 27896503 DOI: 10.1007/s10863-016-9684-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
During goat follicular development, abnormal expression of peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α) in granulosa cells (GCs) may contribute to follicular atresia with unknown regulatory mechanisms. In this study, we investigate the effect of ectopic expression or interference of PGC-1α on cell apoptosis of goat first passage granulosa cells (FGCs) in vitro. The results indicate that PGC-1α silencing by short hairpin RNA (shRNA) in goat FGCs significantly reduced mitochondrial DNA (mtDNA) copy number (P < 0.05), changed mitochondria ultrastructure, and induced cell apoptosis (P < 0.05). The transcription and translation levels of the apoptosis-related genes BCL-2-associated X protein (BAX), caspase 3, and caspase 9 were significantly up-regulated (P < 0.05, respectively). Moreover, the ratio of BAX/B-cell lymphoma 2 (BCL-2) was reduced (P < 0.05), and the release of cytochrome c (cyt c) and lactate dehydrogenase (LDH) was significantly enhanced (P < 0.05, respectively) in PGC-1α interference goat FGCs. Furthermore, the expression of anti-oxidative related genes superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx) and catalase (CAT) was down-regulated (P < 0.05, respectively) and the activity of glutathione/glutathione disulfide (GSH/GSSG) was inhibited (P < 0.05). While enforced expression of PGC-1α increased the levels of genes involved in the regulation of mitochondrial function and biogenesis, and enhanced the anti-oxidative and anti-apoptosis capacity. Taken together, our results reveal that lack of PGC-1α may lead to mitochondrial dysfunction and disrupt the cellular redox balance, thus resulting in goat GCs apoptosis through the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.,College of veterinary medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Ming-Tian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yi-Xuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Hai-Tao Nie
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Zi-Yu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.
| | - Zhi-Hai Lei
- College of veterinary medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.
| |
Collapse
|
15
|
Ragy M, Ali F, Ramzy MM. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats. SCIENTIFICA 2016; 2016:7825396. [PMID: 27073715 PMCID: PMC4814697 DOI: 10.1155/2016/7825396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
In the brain, the heme oxygenase (HO) system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS) and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.
Collapse
Affiliation(s)
- Merhan Ragy
- Physiology Department, Faculty of Medicine, Minia University, Misr-Aswan Road, El-Minia 61519, Egypt
| | - Fatma Ali
- Physiology Department, Faculty of Medicine, Minia University, Misr-Aswan Road, El-Minia 61519, Egypt
| | - Maggie M. Ramzy
- Biochemistry Department, Faculty of Medicine, Minia University, Misr-Aswan Road, El-Minia 61519, Egypt
| |
Collapse
|
16
|
|
17
|
Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki A. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 2015; 30:747-54. [PMID: 25413451 DOI: 10.1007/s11011-014-9632-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022]
Abstract
Global cerebral ischemia arises in patients who have a variety of clinical conditions including cardiac arrest, shock and asphyxia. In spite of advances in understanding of the brain ischemia and stroke etiology, therapeutic approaches to improve ischemic injury still remain limited. It has been established that metformin can attenuate cell death in cerebral ischemia. One of the main functions of metformin is proposed to be conducted via AMP-activated protein kinase (AMPK)-dependent pathway in the experimental cerebral ischemia model. It is also established that metformin can suppress inflammation and activate Nuclear factor erythroid 2-related factor (Nrf2) pathways in neurons. In the current study, the role of metformin in regulating inflammatory and antioxidant pathways in the global cerebral ischemia was investigated. Our results indicated that pretreatment of rats by metformin attenuated cellular levels of nuclear factor-κB, Tumor Necrosis Factor alpha and Cyclooxygenase-2 which are considered as three important proteins involved in the inflammation pathway. Pretreatment by metformin increased the level of Nrf2 and heme oxygenase-1 in the hippocampus of ischemic rats compared with untreated ischemic group. Moreover, pretreatment by metformin enhanced the level of glutathione and catalase activities compared with them in ischemic group. Such protective changes detected by metformin pretreatment were reversed by injecting compound c, an AMPK inhibitor. These findings suggested that metformin might protect cells through modulating inflammatory and antioxidant pathways via induction of AMPK. However, more experimental and clinical trial studies regarding neuroprotective potential of metformin and the involved mechanisms, especially in the context of cerebral ischemic injuries, are necessary.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Jundishapour Medical Sciences University, Ahwaz, Iran
| | | | | | | | | |
Collapse
|
18
|
Amin SN, El-Aidi AA, Ali MM, Attia YM, Rashed LA. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. Neuromolecular Med 2015; 17:121-36. [PMID: 25680935 DOI: 10.1007/s12017-015-8343-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.
Collapse
MESH Headings
- Acute Disease
- Animals
- Anxiety/blood
- Anxiety/drug therapy
- Anxiety/etiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Biomarkers/blood
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Drug Evaluation, Preclinical
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/therapeutic use
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Gene Expression Regulation/drug effects
- Grooming/drug effects
- Grooming/physiology
- Hippocampus/chemistry
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Hydrocortisone/blood
- Interleukin-6/blood
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memantine/pharmacology
- Memantine/therapeutic use
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurogenesis/drug effects
- Neuronal Plasticity/drug effects
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Wistar
- Restraint, Physical/adverse effects
- Spatial Memory/drug effects
- Spatial Memory/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/physiology
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/physiopathology
- Synaptophysin/biosynthesis
- Synaptophysin/genetics
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Medical Physiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Al Manyal, Cairo, 11451, Egypt,
| | | | | | | | | |
Collapse
|
19
|
Therapeutic Effects of PPAR α on Neuronal Death and Microvascular Impairment. PPAR Res 2015; 2015:595426. [PMID: 25705219 PMCID: PMC4326216 DOI: 10.1155/2015/595426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/30/2022] Open
Abstract
Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα's effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications.
Collapse
|
20
|
Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 2014; 127:7-14. [PMID: 25316306 DOI: 10.1016/j.pbb.2014.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/19/2014] [Accepted: 10/05/2014] [Indexed: 11/23/2022]
Abstract
Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS.
Collapse
|