1
|
Koga M, Sato M, Nakagawa R, Tokuno S, Asai F, Maezawa Y, Nagamine M, Yoshino A, Toda H. Molecular hydrogen supplementation in mice ameliorates lipopolysaccharide-induced loss of interest. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e70000. [PMID: 39171191 PMCID: PMC11337204 DOI: 10.1002/pcn5.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Aim The objective of this study was to evaluate the potential of hydrogen in preventing and treating psychiatric symptoms, particularly depressed mood and loss of interest, and to explore its underlying mechanisms. A mouse model exhibiting inflammation-derived depressive symptoms was used for the investigation. Methods Institute of Cancer Research mice were subjected to a 7-day intervention of either 30% hydrogen or 40 g per day of air via jelly intake. On the final day, lipopolysaccharide (LPS) was intraperitoneally administered at 5 mg/kg to induce inflammation-related depressive symptoms. Behavioral and biochemical assessments were conducted 24 h post-LPS administration. Results Following LPS administration, a decrease in spontaneous behavior was observed; however, this effect was mitigated in the group treated with hydrogen. The social interaction test revealed a significant reduction in interactions with unfamiliar mice in the LPS-treated group, whereas the hydrogen-treated group exhibited no such decrease. No significant changes were noted in the forced-swim test for either group. Additionally, the administration of LPS in the hydrogen group did not result in a decrease in zonula occludens-1, a biochemical marker associated with barrier function at the cerebrovascular barrier and expressed in tight junctions. Conclusion Hydrogen administration demonstrated a preventive effect against the LPS-induced loss of interest, suggesting a potential role in symptom prevention. However, it did not exhibit a suppressive effect on depressive symptoms in this particular model. These findings highlight the nuanced impact of hydrogen in the context of inflammation-induced psychiatric symptoms, indicating potential avenues for further exploration and research.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Mayumi Sato
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Ryuichi Nakagawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Shinichi Tokuno
- Graduate School of Health InnovationKanagawa University of Human ServicesKanagawaJapan
- Department of BioengineeringGraduate School of EngineeringTokyoJapan
| | - Fumiho Asai
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Yuri Maezawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Masanori Nagamine
- Division of Behavioral SciencesNational Defense Medical College Research InstituteSaitamaJapan
| | - Aihide Yoshino
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Hiroyuki Toda
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
2
|
Otsuka M, Arai K, Yoshida T, Hayashi A. Inhibition of retinal ischemia-reperfusion injury in rats by inhalation of low-concentration hydrogen gas. Graefes Arch Clin Exp Ophthalmol 2024; 262:823-833. [PMID: 37851131 DOI: 10.1007/s00417-023-06262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
PURPOSE To investigate the inhibitory effect of hydrogen gas inhalation on retinal ischemia reperfusion (I/R) injury using a rat model. METHODS Six-week-old male Sprague-Dawley rats were used. A 27G needle connected by a tube to a saline bottle placed 200 cm above the eye was inserted into the anterior eye chamber to create a rat retinal I/R model. In the ischemia-plus-hydrogen-gas group (H2( +) group), the ischemia time was set to 90 min, and 1.8% hydrogen was added to the air delivered by the anesthesia mask simultaneously with the start of ischemia. In the non-hydrogen-treatment ischemia group (H2( -) group), I/R injury was created similarly, but only air was inhaled. ERGs were measured; after removal of the eyes, the retina was examined for histological, immunostaining, and molecular biological analyses. RESULTS The mean thickness of the inner retinal layer in the H2( +) group was 107.2 ± 16.0 μm (n = 5), significantly greater than that in the H2( -) group (60.8 ± 6.7 μm). Immunostaining for Iba1 in the H2( -) group showed increased numbers of microglia and microglial infiltration into the subretinal space, while there was no increase in microglia in the H2( +) group. B-wave amplitudes in the H2( +) group were significantly higher than in the H2( -) group. In the membrane antibody array, levels of interleukin-6, monocyte chemotactic protein 1, and tumor necrosis factor alpha were significantly lower in the H2( +) group than in the H2( -) group. CONCLUSION Inhalation of 1.8% hydrogen gas inhibited the induction of inflammation, morphological/structural changes, and glial cell increase caused by retinal I/R injury.
Collapse
Affiliation(s)
- Mitsuya Otsuka
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kenichi Arai
- Department of Clinical Biomaterial Applied Science, School of Medicine, University of Toyama, Toyama, Japan
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Applied Science, School of Medicine, University of Toyama, Toyama, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
3
|
Li SY, Xue RY, Wu H, Pu N, Wei D, Zhao N, Song ZM, Tao Y. Novel Role of Molecular Hydrogen: The End of Ophthalmic Diseases? Pharmaceuticals (Basel) 2023; 16:1567. [PMID: 38004433 PMCID: PMC10674431 DOI: 10.3390/ph16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hydrogen (H2) is a colorless, odorless, and tasteless gas which displays non-toxic features at high concentrations. H2 can alleviate oxidative damage, reduce inflammatory reactions and inhibit apoptosis cascades, thereby inducing protective and repairing effects on cells. H2 can be transported into the body in the form of H2 gas, hydrogen-rich water (HRW), hydrogen-rich saline (HRS) or H2 produced by intestinal bacteria. Accumulating evidence suggest that H2 is protective against multiple ophthalmic diseases, including cataracts, dry eye disease, diabetic retinopathy (DR) and other fields. In particular, H2 has been tested in the treatment of dry eye disease and corneal endothelial injury in clinical practice. This medical gas has brought hope to patients suffering from blindness. Although H2 has demonstrated promising therapeutic potentials and broad application prospects, further large-scale studies involving more patients are still needed to determine its optimal application mode and dosage. In this paper, we have reviewed the basic characteristics of H2, and its therapeutic effects in ophthalmic diseases. We also focus on the latest progress in the administration approaches and mechanisms underlying these benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zong-Ming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
4
|
Jiang J, Xu J, Tao Y, Hu C, Zhang C, Sun X, Ye C, Zhang S, Liang Y. A Novel and Reversible Experimental Primate Ocular Hypertension Model: Blocking Schlemm's Canal. Ophthalmic Res 2022; 66:354-366. [PMID: 36380650 DOI: 10.1159/000527099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/14/2022] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The purpose of this study was to establish a novel and reversible experimental ocular hypertension primate model by blocking Schlemm's canal. METHODS A model was induced in adult cynomolgus monkeys (n = 4) by blocking Schlemm's canal with an inserted microcatheter (200 μm diameter); it was removed 6 weeks later from one monkey to reverse the elevated intraocular hypertension. All animals were monitored for 11 months; weekly measurements of intraocular pressure and biweekly examinations with spectral domain optical coherence tomography and disc photography were performed. Histopathology of the eye and retinal ganglion cell counts were completed at the end of the study. RESULTS The intraocular pressure of the blocked eyes was significantly higher than that of the contralateral eyes at 1 month after the blockage (p < 0.001); the mean intraocular pressure was similar to the contralateral eye from 1 week to 11 months after the microcatheter was removed in monkey A (p = 0.170). The mean intraocular pressure of the blocked eyes of the remaining monkeys was significantly higher than that of the contralateral eyes throughout the follow-up period (p < 0.001). The fundus imaging showed decreases in the retinal nerve fibre layer thickness, and localized defects were observed in two blocked eyes. A histological examination demonstrated that the number of retinal ganglion cells in the blocked eyes of monkeys A, B, and C was significantly decreased compared with the control. CONCLUSION Schlemm's canal blockage alone in the monkey model produces sustained elevation of intraocular pressure, which presents a novel animal model for studying the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Junhong Jiang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yan Tao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Cheng Hu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Cong Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | | | - Cong Ye
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Glaucoma Institute, Wenzhou Medical University, Wenzhou, China
| | - Shaodan Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Glaucoma Institute, Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Liang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Glaucoma Institute, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Zhang S, Zhu H, Pan Y, Liu X, Jin H, Nan K, Wu W. Exploration of the strategies to enhance the regeneration of the optic nerve. Exp Eye Res 2022; 219:109068. [DOI: 10.1016/j.exer.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
|
6
|
Luo P, Ding Y, He Y, Chen D, He Q, Huang Z, Huang S, Lei W. Hydrogen-oxygen therapy alleviates clinical symptoms in twelve patients hospitalized with COVID-19: A retrospective study of medical records. Medicine (Baltimore) 2022; 101:e27759. [PMID: 35244034 PMCID: PMC8896485 DOI: 10.1097/md.0000000000027759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
A global public health crisis caused by the 2019 novel coronavirus disease (COVID-19) leads to considerable morbidity and mortality, which bring great challenge to respiratory medicine. Hydrogen-oxygen therapy contributes to treat severe respiratory diseases and improve lung functions, yet there is no information to support the clinical use of this therapy in the COVID-19 pneumonia.A retrospective study of medical records was carried out in Shishou Hospital of Traditional Chinese Medicine in Hubei, China. COVID-19 patients (aged ≥ 30 years) admitted to the hospital from January 29 to March 20, 2020 were subjected to control group (n = 12) who received routine therapy and case group (n = 12) who received additional hydrogen-oxygen therapy. The clinical characteristics of COVID-19 patients were analyzed. The physiological and biochemical indexes, including immune inflammation indicators, electrolytes, myocardial enzyme profile, and functions of liver and kidney, were examined and investigated before and after hydrogen-oxygen therapy.The results showed significant decreases in the neutrophil percentage and the concentration and abnormal proportion of C-reactive protein in COVID-19 patients received additional hydrogen-oxygen therapy.This novel therapeutic may alleviate clinical symptoms of COVID-19 patients by suppressing inflammation responses.
Collapse
Affiliation(s)
- Peng Luo
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanfang Ding
- Cardiology Department, Shishou Hospital of Traditional Chinese Medcine, Jingzhou, Hubei, China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dafeng Chen
- Department of Precision Laboratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zufeng Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Cardiology Department, Shishou Hospital of Traditional Chinese Medcine, Jingzhou, Hubei, China
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Precision Laboratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Tang D, Liu X, Chen J. Mitoquinone intravitreal injection ameliorates retinal ischemia-reperfusion injury in rats involving SIRT1/Notch1/NADPH axis. Drug Dev Res 2022; 83:800-810. [PMID: 35014081 DOI: 10.1002/ddr.21911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is an important pathological process of many ocular diseases. Mitoquinone (MitoQ), a mitochondrial targeted antioxidant, is a potential compound for therapeutic development of RIRI. This study observed the effect of MitoQ on RIRI, and further explored its possible molecular mechanism. Temporary increase in intraocular pressure was used to establish rat model of RIRI to observe the effect of MitoQ treatment on retinal function, pathological injury, oxidative stress, inflammation and apoptosis. Immunohistochemistry and Western blot were used to detect expressions of cleaved caspase 3, B cell leukemia/lymphoma 2 associated X (Bax), nicotinamide adenine dinucleotide phosphate oxidase (NOX1), NOX4, cleaved-Notch 1, hairy and enhancer of split 1 (Hes1), and sirtuin 1 (SIRT 1) in retina were detected by immunohistochemistry and Western blot. MitoQ treatment significantly improved retinal function and pathological injury, inhibited the over-production of reactive oxygen species, increased the expression of superoxide dismutase 1 (SOD 1), suppressed the releases of inflammatory cytokines, and inhibited retinal cells apoptosis. MitoQ also down-regulated the expressions of cleaved caspase 3, Bax, NOX 1, NOX 4, cleaved-Notch 1, and Hes 1, increased the expression of SIRT 1 protein and its activity. These effects were significantly reversed by SIRT1 inhibitor EX527. Our data suggests that MitoQ, as a potentially effective drug for improving RIRI, may act through the SIRT1/Notch1/NADPH signal axis.
Collapse
Affiliation(s)
- Dongyong Tang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Chen
- Department of Traditional Chinese Medicine Surgery, Clinical College, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
The Anti-Inflammatory Effect of Hydrogen Gas Inhalation and Its Influence on Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222112049. [PMID: 34769482 PMCID: PMC8584469 DOI: 10.3390/ijms222112049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. Choroidal neovascularization (CNV) is the major pathologic feature of neovascular AMD. Oxidative damages and the ensuing chronic inflammation are representative of trigger events. Hydrogen gas (H2) has been demonstrated as an antioxidant and plays a role in the regulation of oxidative stress and inflammation. This experiment aimed to investigate the influence of H2 inhalation on a mouse model of CNV. Methods: Laser was used to induce CNV formation. C57BL/6J mice were divided into five groups: the control group; the laser-only group; and the 2 h, 5 h, and 2.5 h/2.5 h groups that received laser and H2 inhalation (21% oxygen, 42% hydrogen, and 37% nitrogen mixture) for 2 h, 5 h, and 2.5 h twice every day, respectively. Results: The severity of CNV leakage on fluorescence angiography showed a significant decrease in the H2 inhalation groups. The mRNA expression of hypoxia-inducible factor 1 alpha and its immediate downstream target vascular endothelial growth factor (VEGF) showed significant elevation after laser, and this elevation was suppressed in the H2 inhalation groups in an inhalation period length-related manner. The mRNA expression of cytokines, including tumor necrosis factor alpha and interlukin-6, also represented similar results. Conclusion: H2 inhalation could alleviate CNV leakage in a laser-induced mouse CNV model, and the potential mechanism might be related to the suppression of the inflammatory process and VEGF-driven CNV formation.
Collapse
|
10
|
Zhu B, Cui H, Xu W. Hydrogen inhibits the proliferation and migration of gastric cancer cells by modulating lncRNA MALAT1/miR-124-3p/EZH2 axis. Cancer Cell Int 2021; 21:70. [PMID: 33482814 PMCID: PMC7821405 DOI: 10.1186/s12935-020-01743-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer is one of the most prevalent and deadly malignancies without efficient treatment option. This study aimed to investigate the effect of hydrogen gas on the behavior of gastric cancer cells. Methods Gastric cancer cell lines MGC-803 and BGC-823 were treated with or without H2 /O2 gas mixture (66.7%:33.3% v/v). Proliferation and migration were assessed by MTT and scratch wound healing assays respectively. The expression of lncRNA MALAT1, miR-124-3p, and EZH2 was analyzed by real-time quantitative PCR and/or western blot. Tumor growth was estimated using xenograft mouse model. Results H2 gas significantly inhibited gastric tumor growth in vivo and the proliferation, migration, and lncRNA MALAT1 and EZH2 expression of gastric cancer cells while upregulated miR-124-3p expression. LncRNA MALAT1 overexpression abolished all the aforementioned effects of H2. LncRNA MALAT1 and miR-124-3p reciprocally inhibited the expression of each other. MiR-124-3p mimics abrogated lncRNA MALAT1 promoted EZH2 expression and gastric cancer cell proliferation and migration. Conclusions These data demonstrated that H2 might be developed as a therapeutics of gastric cancer and lncRNA MALAT1/miR-124-3p/EZH2 axis could be a target for intervention.
Collapse
Affiliation(s)
- Baocheng Zhu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hengguan Cui
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiqiang Xu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China. .,Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
11
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
12
|
Wang F, Ma F, Song Y, Li N, Li X, Pang Y, Hu P, Shao A, Deng C, Zhang X. Topical administration of rapamycin promotes retinal ganglion cell survival and reduces intraocular pressure in a rat glaucoma model. Eur J Pharmacol 2020; 884:173369. [PMID: 32712092 DOI: 10.1016/j.ejphar.2020.173369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023]
Abstract
Glaucoma is a progressive optic neuropathy that has become the most common cause of irreversible blindness worldwide. Studies have shown that the protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a central role in regulating numerous functions, such as growth, proliferation, cytoskeletal organization, metabolism, and autophagy. Clinical trials have shown that Rho-associated protein kinase (ROCK) inhibitors reduced intraocular pressure (IOP) in patients with glaucoma and ocular hypertension (OHT). In this study, we explored whether rapamycin (RAPA) eye drops can reduce IOP and protect retinal ganglion cells (RGCs). Our results indicated that in rats treated with RAPA, the drug was detected in the aqueous humor (AH), and the IOP was reduced. This may be related to the inhibition of RhoA protein activation by RAPA and regulation of the actin cytoskeleton in trabecular meshwork (TM) cells. In addition, the retinal thickness and the survival rate of RGCs were significantly reduced in the OHT group compared with the control group. These changes in the OHT group were significantly improved after treatment with RAPA. This may be because RAPA inhibited the activation of glial cells and the release of proinflammatory factors, thereby attenuating further damage to the retina and RGCs. Taken together, the results of this study demonstrated that RAPA not only reduced IOP but also protected RGCs, suggesting that RAPA is likely to be an effective strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Fangli Ma
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China; Queen Mary School of Nanchang University, Nanchang, China
| | - Ningfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Xiongfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - An Shao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China; Queen Mary School of Nanchang University, Nanchang, China
| | - Cong Deng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China.
| |
Collapse
|
13
|
Huang L, Applegate Ii RL, Applegate PM, Gong L, Ocak U, Boling W, Zhang JH. Inhalation of high-concentration hydrogen gas attenuates cognitive deficits in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2020; 9:122-126. [PMID: 31552874 PMCID: PMC6779004 DOI: 10.4103/2045-9912.266986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cognitive deficits are a devastating neurological outcome seen in survivors of cardiac arrest. We previously reported water electrolysis derived 67% hydrogen gas inhalation has some beneficial effects on short-term outcomes in a rat model of global brain hypoxia-ischemia induced by asphyxia cardiac arrest. In the present study, we further investigated its protective effects in long-term spatial learning memory function using the same animal model. Water electrolysis derived 67% hydrogen gas was either administered 1 hour prior to cardiac arrest for 1 hour and at 1-hour post-resuscitation for 1 hour (pre- & post-treatment) or at 1-hour post-resuscitation for 2 hours (post-treatment). T-maze and Morris water maze were used for hippocampal memory function evaluation at 7 and 14 days post-resuscitation, respectively. Neuronal degeneration within hippocampal Cornu Ammonis 1 (CA1) regions was examined by Fluoro-Jade staining ex vivo. Hippocampal deficits were detected at 7 and 18 days post-resuscitation, with increased neuronal degeneration within hippocampal CA1 regions. Both hydrogen gas treatment regimens significantly improved spatial learning function and attenuated neuronal degeneration within hippocampal CA1 regions at 18 days post-resuscitation. Our findings suggest that water electrolysis derived 67% hydrogen gas may be an effective therapeutic approach for improving cognitive outcomes associated with global brain hypoxia-ischemia following cardiac arrest. The study was approved by the Animal Health and Safety Committees of Loma Linda University, USA (approval number: IACUC #8170006) on March 2, 2017.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Richard L Applegate Ii
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lei Gong
- Department of Pharmacy, 1st Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Umut Ocak
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
14
|
Qi G, Wang B, Song X, Li H, Jin Y. A green, efficient and precise hydrogen therapy of cancer based on in vivo electrochemistry. Natl Sci Rev 2019; 7:660-670. [PMID: 34692085 PMCID: PMC8288856 DOI: 10.1093/nsr/nwz199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
By combined use of traditional Chinese acupuncture Fe needle electrode and in vivo electrochemistry, we achieved in vivo H2 generation in tumors in a controllable manner and exploited it for effective and green therapy of tumors for the first time. The cathodic acupuncture electrodes working under an applied voltage of ∼3 V (with minimal damage to the living body) undergo effective electrochemical reactions in the acidic tumor area that produce sufficient H2 locally to cause cancer cells to burst and die. Due to puncture positioning, the acidic tumor microenvironment and gas diffusion effect, the developed H2 generation electrochemotherapy (H2-ECT) strategy enables precise and large-scale tumor therapy, as demonstrated by in vivo treatment of diseased mice (glioma and breast cancers). Such green H2-ECT is simple, highly efficient and minimally invasive, requiring no expensive medical equipment or nano materials and medication, and is therefore very promising for potential clinical applications.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangfu Song
- School of Public Health, Jilin University, Changchun 130021, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Shen M, Zheng Y, Zhu K, Cai Z, Liu W, Sun X, Liu J, Zhu D. Hydrogen gas protects against delayed encephalopathy after acute carbon monoxide poisoning in a rat model. Neurol Res 2019; 42:22-30. [PMID: 31679470 DOI: 10.1080/01616412.2019.1685064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: The protective effects of 2%-4% hydrogen gas in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) have been previously reported. This study aimed to assess the neuroprotective effects of high concentration hydrogen (HCH) on DEACMP.Methods: A total of 36 male Sprague-Dawley rats were divided into 3 groups. In the DEACMP group, rats were exposed to CO to induce CO poisoning; in the HCH group, the animals were exposed to 67% H2 and 33% O2 at 3,000 mL/min for 90 min immediately after CO poisoning. Neurological function was evaluated at 1 and 9 days after poisoning. Then, the contents of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine, as well as superoxide dismutase activity in the serum, cortex and hippocampus were detected by ELISA. Additionally, the mRNA and protein expression levels of Nrf2 and downstream genes were detected by RT-PCR and Western blotting, respectively.Results: Our results showed that CO poisoning significantly impaired neurological function which was improved over time, and HCH markedly attenuated neurological impairment following CO poisoning. In addition, CO poisoning resulted in increased levels of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine and markedly reduced superoxide dismutase activity at 1 and 9 days, which were significantly inhibited by HCH at 9 days. Finally, CO poisoning increased the mRNA and protein levels of Nrf2 and downstream genes, and HCH further induced the anti-oxidative capability.Conclusion: These findings indicate the neuroprotective effects of HCH on DEACMP, which are related to the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Meihua Shen
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.,Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Yijun Zheng
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Kaimin Zhu
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Zhonghai Cai
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Wenwu Liu
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Xuejun Sun
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Duming Zhu
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
16
|
Saito M, Chen-Yoshikawa TF, Takahashi M, Kayawake H, Yokoyama Y, Kurokawa R, Hirano SI, Date H. Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation. J Thorac Cardiovasc Surg 2019; 159:2110-2118. [PMID: 31780065 DOI: 10.1016/j.jtcvs.2019.09.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Molecular hydrogen can reduce the oxidative stress of ischemia-reperfusion injury in various organs for transplantation and potentially improve survival rates in recipients. This study aimed to evaluate the protective effects of a hydrogen-rich preservation solution against ischemia-reperfusion injury after cold ischemia in rat lung transplantation. METHODS Lewis rats were divided into a nontransplant group (n = 3), minimum-ischemia group (n = 3), cold ischemia group (n = 6), and cold ischemia with hydrogen-rich (more than 1.0 ppm) preservation solution group (n = 6). The rats in the nontransplant group underwent simple thoracotomy, and the rats in the remaining 3 groups underwent orthotopic left lung transplantation. The ischemic time was <30 minutes in the minimum-ischemia group and 6 hours in the cold ischemia groups. After 2-hour reperfusion, we evaluated arterial blood gas levels, pulmonary function, lung wet-to-dry weight ratio, and histologic features of the lung tissue. The expression of proinflammatory cytokines was measured using quantitative polymerase chain reaction assays, and 8-hydroxydeoxyguanosine levels were evaluated using enzyme-linked immunosorbent assays. RESULTS When compared with the nontransplant and minimum-ischemia groups, the cold ischemia group had lower dynamic compliance, lower oxygenation levels, and higher wet-to-dry weight ratios. However, these variables were significantly improved in the cold ischemia with hydrogen-rich preservation solution group. This group also had fewer signs of perivascular edema, lower interleukin-1β messenger RNA expression, and lower 8-hydroxydeoxyguanosine levels than the cold ischemia group. CONCLUSIONS The use of a hydrogen-rich preservation solution attenuates ischemia-reperfusion injury in rat lungs during cold ischemia through antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Masao Saito
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Mamoru Takahashi
- Department of Thoracic Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuhei Yokoyama
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Wu Y, Yuan M, Song J, Chen X, Yang H. Hydrogen Gas from Inflammation Treatment to Cancer Therapy. ACS NANO 2019; 13:8505-8511. [PMID: 31329427 DOI: 10.1021/acsnano.9b05124] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydrogen (H2) therapy is a highly promising strategy against several diseases due to its inherent biosafety. However, the current H2 treatment modalities rely predominantly on the systemic administration of the gas, resulting in poor targeting and utilization. Furthermore, although H2 has significant anti-tumor effects, the underlying mechanisms have not yet been elucidated. Due to their ultrasmall size, nanomaterials are highly suitable drug-delivery systems with a myriad of biomedical applications. Nanocarrier-mediated H2 delivery, as well as in situ production of H2 by nanogenerators, can significantly improve targeted accumulation of the gas and accelerate the therapeutic effects. In addition, nanomaterials can be further modified to enhance passive or active accumulation at the target site. In this Perspective, we summarize the mechanism of H2 therapy and describe possibilities for combining H2 therapy with nanomaterials. We also discuss the current challenges of H2 therapy and provide some insights into this burgeoning field.
Collapse
Affiliation(s)
- Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Meng Yuan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) Bethesda , Maryland 20892 , United States
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| |
Collapse
|
18
|
Yao L, Chen H, Wu Q, Xie K. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int J Mol Med 2019; 44:1048-1062. [PMID: 31524220 PMCID: PMC6657957 DOI: 10.3892/ijmm.2019.4264] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammatory reaction is one of the most important elements in myocardial I/R injury. In addition, autophagy serves an important role in normal cardiac homeostasis, and obstructions to the autophagy process lead to severe consequences for the heart. Hydrogen exerts an effective therapeutic role in numerous diseases associated with I/R injury via its anti-inflammation, anti-apoptosis and anti-oxidative properties. Therefore, the present study investigated the effect of hydrogen on the myocardial inflammation response and apoptosis in myocardial ischemic/reperfusion (MI/R) injury, and further explored the mechanism of PTEN-induced kinase 1 (PINK1)/Parkin-induced mitophagy in the protection of hydrogen on MI/R injury. MI/R injury was performed by surgical ligation of the left coronary artery in vivo and H9C2 cell injury was performed by hypoxia/reoxygenation (H/R) in vitro. Hydrogen-rich saline was administered twice through intraperitoneal injection at a daily dose of 10 ml/kg following the operation in the in vivo model, and hydrogen-rich medium culture was used for cells instead of normal medium in vitro. The infarction size of hearts, the levels of creati-nine kinase-muscle/brain (CK-MB) and cardiac troponin I (cTnI), cardiac function, cell viability and lactate dehydrogenase (LDH) release, levels of cytokines, apoptosis and the expression of autophagy-associated proteins were detected in the different treatment groups in vivo and in vitro. The results demonstrated that treatment with hydrogen improved the myocardial infarction size of hearts, cardiac function, apoptosis and cytokine release following MI/R in rats. In vitro, hydrogen improved cell viability and LDH release following hypoxia/reoxygenation in myocardial cells. In addition, it was demonstrated that hydrogen exerted an anti-inflammatory and anti-apoptotic effect in myocardial cells induced by H/R via PINK1/Parkin mediated autophagy. These results suggested that hydrogen-rich saline alleviated the inflammation response and apoptosis induced by MI/R or H/R in vivo or in vitro, and that hydrogen-rich saline contributed to the increased expression of proteins associated with autophagy. In summary, the present study indicated that treatment with hydrogen-rich saline improved the inflammatory response and apoptosis in MI/R via PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Li Yao
- Sixth Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hongguang Chen
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin Institute of Anesthesiology, Tianjin 300054, P.R. China
| | - Qinghua Wu
- Sixth Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin Institute of Anesthesiology, Tianjin 300054, P.R. China
| |
Collapse
|
19
|
Ali SA, Zaitone SA, Dessouki AA, Ali AA. Pregabalin affords retinal neuroprotection in diabetic rats: Suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Exp Eye Res 2019; 184:78-90. [PMID: 31002823 DOI: 10.1016/j.exer.2019.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
Pregabalin is the first drug to receive FDA approval for treating diabetic neuropathic pain. This study investigated the neuroprotective effect of pregabalin in an experimental model of diabetic retinopathy and tested some possible mechanisms underlying the putative neuroprotective effect. Male Wistar rats received streptozotocin (45 mg/kg) to induce type 1 diabetes mellitus. After two weeks, a course of pregabalin (3, 10 and 30 mg/kg) has been launched for five consecutive weeks. Retinal expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was estimated by real-time PCR and retinal glutamate content was also estimated. Further, retinal caspase-3 immunoblotting and DNA fragmentation assays determined the degree of apoptosis. Pregabalin improved histopathological abnormalities in diabetic retinas and suppressed the diabetes-enhanced retinal expression of IL-1β, TNF-α, CD11b (a surface marker for microglia) while attenuated expression of caspase-3 and DNA fragmentation versus the diabetic group. In addition, diabetic rats treated with pregabalin displayed reductions in retinal glutamate, nitric oxide and malondialdehyde (MDA) and enhanced reduced glutathione (GSH) content versus the diabetic controls. Furthermore, pregabalin enhanced the histopathological picture and reduced fibrosis in the optic nerve of diabetic rats in addition to suppression of the content of the glia fibrillary acidic protein. The findings provide the first evidence demonstrating that pregabalin alleviates retinal neuroinflammation, apoptosis and oxidative stress in an experimental type 1 diabetes mellitus. Therefore, pregabalin might serve as a potential therapy for retinopathy after adequate clinical research.
Collapse
Affiliation(s)
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Azaa A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Yao F, Zhang E, Gao Z, Ji H, Marmouri M, Xia X. Did you choose appropriate tracer for retrograde tracing of retinal ganglion cells? The differences between cholera toxin subunit B and Fluorogold. PLoS One 2018; 13:e0205133. [PMID: 30289890 PMCID: PMC6173421 DOI: 10.1371/journal.pone.0205133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Cholera toxin subunit B (CTB) and Fluorogold(FG) are two widely utilized retrograde tracers to assess the number and function of retinal ganglion cells (RGCs). However, the relative advantages and disadvantages of these tracers remain unclear, which may lead to their inappropriate application. In this study, we compared these tracers by separately injecting the tracer into the superior Colliculi (SC) in rats, one or 2 weeks later, the rats were sacrificed, and their retinas, brains, and optic nerves were collected. From the first to second week, FG displayed a greater number of labeled RGCs and a larger diffusion area in the SC than CTB; The number of CTB labeled RGCs and the diffusion area of CTB in the SC increased significantly, but there was no distinction between FG; Furthermore, CTB exhibited more labeled RGC neurites and longer neurites than FG, but no difference was evident between the same trace; The optic nerves labeled using CTB were much clearer than those labeled using FG. In conclusion, both CTB and FG can be used for the retrograde labeling of RGCs in rats at 1 or 2 weeks. FG achieves retrograde labeling of a greater number of RGCs than CTB, whereas CTB better delineates the morphology of RGCs. Furthermore, CTB seems more suitable for retrograde labeling of some small, non-image forming nuclei in the brain to which certain RGC subtypes project their axons.
Collapse
Affiliation(s)
- Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Endong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaolin Gao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Ji
- Department of Ophthalmology, The People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Mahmoud Marmouri
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
21
|
Huang L, Applegate RL, Applegate PM, Boling W, Zhang JH. Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2018; 8:73-78. [PMID: 30319760 PMCID: PMC6178639 DOI: 10.4103/2045-9912.241063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiogenic global brain hypoxia-ischemia is a devastating medical problem that is associated with unfavorable neurologic outcomes. Low dose hydrogen gas (up to 2.9%) has been shown to be neuroprotective in a variety of brain diseases. In the present study, we investigated the protective effect of water by electrolysis-derived high concentration hydrogen gas (60%) in a rat model of asphyxia induced-cardiac arrest and global brain hypoxia-ischemia. High concentration hydrogen gas was either administered starting 1 hour prior to cardiac arrest for 1 hour and starting 1 hour post-resuscitation for 1 hour (pre- & post-treatment) or starting 1 hour post-resuscitation for 2 hours (post-treatment). In animals subjected to 9 minutes of asphyxia, both therapeutic regimens tended to reduce the incidence of seizures and neurological deficits within 3 days post-resuscitation. In rats subjected to 11 minutes of asphyxia, significantly worse neurological deficits were observed compared to 9 minutes asphyxia, and pre- & post-treatment had a tendency to improve the success rate of resuscitation and to reduce the seizure incidence within 3 days post-resuscitation. Findings of this preclinical study suggest that water electrolysis-derived 60% hydrogen gas may improve short-term outcomes in cardiogenic global brain hypoxia-ischemia.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Richard L Applegate
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
22
|
Yan W, Chen T, Long P, Zhang Z, Liu Q, Wang X, An J, Zhang Z. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats. Med Sci Monit 2018; 24:3840-3847. [PMID: 29875353 PMCID: PMC6020745 DOI: 10.12659/msm.907269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. Material/Methods Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. Results No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P<0.05). The number of the infiltrating cells in the ICB of rats from the H-O group was not significantly different from that of the model or N-O group (P>0.05), while the activation of microglia cells in the H-O group was somewhat reduced (P<0.05). Conclusions Post-treatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.
Collapse
Affiliation(s)
- Weiming Yan
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, Shaanxi, P.R. China (mainland)
| | - Tao Chen
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, Shaanxi, P.R. China (mainland)
| | - Pan Long
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, Shaanxi, P.R. China (mainland)
| | - Zhe Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for
Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military
Medical University, Xi’an, Shaanxi, P.R. China (mainland)
| | - Qian Liu
- The Commission of Health and Family Planning of Hebei Province, Shijiazhuang,
Hebei, P.R. China (mainland)
| | - Xiaocheng Wang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, Shaanxi, P.R. China (mainland)
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong
University, Xi’an, Shaanxi, P.R. China (mainland)
| | - Zuoming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, Shaanxi, P.R. China (mainland)
| |
Collapse
|
23
|
Abstract
Hydrogen is the most abundant chemical element in the universe, and has been used as an inert gas for a long time. More recent studies have shown that molecular hydrogen as a kind of antioxidant, anti-inflammatory, anti-apoptosis, gene expression and signal modulation molecule, can be used for the treatment of many diseases. This review mainly focuses on the research progresses of hydrogen in various medical fields and the possible action mechanisms.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Wen Ge
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ru-Fang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Wu J, Wang R, Yang D, Tang W, Chen Z, Sun Q, Liu L, Zang R. Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K/Akt pathway. Biochem Biophys Res Commun 2018; 495:2462-2468. [DOI: 10.1016/j.bbrc.2017.12.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022]
|
25
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
26
|
Chen O, Cao Z, Li H, Ye Z, Zhang R, Zhang N, Huang J, Zhang T, Wang L, Han L, Liu W, Sun X. High-concentration hydrogen protects mouse heart against ischemia/reperfusion injury through activation of thePI3K/Akt1 pathway. Sci Rep 2017; 7:14871. [PMID: 29093541 PMCID: PMC5665927 DOI: 10.1038/s41598-017-14072-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
The study investigated the role of Akt1 through the cardioprotection of high-concentration hydrogen (HCH). C57BL/6 mice were randomly divided into the following groups: sham, I/R, I/R + HCH, I/R + HCH + LY294002 (PI3K inhibitor), I/R + HCH + wortmannin (PI3K inhibitor), I/R + LY294002, and I/R + wortmannin. After 45 min of ischemia, HCH (67% H2 and 33% O2) was administered to mice during a 90-min reperfusion. To investigate the role of Akt1 in the protective effects of HCH, mice were divided into the following groups: I/R + A-674563 (Akt1 selective inhibitor), I/R + HCH + A-674563, I/R + CCT128930 (Akt2 selective inhibitor), and I/R + HCH + CCT128930. After a 4-h reperfusion, serum biochemistry, histological, western blotting, and immunohistochemical analyses were performed to evaluate the role of the PI3K-Akt1 pathway in the protection of HCH. In vitro, 75% hydrogen was administered to cardiomyocytes during 4 h of reoxygenation after 3-h hypoxia. Several analyses were performed to evaluate the role of the Akt1 in the protective effects of hydrogen. HCH resulted in the phosphorylation of Akt1 but not Akt2, and Akt1 inhibition markedly abolished HCH-induced cardioprotection. Our findings reveal that HCH may exert cardioprotective effects through a PI3K-Akt1-dependent mechanism.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Clinical Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhiyong Cao
- Department of Cardiology, No.411 Hospital of PLA, Shanghai, 200081, People's Republic of China
| | - He Li
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Clinical Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhouheng Ye
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Rongjia Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Junlong Huang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ting Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Ling Han
- Central Laboratory, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wenwu Liu
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xuejun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
27
|
Gao Q, Song H, Wang XT, Liang Y, Xi YJ, Gao Y, Guo QJ, LeBaron T, Luo YX, Li SC, Yin X, Shi HS, Ma YX. Molecular hydrogen increases resilience to stress in mice. Sci Rep 2017; 7:9625. [PMID: 28852144 PMCID: PMC5575246 DOI: 10.1038/s41598-017-10362-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
The inability to successfully adapt to stress produces pathological changes that can lead to depression. Molecular hydrogen has anti-oxidative and anti-inflammatory activities and neuroprotective effects. However, the potential role of molecular hydrogen in stress-related disorders is still poorly understood. The present study aims to investigate the effects of hydrogen gas on resilience to stress in mice. The results showed that repeated inhalation of hydrogen-oxygen mixed gas [67%:33% (V/V)] significantly decreased both the acute and chronic stress-induced depressive- and anxiety-like behaviors of mice, assessed by tail suspension test (TST), forced swimming test (FST), novelty suppressed feeding (NSF) test, and open field test (OFT). ELISA analyses showed that inhalation of hydrogen-oxygen mixed gas blocked CMS-induced increase in the serum levels of corticosterone, adrenocorticotropic hormone, interleukin-6, and tumor necrosis factor-α in mice exposed to chronic mild stress. Finally, inhalation of hydrogen gas in adolescence significantly increased the resilience to acute stress in early adulthood, which illustrates the long-lasting effects of hydrogen on stress resilience in mice. This was likely mediated by inhibiting the hypothalamic-pituitary-adrenal axis and inflammatory responses to stress. These results warrant further exploration for developing molecular hydrogen as a novel strategy to prevent the occurrence of stress-related disorders.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Nutrition, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han Song
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ting Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ying Liang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan-Jie Xi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qing-Jun Guo
- Department of Surgery, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tyler LeBaron
- Molecular Hydrogen Foundation, Kissimmee, FL, 34744, USA
| | - Yi-Xiao Luo
- Department of Pharmacology, Medical School of Hunan Normal University, Changsha, 410013, China
| | - Shuang-Cheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, 050011, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yu-Xia Ma
- Department of Nutrition, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
28
|
Wang S, Ye Q, Tu J, Zhang M, Ji B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin Exp Hypertens 2017; 39:711-717. [PMID: 28678631 DOI: 10.1080/10641963.2017.1313854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saibin Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Qian Ye
- Department of Cardiology, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Junwei Tu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Mingying Zhang
- Department of Cardiology, Wenzhou Municipal Central Hospital, Wenzhou, China
| | - Bin Ji
- Department of Anesthesiology, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Inhalation of high concentrations of hydrogen ameliorates liver ischemia/reperfusion injury through A 2A receptor mediated PI3K-Akt pathway. Biochem Pharmacol 2017; 130:83-92. [DOI: 10.1016/j.bcp.2017.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
|
30
|
|
31
|
Xu L, Zhang Z, Xie T, Zhang X, Dai T. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury. PLoS One 2016; 11:e0164941. [PMID: 27935942 PMCID: PMC5147780 DOI: 10.1371/journal.pone.0164941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Ziyin Zhang
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Tianhua Xie
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Xiaoyang Zhang
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Tu Dai
- Department of Hepatobiliary, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
32
|
Gong XL, Gu XL, Chen YC, Zhu H, Xia ZN, Li JZ, Lu GC. Chronic preclinical safety evaluation of EPO-018B, a pegylated peptidic erythropoiesis-stimulating agent in monkeys and rats. Toxicol Appl Pharmacol 2016; 307:45-61. [PMID: 27457977 DOI: 10.1016/j.taap.2016.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
EPO-018B, a synthetic peptide-based erythropoiesis stimulating agent (ESA), is mainly designed for treatment of anemia caused by chronic renal failure and chemotherapy against cancer. It overcomes the deficiencies of currently approved ESA, including the frequent administration of temperature-sensitive recombinant protein and anti-EPO antibody-mediated pure red cell aplasia (PRCA). This study was designed to evaluate the potential chronic toxicity of EPO-018B. Subcutaneous administration doses were designed as 0, 0.2, 1 and 10mg/kg for six months for 160 rats (20/gender/group) and 0, 0.3, 3 and 20mg/kg for nine months for 32 monkeys (4/gender/group) once every three weeks. The vehicles received the same volume of physiological saline injection. All animals survived to the scheduled necropsies after six weeks (for rats) and fourteen weeks (for monkeys) recovery period, except for the two high-dose female rats and two high-dose male monkeys, which were considered related to the increased RBCs, chronic blood hyperviscosity and chronic cardiac injury. EPO-018B is supposed to be subcutaneously injected once every month and the intended human therapeutic dose is 0.025mg/kg. The study findings at 0.2mg/kg for rats and 0.3mg/kg for monkeys were considered to be the study NOAEL (the no observed adverse effect level), which were more than ten times the intended human therapeutic dose. Higher doses caused adverse effects related to the liver toxicity, cardiotoxicity, appearance of neutralizing antibodies of EPO-018B and the decrease of serum glucose and cholesterol. Most treatment-induced effects were reversible or revealed ongoing recovery upon the discontinuation of treatment. The sequelae occurred in rats and monkeys were considered secondary to exaggerated pharmacology and would less likely occur in the intended patient population. As to the differences between human beings and animals, the safety of EPO-018B need to be further confirmed in the future clinical studies.
Collapse
Affiliation(s)
- Xue-Lian Gong
- Department of Hygiene and Toxicology, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Lei Gu
- Department of Hygiene and Toxicology, Second Military Medical University, Shanghai 200433, China
| | - Yong-Chun Chen
- Department of Hygiene and Toxicology, Second Military Medical University, Shanghai 200433, China; Department of Pharmacy, No.422 Hospital, Zhanjiang 524005, China
| | - Hai Zhu
- Department of Hygiene and Toxicology, Second Military Medical University, Shanghai 200433, China
| | - Zhen-Na Xia
- Department of Hygiene and Toxicology, Second Military Medical University, Shanghai 200433, China
| | - Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Guo-Cai Lu
- Department of Hygiene and Toxicology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
33
|
Liu L, Sun Q, Wang R, Chen Z, Wu J, Xia F, Fan XQ. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways. Brain Res 2016; 1646:327-333. [PMID: 27208496 DOI: 10.1016/j.brainres.2016.05.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Retinal ischemia/reperfusion injury (IRI) may cause incurable visual impairment due to neural regeneration limits. Methane was shown to exert a protective effect against IRI in many organs. This study aims to explore the possible protective effects of methane-rich saline against retinal IRI in rat. Retinal IRI was performed on the right eyes of male Sprague-Dawley rats, which were immediately injected intraperitoneally with methane-saturated saline (25ml/kg). At one week after surgery, the number of retinal ganglion cells (RGCs), total retinal thickness, visual function were measured by hematoxylin and eosin staining, FluoroGold anterograde labeling and flash visual evoked potentials. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 4-Hydroxy-2-nonenal (4-HNE), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-9, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in retinas were assessed by immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. As expected, methane treatment significantly improved the retinal IRI-induced RGC loss, total retinal layer thinning and visual dysfunction. Moreover, methane treatment significantly reduced the levels of oxidative stress biomarkers (8-OHdG, 4-HNE, MDA) and increased the antioxidant enzyme activities (SOD, CAT, GPx) in the retinas with IRI. Meanwhile, methane treatment significantly increased the anti-apoptotic gene (Bcl-2) expression and decreased the pro-apoptotic gene (Bax) expression, accompanied by the suppression of caspase-3 and caspase-9 activity. Thus, these data demonstrated that methane can exert a neuroprotective role against retinal IRI through anti-oxidative and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Lin Liu
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Department of Ophthalmology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinglei Sun
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Ruobing Wang
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Zeli Chen
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jiangchun Wu
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Fangzhou Xia
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xian-Qun Fan
- Department of Ophthalmology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|