1
|
Malone CL, Rieger NS, Spool JA, Payette A, Riters LV, Marler CA. Behavioral convergence in defense behaviors in pair bonded individuals correlates with neuroendocrine receptors in the medial amygdala. Behav Brain Res 2023; 452:114556. [PMID: 37356669 PMCID: PMC10644349 DOI: 10.1016/j.bbr.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Monogamous, pair-bonded animals coordinate intra-pair behavior for spatially separated challenges including territorial defense and nest attendance. Paired California mice, a monogamous, territorial and biparental species, approach intruders together or separately, but often express behavioral convergence across intruder challenges. To gain a more systems-wide perspective of potential mechanisms contributing to behavioral convergence across two conspecific intruder challenges, we conducted an exploratory study correlating behavior and receptor mRNA (Days 10 and 17 post-pairing). We examined associations between convergence variability in pair time for intruder-oriented behaviors with a pair mRNA index for oxytocin (OXTR), androgen (AR), and estrogen alpha (ERα) receptors within the medial amygdala (MeA) and the anterior olfactory nucleus (AON), brain regions associated with social behavior. An intruder behavior index revealed a bimodal distribution of intruder-related behaviors in Challenge 1 and a unimodal distribution in Challenge 2, suggesting population behavioral convergence, but no significant correlations with neuroendocrine measures. However, OXTR, AR, and ERα mRNA in the MeA were positively associated with convergence in individual intruder-related behaviors, suggesting multiple mechanisms may influence convergence. Mice could also occupy the nest during intruder challenges and convergence in nest attendance was positively correlated with MeA OXTR. At an individual level, nest attendance was positively associated with MeA ERα. Vocalizations were positively associated with AR and ERα mRNA. No positive associations were found in the AON. Overall, neuroendocrine receptors were implicated in convergence of a monogamous pair's defense behavior, highlighting the potential importance of the MeA as part of a circuit underlying convergence.
Collapse
Affiliation(s)
- Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Nathaniel S Rieger
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Washington-Seattle, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
| | - Jeremy A Spool
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA; University of Massachusetts-Amherst, Department of Psychological and Brain Sciences, Amherst, MA, USA
| | - Alexis Payette
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| |
Collapse
|
2
|
Jiménez A, Jiménez P, Inoue K, Young LJ, González-Mariscal G. Oxytocin antagonist does not disrupt rabbit maternal behavior despite binding to brain oxytocin receptors. J Neuroendocrinol 2023; 35:e13236. [PMID: 36762715 PMCID: PMC10363570 DOI: 10.1111/jne.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
We explored a possible role of oxytocin (OXT) for the onset and maintenance of rabbit maternal behavior by: (a) confirming that a selective oxytocin receptor antagonist (OTA) widely used in rodents selectively binds to OXT receptors (OXTR) in the rabbit brain and (b) determining the effect of daily intracerebroventricular (icv) injections of OTA to primiparous and multiparous does from gestation day 29 to lactation day 3. OTA efficiently displaced the high affinity, selective oxytocin receptor (OXTR) radioligand, 125 I-labeled ornithine vasotocin analog (125 I-OVTA), but was much less effective at displacing the selective V1a vasopressin receptor radioligand, 125 I-labeled linear vasopressin, thus showing high affinity and selectivity of OTA for rabbit OXTR as in rodents. Further, ICV OTA injections did not modify nest-building, latency to enter the nest box, time spent nursing or the amount of milk produced, relative to vehicle-injected does. The percentage of mothers suckling the litter was also similar between both groups, regardless of parity. Together, our results do not support a role of OXT for the initiation or maintenance of rabbit maternal behavior. Future studies are warranted to determine if OXT participates in fine-tuning additional aspects of the maternal ethogram, for example, circadian periodicity of nursing and nest defense.
Collapse
Affiliation(s)
- Angeles Jiménez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, México
| | - Pedro Jiménez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, México
| | - Kiyoshi Inoue
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Larry J. Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | |
Collapse
|
3
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
4
|
Freeman SM. Using Receptor Autoradiography to Visualize and Quantify Oxytocin and Vasopressin 1a Receptors in the Human and Nonhuman Primate Brain. Methods Mol Biol 2022; 2384:105-125. [PMID: 34550571 DOI: 10.1007/978-1-0716-1759-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite its development almost 40 years ago, receptor autoradiography remains a regular and reliable practice for the localization of oxytocin and vasopressin receptors in brain tissue sections. It is used across many laboratories, institutions, and animal species to characterize and quantify the distribution and density of these receptors at baseline and/or in response to experimental manipulations or lived experience. This powerful tool and the neuroanatomical receptor maps that it generates have allowed researchers to more accurately investigate and understand the neural substrates upon which oxytocin and vasopressin act to affect behavior. Researchers have used these maps to design site-specific pharmacological manipulations and electrophysiological recordings in animal studies to directly probe the underlying neural mechanisms in this system. This methods chapter describes the specific procedures by which a pharmacologically optimized, competitive binding modification to receptor autoradiography can be used to reliably localize oxytocin and vasopressin receptors in the human brain and in the brains of nonhuman primates. The ability to reliably perform receptor autoradiography for these targets in human brain tissue can finally inform our interpretation of past intranasal oxytocin neuroimaging studies and allows us to move past the reliance on transcriptomic studies using brain tissue homogenates so that we can directly investigate the involvement of oxytocin and vasopressin receptors in human behavior, physiology, and neuropsychiatric disease.
Collapse
Affiliation(s)
- Sara M Freeman
- Department of Biology, Utah State University, Logan, UT, USA.
| |
Collapse
|
5
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
González-Mariscal G, Hoy S, Hoffman KL. Rabbit Maternal Behavior: A Perspective from Behavioral Neuroendocrinology, Animal Production, and Psychobiology. ADVANCES IN NEUROBIOLOGY 2022; 27:131-176. [PMID: 36169815 DOI: 10.1007/978-3-030-97762-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rabbit maternal behavior (MB) impacts meat and fur production on the farm, survival of the species in the wild, and pet welfare. Specific characteristics of rabbit MB (i.e., three-step nest building process; single, brief, daily nursing bout) have been used as models for exploring particular themes in neuroscience, like obsessive-compulsive actions, circadian rhythms, and cognition. Particular hormonal combinations regulate nest building by acting on brain regions controlling MB in other mammals. Nonhormonal factors like type of lodging and the doe's social rank influence nursing and milk production. The concurrency of pregnancy and lactation, the display of nonselective nursing, and the rapid growth of altricial young - despite a minimal effort of maternal care - have prompted the study of mother-young affiliation, neurodevelopment, and weaning. Neurohormonal mechanisms, common to other mammals, plus additional strategies (perhaps unique to rabbits) allow the efficient, adaptive display of MB in multiple settings.
Collapse
Affiliation(s)
- Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| | - Steffen Hoy
- Department of Animal Breeding and Genetics Justus Liebig University Giessen, Giessen, Germany
| | - Kurt L Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
7
|
Wu J, Zhou M, Qin K, Liao S, Tang C, Ruan Y, Hu X, Long F, Mo K, Kuang H, Deng R. Microscopic anatomical atlas study on the lateral ventricles of the rabbit cerebrum and its related structures. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Lu Q, Hu S. Sex differences of oxytocin and vasopressin in social behaviors. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:65-88. [PMID: 34225950 DOI: 10.1016/b978-0-12-820107-7.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) are known to mediate social cognition and behaviors in a sex-dependent manner. This chapter reviews the sex-dependent influence of OT and VP on social behaviors, focusing on (1) partner preference and sexual orientation, (2) memory modulation, (3) emotion regulation, and (4) trust-related behaviors. Most studies suggest that OT promotes familiar (opposite-sex) partner preference, strengthens memory, relieves anxiety, and increases trust. However, VP-regulated social cognition has been studied less than OT. VP facilitates familiar (opposite-sex) partner preference, enhances memory, induces anxiety, and influences happiness/anger perception. Detailed sex differences of these effects are reviewed. There is a male preponderance in the use of animal models and many study results are too complex to draw firm conclusions. Clarifying the complex interplay between the OT/VP system and sex hormones in the regulation of social behaviors is needed.
Collapse
Affiliation(s)
- Qiaoqiao Lu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Oxytocin receptor binding in the titi monkey hippocampal formation is associated with parental status and partner affiliation. Sci Rep 2020; 10:17301. [PMID: 33057124 PMCID: PMC7560868 DOI: 10.1038/s41598-020-74243-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social cognition is facilitated by oxytocin receptors (OXTR) in the hippocampus, a brain region that changes dynamically with pregnancy, parturition, and parenting experience. We investigated the impact of parenthood on hippocampal OXTR in male and female titi monkeys, a pair-bonding primate species that exhibits biparental care of offspring. We hypothesized that in postmortem brain tissue, OXTR binding in the hippocampal formation would differ between parents and non-parents, and that OXTR density would correlate with frequencies of observed parenting and affiliative behaviors between partners. Subjects were 10 adult titi monkeys. OXTR binding in the hippocampus (CA1, CA2/3, CA4, dentate gyrus, subiculum) and presubiculum layers (PSB1, PSB3) was determined using receptor autoradiography. The average frequency of partner affiliation (Proximity, Contact, and Tail Twining) and infant carrying were determined from longitudinal observations (5-6 per day). Analyses showed that parents exhibited higher OXTR binding than non-parents in PSB1 (t(8) = - 2.33, p = 0.048), and that OXTR binding in the total presubiculm correlated negatively with Proximity (r = - 0.88) and Contact (r = - 0.91), but not Tail Twining or infant carrying. These results suggest that OXTR binding in the presubiculum supports pair bonding and parenting behavior, potentially by mediating changes in hippocampal plasticity.
Collapse
|
10
|
Olazábal DE, Sandberg NY. Variation in the density of oxytocin receptors in the brain as mechanism of adaptation to specific social and reproductive strategies. Gen Comp Endocrinol 2020; 286:113337. [PMID: 31734142 DOI: 10.1016/j.ygcen.2019.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023]
Abstract
Most species have predominant forms of social and reproductive behavior driven by many years of selection pressures and evolution. For example, rodent species can live in small or large groups, behave more tolerant or aggressively toward conspecifics (including newborns), and form or not bonds with other members of the group (including sexual partners). Any of those behavioral adaptations could result in good fitness for the species, but could also require compromises such as sharing resources, greater parental investment, increased risk of predation, etc. We propose that the oxytocin (OXT) system, among others neuroendocrine peptides, is at the basis of a neural mechanism that adapts and predisposes species to a particular social and reproductive form of living. In this review we will show evidence that the variability in the density of receptors for OXT (OXTR) in the nucleus accumbens (NAc) and the lateral septum (LS) predisposes species to adopt at least 4 different social and reproductive strategies in rodents. Large or medium size groups with lower conspecific spacing (preferred separation distance maintained by adult conspecifics), and high levels of promiscuity are characterized by low levels of OXTR in the NAc and LS (e.g. Ratus norvegicus, Ctenomys sociabilis, Scotinomys teguina, Cavia porcellus); small size groups with higher conspecific spacing and low levels of promiscuity are characterized by high OXTR in the NAc and the LS (e.g. Peromyscus californicus); large or medium groups with lower conspecific spacing and low levels of promiscuity characterized by high levels of OXTR in the NAc but low levels in the LS (e.g. Microtus ochrogaster, Heterocephalus glaber, Microtus kikuchii); and small or medium size groups with higher conspecific spacing and high levels of promiscuity characterized by low levels of OXTR in the NAc and high OXTR in the LS (e.g. Mus musculus, Ctenomys haigi, Peromyscus maniculatus, Microtus pennsylvanicus, Microtus montanus). Careful analysis of the distribution of OXTR, and other peptides receptors, in the brain can contribute to understand its function but also to predict reproductive and social strategies of species.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Natalia Y Sandberg
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Jiménez A, González-Mariscal G. Maternal responsiveness to suckling is modulated by time post-nursing: A behavioural and c-Fos/oxytocin immunocytochemistry study in rabbits. J Neuroendocrinol 2019; 31:e12788. [PMID: 31472100 DOI: 10.1111/jne.12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Doe rabbits nurse once/day for approximately 3 minutes, with circadian periodicity, inside the nest box. The amount of suckling received at each bout regulates this behaviour because reducing the litter size to four kits or less disrupts nursing circadian periodicity and increases suckling bout duration. Additionally, the likelihood that does will nurse kits at a given time of day depends on the time elapsed since the last suckling episode and the litter size nursed then. We hypothesised that the time elapsed since the last nursing would impact the number of c-Fos immunoreactive (IR) cells observed after suckling five kits and also that observed before the next nursing ("no kits"). Suckling significantly increased, relative to "no kits", the number of c-Fos-IR cells in the medial preoptic area and lateral septum but not in the bed nucleus of the stria terminalis (BNST), suprachiasmatic nucleus or ventromedial hypothalamus in does nursing at 18 or 24 hours after the previous bout. No effects of suckling were observed in mothers nursing at 6 hours. Does given kits at 3 hours post last suckling refused to nurse but, in the remaining three groups, all does nursed normally. At "no kits", more c-Fos-IR cells were seen (in all regions except the BNST) in does given kits at 24 hours after the last nursing and killed 1 hour later (ie, 4 hours after lights on) than in those killed earlier. The percentage of oxytocinergic (OT) cells co-expressing c-Fos was not modified by nursing in the paraventricular or supraoptic nuclei but, in the latter, the largest number of total OT-IR cells occurred at 18 and 24 hours post-last nursing. In conclusion, the responsiveness of particular forebrain regions involved in regulating circadian rhythms, lactation, and maternal behaviour is modulated by suckling and time of day.
Collapse
Affiliation(s)
- Angeles Jiménez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
12
|
Effects of Oxytocin on Fear Memory and Neuroinflammation in a Rodent Model of Posttraumatic Stress Disorder. Int J Mol Sci 2018; 19:ijms19123848. [PMID: 30513893 PMCID: PMC6321616 DOI: 10.3390/ijms19123848] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-induced mental disorder characterized by fear extinction abnormalities, which involve biological dysfunctions among fear circuit areas in the brain. Oxytocin (OXT) is a neuropeptide that regulates sexual reproduction and social interaction and has recently earned specific attention due to its role in adjusting neurobiological and behavioral correlates of PTSD; however, the mechanism by which this is achieved remains unclear. The present study aimed to examine whether the effects of OXT on traumatic stress-induced abnormalities of fear extinction (specifically induced by single prolonged stress (SPS), an animal model of PTSD) are associated with pro-inflammatory cytokines. Seven days after SPS, rats received intranasal OXT 40 min before a cue-dependent Pavlovian fear conditioning-extinction test in which rats' freezing degree was used to reflect the outcome of fear extinction. We also measured mRNA expression of IL-1β, IFN-γ, and TNF-α in the medial prefrontal cortex (mPFC), hippocampus, and amygdala at the end of the study, together with plasma oxytocin, corticosterone, IL-1β, IFN-γ, and TNF-α, to reflect the central and peripheral changes of stress-related hormones and cytokines after SPS. Our results suggested that intranasal OXT effectively amends the SPS-impaired behavior of fear extinction retrieval. Moreover, it neurochemically reverses the SPS increase in pro-inflammatory cytokines; thus, IL-1β and IFN-γ can be further blocked by the OXT antagonist atosiban (ASB) in the hippocampus. Peripheral profiles revealed a similar response pattern to SPS of OXT and corticosterone (CORT), and the SPS-induced increase in plasma levels of IL-1β and TNF-α could be reduced by OXT. The present study suggests potential therapeutic effects of OXT in both behavioral and neuroinflammatory profiles of PTSD.
Collapse
|
13
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Caba M, González-Mariscal G, Meza E. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit's Brain. Front Endocrinol (Lausanne) 2018; 9:106. [PMID: 29599751 PMCID: PMC5862793 DOI: 10.3389/fendo.2018.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia) can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Mario Caba,
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
15
|
Mitre M, Kranz TM, Marlin BJ, Schiavo JK, Erdjument-Bromage H, Zhang X, Minder J, Neubert TA, Hackett TA, Chao MV, Froemke RC. Sex-Specific Differences in Oxytocin Receptor Expression and Function for Parental Behavior. GENDER AND THE GENOME 2017; 1:142-166. [PMID: 32959027 PMCID: PMC7500123 DOI: 10.1089/gg.2017.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
Parental care is among the most profound behavior expressed by humans and other animals. Despite intense interest in understanding the biological basis of parental behaviors, it remains unknown how much of parenting is encoded by the genome and which abilities instead are learned or can be refined by experience. One critical factor at the intersection between innate behaviors and experience-dependent learning is oxytocin, a neurohormone important for maternal physiology and neuroplasticity. Oxytocin acts throughout the body and brain to promote prosocial and maternal behaviors and modulates synaptic transmission to affect neural circuit dynamics. Recently we developed specific antibodies to mouse oxytocin receptors, found that oxytocin receptors are left lateralized in female auditory cortex, and examined how oxytocin enables maternal behavior by sensitizing the cortex to infant distress sounds. In this study we compare oxytocin receptor expression and function in male and female mice. Receptor expression is higher in adult female left auditory cortex than in right auditory cortex or males. Developmental profiles and mRNA expression were comparable between males and females. Behaviorally, male and female mice began expressing parental behavior similarly after cohousing with experienced females; however, oxytocin enhanced parental behavior onset in females but not males. This suggests that left lateralization of oxytocin receptor expression in females provides a mechanism for accelerating maternal behavior onset, although male mice can also effectively co-parent after experience with infants. The sex-specific pattern of oxytocin receptor expression might genetically predispose female cortex to respond to infant cues, which both males and females can also rapidly learn.
Collapse
Affiliation(s)
- Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Thorsten M. Kranz
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Bianca J. Marlin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Jennifer K. Schiavo
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Hediye Erdjument-Bromage
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | | | - Jess Minder
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Thomas A. Neubert
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Robert C. Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Domínguez M, Aguilar‐Roblero R, González‐Mariscal G. Bilateral lesions of the paraventricular hypothalamic nucleus disrupt nursing behavior in rabbits. Eur J Neurosci 2017; 46:2133-2140. [DOI: 10.1111/ejn.13656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel Domínguez
- Centro de Investigación en Reproducción Animal CINVESTAV‐Universidad Autónoma de Tlaxcala Apdo. Postal 62 Tlaxcala 90000 México
- Maestría en Ciencias Biológicas Universidad Autónoma de Tlaxcala Tlaxcala México
| | - Raúl Aguilar‐Roblero
- Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City México
| | - Gabriela González‐Mariscal
- Centro de Investigación en Reproducción Animal CINVESTAV‐Universidad Autónoma de Tlaxcala Apdo. Postal 62 Tlaxcala 90000 México
| |
Collapse
|
17
|
Aguirre J, Meza E, Caba M. Dopaminergic activation anticipates daily nursing in the rabbit. Eur J Neurosci 2017; 45:1396-1409. [DOI: 10.1111/ejn.13571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Affiliation(s)
- J. Aguirre
- Doctorado en Ciencias Biomédicas; CIB; Universidad Veracruzana; Xalapa Veracruz México
| | - E. Meza
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas C.P. 91190 Xalapa Veracruz México
| | - M. Caba
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas C.P. 91190 Xalapa Veracruz México
| |
Collapse
|
18
|
Duchemin A, Seelke AMH, Simmons TC, Freeman SM, Bales KL. Localization of oxytocin receptors in the prairie vole (Microtus ochrogaster) neocortex. Neuroscience 2017; 348:201-211. [PMID: 28214580 PMCID: PMC5368034 DOI: 10.1016/j.neuroscience.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/18/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
Early experience and social context interact to alter the phenotype of complex social behaviors. These early experiences can also result in alterations to cortical organization and connections. Given the ability of the neuropeptide oxytocin (OT) to modulate social and reproductive behavior, OT is likely involved in these cortical processes. However, little is known about the distribution of OT and OT receptors (OTR) within the neocortex. Using autoradiographic and neuroanatomical techniques, we characterized the cortical distribution of OT receptors (OTR) in prairie voles, a socially monogamous rodent species. We found that OTR density was low in the primary sensory areas (including primary somatosensory and auditory regions) but was quite high in association regions (including temporal and parietal association areas, and prelimbic regions). In the primary motor area as well as the temporal and parietal association areas, we observed differences in OTR density across cortical layers. Specifically, cortical layers 2/3 and 5 exhibited greater OTR density than layer 4. Our results point to a role for OT in integrating sensory and motor in the prairie vole brain, providing a complementary mechanism for the modulation of social interactions. Given the ability of early social experience and developmental manipulations of OT to affect the brain and behavior, these results suggest a novel mechanism for how OT may influence cortical organization.
Collapse
Affiliation(s)
- Auriane Duchemin
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - Adele M H Seelke
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - Trenton C Simmons
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - Sara M Freeman
- Psychology Department, University of California - Davis, Davis, CA, USA; California National Primate Research Center, University of California - Davis, Davis, CA, USA
| | - Karen L Bales
- Psychology Department, University of California - Davis, Davis, CA, USA; California National Primate Research Center, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors. J Neurosci 2016; 36:2517-35. [PMID: 26911697 PMCID: PMC4764667 DOI: 10.1523/jneurosci.2409-15.2016] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/08/2023] Open
Abstract
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition.
Collapse
Affiliation(s)
- Mariela Mitre
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Department of Otolaryngology, Department of Neuroscience and Physiology
| | - Bianca J Marlin
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Department of Otolaryngology, Department of Neuroscience and Physiology
| | - Jennifer K Schiavo
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Department of Otolaryngology, Department of Neuroscience and Physiology
| | - Egzona Morina
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Department of Otolaryngology, Department of Neuroscience and Physiology
| | - Samantha E Norden
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, and Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Troy A Hackett
- Vanderbilt Kennedy Center for Research on Human Development, Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | - Chiye J Aoki
- Center for Neural Science, New York University, New York, New York 10003
| | - Moses V Chao
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Department of Neuroscience and Physiology, Department of Cell Biology, and Department of Psychiatry, New York University School of Medicine, New York, New York 10016, Center for Neural Science, New York University, New York, New York 10003
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Department of Otolaryngology, Department of Neuroscience and Physiology, Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|