1
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Lecht S, Lahiani A, Klazas M, Naamneh MS, Rubin L, Dong J, Zheng W, Lazarovici P. Rasagiline Exerts Neuroprotection towards Oxygen-Glucose-Deprivation/Reoxygenation-Induced GAPDH-Mediated Cell Death by Activating Akt/Nrf2 Signaling. Biomedicines 2024; 12:1592. [PMID: 39062165 PMCID: PMC11275171 DOI: 10.3390/biomedicines12071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Rasagiline (Azilect®) is a selective monoamine oxidase B (MAO-B) inhibitor that provides symptomatic benefits in Parkinson's disease (PD) treatment and has been found to exert preclinical neuroprotective effects. Here, we investigated the neuroprotective signaling pathways of acute rasagiline treatment for 22 h in PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) for 4 h, followed by 18 h of reoxygenation (R), causing 40% aponecrotic cell death. In this study, 3-10 µM rasagiline induced dose-dependent neuroprotection of 20-80%, reduced the production of the neurotoxic reactive oxygen species by 15%, and reduced the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by 75-90%. In addition, 10 µM rasagiline increased protein kinase B (Akt) phosphorylation by 50% and decreased the protein expression of the ischemia-induced α-synuclein protein by 50% in correlation with the neuroprotective effect. Treatment with 1-5 µM rasagiline induced nuclear shuttling of transcription factor Nrf2 by 40-90% and increased the mRNA levels of the antioxidant enzymes heme oxygenase-1, (NAD (P) H- quinone dehydrogenase, and catalase by 1.8-2.0-fold compared to OGD/R insult. These results indicate that rasagiline provides neuroprotection to the ischemic neuronal cultures through the inhibition of α-synuclein and GAPDH-mediated aponecrotic cell death, as well as via mitochondrial protection, by increasing mitochondria-specific antioxidant enzymes through a mechanism involving the Akt/Nrf2 redox-signaling pathway. These findings may be exploited for neuroprotective drug development in PD and stroke therapy.
Collapse
Affiliation(s)
- Shimon Lecht
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Adi Lahiani
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Michal Klazas
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Jiayi Dong
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
3
|
An D, Xu Y. Environmental risk factors provoke new thinking for prevention and treatment of dementia with Lewy bodies. Heliyon 2024; 10:e30175. [PMID: 38707435 PMCID: PMC11068646 DOI: 10.1016/j.heliyon.2024.e30175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
In recent years, environmental factors have received attention in the pathogenesis of neurodegenerative diseases. Other than genetic factors, the identification of environmental factors and modifiable risk factors may create opportunities to delay the onset or slow the progression of Lewy body disease. Researchers have made significant progress in understanding environmental and modifiable risk factors over the past 30 years. To date, despite the increasing number of articles assessing risk factors for Lewy body disease, few reviews have focused on their role in its onset. In this review, we reviewed the literature investigating the relationship between Lewy body disease and several environmental and other modifiable factors. We found that some air pollutants, exposure to some metals, and infection with some microorganisms may increase the risk of Lewy body disease. Coffee intake and the Mediterranean diet are protective factors. However, it is puzzling that low educational levels and smoking may have some protective effects. In addition, we proposed specific protocols for subsequent research directions on risk factors for neurodegenerative diseases and improved methods. By conducting additional case-control studies, we could explore the role of these factors in the etiopathogenesis of Lewy body disease, establishing a foundation for strategies aimed at preventing and reducing the onset and burden of the disease.
Collapse
Affiliation(s)
- Dinghao An
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neurology Clinical Medical Center, Nanjing, China
| |
Collapse
|
4
|
Li H, Zhang Q, Xue X, Zhang J, Wang S, Zhang J, Lin L, Niu Q. Lnc001209 Participates in aluminium-induced apoptosis of PC12 cells by regulating PI3K-AKT-mTOR signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115062. [PMID: 37229874 DOI: 10.1016/j.ecoenv.2023.115062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Aluminium (Al) is a common environmental neurotoxin, but the molecular mechanism underlying its toxic effects remains unclear. Many studies have shown that aluminium exposure leads to increased neuronal apoptosis. This study aimed to investigate the mechanisms and signalling pathways involved in aluminium exposure-induced neuronal apoptosis. The results showed a decrease in the number of PC12 cells and changes in cell morphology in the aluminium maltol exposure group. The viability of PC12 cells decreased gradually with increasing of exposure doses, and the apoptosis rate increased. The expression of Lnc001209 decreased gradually with an increase in the aluminium exposure dose. After transfection of Lnc001209 siRNA in aluminium-exposed PC12 cells, the protein expression levels of p-Akt Ser473, p-Akt Thr308, p-P85 Tyr467, p-mTOR Ser2448 and CD36 were increased. RNA pull-down MS showed that Lnc001209 interacts with the CD36 protein. Expression of the CD36 protein was increased in PC12 cells exposed to aluminium. The results of the CD36 intervention experiment showed that the protein expression levels of p-Akt Ser473, p-Akt Thr308, p-P85 Tyr467, and p-mTOR Ser2448 likely increased after CD36 overexpression. In addition, the phosphorylation level of AKT had the most significant increase. The enhancement of p-Akt activity promotes neuronal apoptosis.
Collapse
Affiliation(s)
- Huan Li
- Department of Occupational Health, School of Public Health, Jining Medical University, Jining 272067, Shandong, China; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jingsi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Shanshan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jing Zhang
- Department of Occupational Health, School of Public Health, Jining Medical University, Jining 272067, Shandong, China
| | - Li Lin
- Department of Occupational Health, School of Public Health, Jining Medical University, Jining 272067, Shandong, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Occupational Health, School of Public Health, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
5
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
6
|
Ji J, Huang J, Cao N, Hao X, Wu Y, Ma Y, An D, Pang S, Li X. Multiview behavior and neurotransmitter analysis of zebrafish dyskinesia induced by 6PPD and its metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156013. [PMID: 35588826 DOI: 10.1016/j.scitotenv.2022.156013] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The typical tire manufacturing additive 6PPD, its metabolites 6PPDQ and 4-Hydroxy should be monitored because of their ubiquitous presence in the environment and the high toxicity of 6PPDQ to coho salmon. The toxic effect of 6PPD and its metabolites have been revealed superficially, especially on behavioral characteristics. However, the behavioral indicators explored so far are relatively simple and the toxic causes are poorly understood. With this in mind, our work investigated the toxic effects of 6PPD, 6PPDQ and 4-Hydroxy on adult zebrafish penetratingly through machine vision, and the meandering, body angle, top time and 3D trajectory are used for the first time to show the abnormal behaviors induced by 6PPD and its metabolites. Moreover, neurotransmitter changes in the zebrafish brain were measured to explore the causes of abnormal behavior. The results showed that high-dose treatment of 6PPD reduced the velocity by 42.4% and decreased the time at the top of the tank by 91.0%, suggesting significant activity inhibition and anxiety. In addition, γ-aminobutyric acid and acetylcholine were significantly impacted by 6PPD, while dopamine exhibited a slight variation, which can explain the bradykinesia, unbalance and anxiety of zebrafish and presented similar symptoms as Huntingdon's disease. Our study explored new abnormal behaviors of zebrafish induced by 6PPD and its metabolites in detail, and the toxic causes were revealed for the first time by studying the changes of neurotransmitters, thus providing an important reference for further studies of the biological toxicity of 6PPD and its metabolites.
Collapse
Affiliation(s)
- Jiawen Ji
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jinze Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Niannian Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xianghong Hao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yanhua Wu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqiang Ma
- College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Dong An
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zhou Y, Feng Q, Li Y, Liu Q, Zhao X, Duan C, Zhang J, Niu Q. Aluminum Induced Necroptosis of PC12 Cells via TNFR1-RIP1/RIP3 Signalling Pathway. Neurochem Res 2022; 47:3037-3050. [PMID: 35796914 DOI: 10.1007/s11064-022-03653-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022]
Abstract
In addition to apoptosis, it has also been reported that aluminum (Al) causes necroptosis, a new form of programmed necrosis, which has recently been discovered, in nerve cells, but its molecular mechanism is not elucidated. In order to explore the answer, in this study, we apply for this method that after PC12 cells were exposed to maltol aluminum [200 μM Al(mal)3], siRNA were used as interference technique to explore the role of Tumour necrosis factor receptor 1 (TNFR1), receptor interaction proteins 1 (RIP1) and receptor interaction proteins 3 (RIP3) in necroptosis caused by Al(mal)3. After the end of this research, we demonstrated that, initially, Al(mal)3 could trigger apoptosis and necroptosis in PC12 cells and up-regulate both mRNA and protein expressions of TNFR1, RIP1 and RIP3, also, up-regulate the phosphorylated mixed lineage kinase domain-like protein (MLKL) protein expression. Additionally, in PC12 cells treated with Al(mal)3, suppression of TNFR1 was found to enhance apoptosis and attenuate the expression of RIP1/RIP3 and phosphorylated MLKL. At last, deficiency of RIP1/RIP3 reduced the extent of necroptosis. Briefly, our results verify that the TNFR1-RIP1/RIP3 pathway could be involved in Al(mal)3 induced necroptosis.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Qin Feng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yaqin Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Qun Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Chunmei Duan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jingsi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China. .,Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China. .,Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, China. .,Department of Occupational Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Yu Q, Zhu K, Ding Y, Han R, Cheng D. Comparative study of aluminum (Al) speciation on apoptosis-promoting process in PC12 cells: Correlations between morphological characteristics and mitochondrial kinetic disorder. J Inorg Biochem 2022; 232:111835. [DOI: 10.1016/j.jinorgbio.2022.111835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
|
9
|
Zhu D, Liang R, Liu Y, Li Z, Cheng L, Ren J, Guo Y, Wang M, Chai H, Niu Q, Yang S, Bai J, Yu H, Zhang H, Qin X. Deferoxamine ameliorated Al(mal) 3-induced neuronal ferroptosis in adult rats by chelating brain iron to attenuate oxidative damage. Toxicol Mech Methods 2022; 32:530-541. [PMID: 35313783 DOI: 10.1080/15376516.2022.2053254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aluminum (Al), a neurotoxic element, can induce Alzheimer's disease-like (AD-like) changes by triggering neuronal death. Iron homeostasis disturbance has also been implicated in Alzheimer's disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of neuronal death induced by aluminum maltolate (Al(mal)3) in the pathogenesis of AD remains elusive. In this study, the results of three different behavioral experiments suggested that the learning and memory ability deteriorated and autonomous activity declined of these rats that exposed Al(mal)3 were alleviated by deferoxamine (DFO). Transmission electron microscope observations showed that the membrane was ruptured, and the membrane density increased and ridge disappearance (the most prominent characteristic of ferroptosis) in the perinuclear and cytoplasmic compartments of the hippocampal neurons were perceived in the exposure group, while the DFO group and 18 μM/kg Al(mal)3+DFO group were alleviated compared with 18 μM/kg Al(mal)3. In addition, DFO prevented oxidative stress, such as increased glutathione (GSH) and decreased malondialdehyde (MDA) and reactive oxygen species (ROS), while the latter two indexes had the same changing tendency as the total iron of brain tissue. These data indicated that Al(mal)3 could cause ferroptosis in Sprague-Dawley (SD) rat neurons, which was inhibited by DFO via reducing the content of iron and increasing the ability of cells to resist oxidative damage.
Collapse
Affiliation(s)
- Doudou Zhu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhuang Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Liting Cheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingjuan Ren
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yuyan Guo
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Huilin Chai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shoulin Yang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaojiang Qin
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
10
|
Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. ADVANCES IN NEUROTOXICOLOGY 2021; 5:1-34. [PMID: 34263089 DOI: 10.1016/bs.ant.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Zangeneh AR, Takhshid MA, Ranjbaran R, Maleknia M, Meshkibaf MH. Diverse Effect of Vitamin C and N-Acetylcysteine on Aluminum-Induced Eryptosis. Biochem Res Int 2021; 2021:6670656. [PMID: 33505724 PMCID: PMC7815388 DOI: 10.1155/2021/6670656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The role of oxidative stress in Aluminum (Al)-induced apoptotic effects has been investigated and suicidal death of erythrocytes, eryptosis, is characterized by cell shrinkage and phosphatidylserine externalization (PSE) at the surface of the erythrocyte cell membrane. Eryptosis is stimulated by an increase in cytosolic Ca2+ concentration and reactive oxygen species (ROS). This ex vivo study was conducted to evaluate the effect of well-known antioxidants including vitamin C (vit C) and N-acetylcysteine (NAC), against Al-induced hemolysis and eryptosis. METHODS Isolated erythrocytes from the healthy volunteers were partitioned into various groups (6 replicates/group) and treated by various concentrations of Al (3-100 µM) in the presence and absence of vit C (0.6 mM) and NAC (1 mM). After 24 hours of treatment, hemolysis was determined from hemoglobin levels in the supernatant. Flowcytometric methods were applied to measure PSE, cell shrinkage, Ca2+ content, and ROS abundance using annexin V-binding, forward scatter, Fluo3-fluorescence, and DCFDA dependent fluorescence, respectively. Reduced glutathione (GSH) was measured by the ELISA method. RESULTS The results showed that a 24 hours' exposure of the erythrocytes to Al (10-100 µM) significantly increased hemolysis in a dose and Ca2+dependent manner. Al also dramatically decreased forward scatter. The percentage of PSE cells, Fluo3-fluorescence, and DCFDA fluorescence were increased by Al. Furthermore, cotreatment with NAC inhibited the effect of Al on hemolysis, eryptosis, and ROS production. Vit C decreased Al-induced ROS production. However, increased Al-induced eryptosis. There were no significant changes in glutathione after the ALCL3 treatment. CONCLUSIONS Al-induced eryptosis and hemolysis through triggering oxidative stress, while NAC could diverse this effect. In contrast, vit C might intensify Al-induced eryptosis at particular doses through a less known mechanism.
Collapse
Affiliation(s)
- Ali Reza Zangeneh
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Maleknia
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
12
|
Cheng D, Wang G, Wang X, Tang J, Yu Q, Zhang X, Wang S. Neuro-protection of Chlorogenic acid against Al-induced apoptosis in PC12 cells via modulation of Al metabolism and Akt/GSK-3β pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease. Mov Disord 2019; 35:20-33. [PMID: 31680318 DOI: 10.1002/mds.27874] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/20/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
Excessive activation of microglia and subsequent release of proinflammatory cytokines play a crucial role in neuroinflammation and neurodegeneration in Parkinson's disease (PD). Components of the nucleotide-binding oligomerization domain and leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome complex, leucine-rich-repeat- and pyrin-domain-containing 3, caspase-1, and apoptosis-associated speck-like protein containing a CARD, are highly expressed in activated microglia in PD patient brains. Findings suggest that neurotoxins, aggregation of α-synuclein, mitochondrial reactive oxygen species, and disrupted mitophagy are the key regulators of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and release of interleukin-1β and interleukin-18 caspase-1-mediated pyroptotic cell death in the substantia nigra of the brain. Although this evidence suggests the leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome may be a potential drug target for treatment of PD, the exact mechanism of how the microglia sense these stimuli and initiate leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome signaling is unknown. Here, the molecular mechanism and regulation of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and its role in the pathogenesis of PD are discussed. Moreover, the potential of both endogenous and synthetic leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome modulators, long noncoding RNA, microRNA to develop novel therapeutics to treat PD is presented. Overall, we recommend that the microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome can be a potential target for PD treatment. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea.,Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
14
|
Anderson FL, Coffey MM, Berwin BL, Havrda MC. Inflammasomes: An Emerging Mechanism Translating Environmental Toxicant Exposure Into Neuroinflammation in Parkinson's Disease. Toxicol Sci 2019; 166:3-15. [PMID: 30203060 DOI: 10.1093/toxsci/kfy219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence indicates that complex gene-environment interactions underlie the incidence and progression of Parkinson's disease (PD). Neuroinflammation is a well-characterized feature of PD widely believed to exacerbate the neurodegenerative process. Environmental toxicants associated with PD, such as pesticides and heavy metals, can cause cellular damage and stress potentially triggering an inflammatory response. Toxicant exposure can cause stress and damage to cells by impairing mitochondrial function, deregulating lysosomal function, and enhancing the spread of misfolded proteins. These stress-associated mechanisms produce sterile triggers such as reactive oxygen species (ROS) along with a variety of proteinaceous insults that are well documented in PD. These associations provide a compelling rationale for analysis of sterile inflammatory mechanisms that may link environmental exposure to neuroinflammation and PD progression. Intracellular inflammasomes are cytosolic assemblies of proteins that contain pattern recognition receptors, and a growing body of evidence implicates the association between inflammasome activation and neurodegenerative disease. Characterization of how inflammasomes may function in PD is a high priority because the majority of PD cases are sporadic, supporting the widely held belief that environmental exposure is a major factor in disease initiation and progression. Inflammasomes may represent a common mechanism that helps to explain the strong association between exposure and PD by mechanistically linking environmental toxicant-driven cellular stress with neuroinflammation and ultimately cell death.
Collapse
Affiliation(s)
| | | | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | | |
Collapse
|
15
|
Chen QQ, Haikal C, Li W, Li JY. Gut Inflammation in Association With Pathogenesis of Parkinson's Disease. Front Mol Neurosci 2019; 12:218. [PMID: 31572126 PMCID: PMC6753187 DOI: 10.3389/fnmol.2019.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that is generally thought to be caused by multiple factors, including environmental and genetic factors. Emerging evidence suggests that intestinal disturbances, such as constipation, are common non-motor symptoms of PD. Gut inflammation may be closely associated with pathogenesis in PD. This review aims to discuss the cross-talk between gut inflammation and PD pathology initiation and progression. Firstly, we will highlight the studies demonstrating how gut inflammation is related to PD. Secondly, we will analyze how gut inflammation spreads from the gastro-intestine to the brain. Here, we will mainly discuss the neural pathway of pathologic α-syn and the systemic inflammatory routes. Thereafter, we will address how alterations in the brain subsequently lead to dopaminergic neuron degeneration, in which oxidative stress, glutamate excitotoxicity, T cell driven inflammation and cyclooxygenase-2 (COX-2) are involved. We conclude a model of PD triggered by gut inflammation, which provides a new angle to understand the mechanisms of the disease.
Collapse
Affiliation(s)
- Qian-Qian Chen
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Wen Li
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Institute of Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Capriello T, Grimaldi MC, Cofone R, D'Aniello S, Ferrandino I. Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafish. CHEMOSPHERE 2019; 222:243-249. [PMID: 30708158 DOI: 10.1016/j.chemosphere.2019.01.140] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 05/23/2023]
Abstract
Aluminium and cadmium are biologically non-essential metals with a role in neurodegenerative and neuromuscular diseases. As an attractive model for neurobehavioural studies, zebrafish at 6 h post fertilization were exposed to 9, 18, 36 and 72 μM CdCl2 and 50, 100 and 200 μM AlCl3, respectively, for 72 h, and motility such as distance moved, mean velocity, cumulative movement, meander and heading were measured by DanioVision equipment. The hatching time was also analysed. A delay in the exit from the chorion was observed in all treated larvae with respect to the controls. CdCl2 acted on the exit from the chorion of larvae with a dose-dependent delay. By contrast, the delay caused by AlCl3 was greater at low concentrations. A dose-dependent reduction in swimming performance was observed in the larvae exposed to CdCl2. Instead, for those exposed to AlCl3, swimming performance improved at higher concentrations although values were in general lower than those of control. All the parameters had a similar trend except the meander parameter which showed a dose-dependent reduction. These data show that cadmium and aluminium can delay hatching and alter swimming ability in the early developmental stages of zebrafish, albeit with different effects, suggesting that exposure to sublethal concentrations of both metals can change behavioural parameters.
Collapse
Affiliation(s)
- Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | | | - Rita Cofone
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
17
|
Zhang T, Wang S, Niu Q. Effect of Aluminum-Maltolate on the Content of Aβ Protein and the Expression of ApoER2, VLDLRs, and LRP1 in PC12-ApoE4 Cells. Neurotox Res 2019; 35:931-944. [PMID: 30649678 DOI: 10.1007/s12640-019-9995-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
To investigate the effect of aluminum-maltolate [Al(mal)3] on the expression of ApoER2, VLDLRs, and LRP1 in PC12-ApoE4 cells. The lentiviral vector carrying human ApoE4 gene was transfected into PC12 cells; after screening with puromycin, PC12 cells carrying ApoE4 gene (PC12-ApoE4 cells) were established. After 24-h treatment with Al(mal)3, the cell survival rate was measured by CCK-8 assay. The expression of Aβ40 and Aβ42 was detected by ELISA assay; the expression of the APP, ApoER2, LRP1, and VLDLRs genes was detected by RT-PCR, and Western blot assay was used to detect the expression of the APP, ApoER2, LRP1, and VLDLRs proteins. Factorial experiment design was performed to analyze interaction between cell type and Al dose. Al(mal)3 treatment induced dose-dependent decreases of survival rate in the two cell groups and dose-dependent increases of Aβ42 content(P < 0.05). The expressions of ApoER2, LRP1, and VLDLR proteins and their mRNA transcription decreased gradually with the increase of Al(mal)3 doses (P < 0.05), while the expression of APP protein and mRNA transcription gradually increased with the increase of Al(mal)3 doses (P < 0.05). As regard to the interaction of cell type and Al dose, the decrease of cell survival rate and the increase of the Aβ42 were both statistically significant (P < 0.05). And the decrease of ApoER2 and LRP1 proteins was both statistically significant too (P < 0.05). The effect of Al(mal)3 and ApoE4 gene on the survival rate and the increase of Aβ content in PC12 cells. That is to say, there is interaction between ApoE4 gene and aluminum on the Aβ content, especially the change of the Aβ42 content, which may be related to the down-regulation of the expression of ApoER2 and LRP1 proteins.
Collapse
Affiliation(s)
- Ting Zhang
- Shanxi Provincial Key Laboratory of Environmental Hazards and Human Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Shan Wang
- Shanxi Provincial Key Laboratory of Environmental Hazards and Human Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiao Niu
- Shanxi Provincial Key Laboratory of Environmental Hazards and Human Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
18
|
Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells. Chem Biol Interact 2018; 299:15-26. [PMID: 30481499 DOI: 10.1016/j.cbi.2018.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/17/2018] [Accepted: 11/23/2018] [Indexed: 01/13/2023]
Abstract
Many reports demonstrated that aluminum maltolate (Almal) has potential toxicity to human and animal. Our study has demonstrated that Almal can induce oxidative damage and apoptosis in PC12 cells and SH-SY5Y Cells, two in vitro models of neuronal cells. Hyperforin (HF) is a well-known antioxidant, anti-inflammatory, anti-amyloid and anti-depressant compound extracted from Hypericum perforatum extract. Here, we investigated the neuroprotective effect of HF against Almal-induced neurotoxicity in cultured PC12 cells and SH-SY5Y cells, mainly caused by oxidative stress. In the present study, HF significantly inhibited the formation of reactive oxygen species (ROS), decreased the level of lipid peroxide and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) compared with Almal group in PC12 cells and SH-SY5Y cells. Additionally, HF suppressed the reduction of the mitochondrial membrane potential (MMP), cytochrome c (Cyt-c) release, activation of caspase-3, and the down-regulation of Bcl-2 expression and up-regulation of Bax expression induced by Almal in PC12 cells and SH-SY5Y cells. In summary, HF protects PC12 cells and SH-SY5Y cells from damage induced by Almal through reducing oxidative stress and preventing of mitochondrial-mediated apoptosis.
Collapse
|
19
|
Glycyrrhizic Acid Ameliorates Mitochondrial Function and Biogenesis Against Aluminum Toxicity in PC12 Cells. Neurotox Res 2018; 35:584-593. [PMID: 30317430 DOI: 10.1007/s12640-018-9967-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Glycyrrhizic acid (GA) is the most effective ingredient in the root of licorice, with important pharmacological effects. We investigate the effects of GA on mitochondrial function and biogenesis in the aluminum toxicity in PC12 cell line. After pretreatment of PC12 cells with different concentrations of GA (5-100 μM), and specific concentration of aluminum maltolate (Almal,1000 μM) for 48 h, cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondria mass, cytochrome c oxidase enzyme activity, and the ATP level of the cells were measured. The expression mRNA level of PGC-1α, NRF1, NRF2, and TFAM was confirmed by the real-time PCR quantitative method. The results showed that low concentrations of GA protected Almal-induced cell death in 48 h. It was also observed that GA reduced the ROS production and increased the ATP level. The activity of cytochrome c oxidase enzyme and also decrease of MMP were improved. In addition, GA significantly increased the expression of mitochondrial genes and mass against aluminum toxicity. GA can exert its protective effect against the toxicity of Almal through maintaining mitochondrial function and subsequently increasing energy metabolism and mitochondrial biogenesis. GA as a natural product can be considered as a supplement in neurodegenerative disease.
Collapse
|
20
|
Xu Y, Zhi F, Peng Y, Shao N, Khiati D, Balboni G, Yang Y, Xia Y. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP +-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Mol Neurobiol 2018; 56:252-266. [PMID: 29687347 DOI: 10.1007/s12035-018-1043-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
There is emerging evidence suggesting that neurotoxic insults and hypoxic/ischemic injury are underlying causes of Parkinson's disease (PD). Since PTEN-induced kinase 1 (PINK1) dysfunction is involved in the molecular genesis of PD and since our recent studies have demonstrated that the δ-opioid receptor (DOR) induced neuroprotection against hypoxic and 1-methyl-4-phenyl-pyridimium (MPP+) insults, we sought to explore whether DOR protects neuronal cells from hypoxic and/or MPP+ injury via the regulation of PINK1-related pathways. Using highly differentiated rat PC12 cells exposed to either severe hypoxia (0.5-1% O2) for 24-48 h or varying concentrations of MPP+, we found that both hypoxic and MPP+ stress reduced the level of PINK1 expression, while incubation with the specific DOR agonist UFP-512 reversed this reduction and protected the cells from hypoxia and/or MPP+-induced injury. However, the DOR-mediated cytoprotection largely disappeared after knocking down PINK1 by PINK1 small interfering RNA. Moreover, we examined several important signaling molecules related to cell survival and apoptosis and found that DOR activation attenuated the hypoxic and/or MPP+-induced reduction in phosphorylated Akt and inhibited the activation of cleaved caspase-3, whereas PINK1 knockdown largely deprived the cell of the DOR-induced effects. Our novel data suggests a unique mechanism underlying DOR-mediated cytoprotection against hypoxic and MPP+ stress via a PINK1-mediated regulation of signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dhiaedin Khiati
- Royal College of Surgeons of Ireland - Medical University of Bahrain, Busaiteen, Bahrain
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China. .,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Hu C, Yang J, He Q, Luo Y, Chen Z, Yang L, Yi H, Li H, Xia H, Ran D, Yang Y, Zhang J, Li Y, Wang H. CysLTR1 Blockage Ameliorates Liver Injury Caused by Aluminum-Overload via PI3K/AKT/mTOR-Mediated Autophagy Activation in Vivo and in Vitro. Mol Pharm 2018; 15:1996-2006. [DOI: 10.1021/acs.molpharmaceut.8b00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qin He
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Honggang Yi
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Dongzhi Ran
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
22
|
Huang W, Cheng P, Yu K, Han Y, Song M, Li Y. Hyperforin attenuates aluminum-induced Aβ production and Tau phosphorylation via regulating Akt/GSK-3β signaling pathway in PC12 cells. Biomed Pharmacother 2017; 96:1-6. [PMID: 28961505 DOI: 10.1016/j.biopha.2017.09.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Aluminum (Al) is a neurotoxicant and cause β-amyloid (Aβ) peptides aggregation and tau hyperphosphorylation. Hyperforin (HF) is one of the major active constituents of the extracts of St. John's Wort (Hypericum perforatum), can treat Alzheimer's disease (AD) and other diseases involving peptide accumulation and cognition impairment. To determine the effects of HF on Al-induced Aβ formation and tau hyperphosphorylation, PC12 cells were cultured and treated with Al-malt (500μM) and/or HF (1μM). The results showed that HF treatment significantly attenuated Al-malt-induced Aβ1-42 production by reducing the expressions of APP, BACE1 and PS1, while increasing the expressions of sAPPα, ADAM9/10/17, and tau phosphorylation in PC12 cells. In addition, HF treatment also increased phosphorylation of AKT (Ser473) and inhibited GSK-3β activity by increasing phosphorylation of GSK-3β (Ser9). These results indicated that HF may exert the protection via regulating the AKT/GSK-3β signaling to reduce Aβ production and tau phosphorylation in PC12 cells. Furthermore, these results could lead a possible therapeutics for the management of Al neurotoxicity.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ping Cheng
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Kaiyuan Yu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Cheng D, Zhang X, Xu L, Li X, Hou L, Wang C. Protective and prophylactic effects of chlorogenic acid on aluminum-induced acute hepatotoxicity and hematotoxicity in mice. Chem Biol Interact 2017. [DOI: 10.1016/j.cbi.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
King A, Troakes C, Aizpurua M, Mirza A, Hodges A, Al-Sarraj S, Exley C. Unusual neuropathological features and increased brain aluminium in a resident of Camelford, UK. Neuropathol Appl Neurobiol 2017; 43:537-541. [PMID: 28603852 DOI: 10.1111/nan.12417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- A King
- Department Of Clinical Neuropathology, King's College Hospital, London, UK.,London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.,Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - M Aizpurua
- Department Of Clinical Neuropathology, King's College Hospital, London, UK.,London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - A Mirza
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK
| | - A Hodges
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - S Al-Sarraj
- Department Of Clinical Neuropathology, King's College Hospital, London, UK.,London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
25
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
26
|
Arabsolghar R, Saberzadeh J, Khodaei F, Borojeni RA, Khorsand M, Rashedinia M. The protective effect of sodium benzoate on aluminum toxicity in PC12 cell line. Res Pharm Sci 2017; 12:391-400. [PMID: 28974977 PMCID: PMC5615869 DOI: 10.4103/1735-5362.213984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sodium benzoate (SB) is one of the food additives and preservatives that prevent the growth of fungi and bacteria. SB has been shown to improve the symptoms of neurodegenerative disease such as Alzheimer's disease. The aim of this study was to evaluate the effect of SB on the cell survival and cellular antioxidant indices after exposure to aluminum maltolate (Almal) in PC12 cell line as a model of neurotoxicity. The cells exposed to different concentrations of SB (0.125 to 3 mg/mL) in the presence of Almal (500 µM) and cell viability, the level of reactive oxygen species (ROS), glutathione content and catalase activity were measured. The results showed that low concentrations of SB caused an increase in the cell survival, but cell viability was reduced in high concentrations. SB could neither prevent the level of ROS production nor change glutathione content. SB (0.5 mg/mL) significantly increased the catalase enzyme activity as compared to the Almal. This study suggested that SB did not completely protect the cell to aluminum-induced free radicals toxicity. Possibly SB improves the symptoms of neurodegenerative disease by other mechanisms.
Collapse
Affiliation(s)
- Rita Arabsolghar
- Department of Laboratory Sciences and Diagnostic Laboratory Sciences & Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Jamileh Saberzadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Rozhin Abbasi Borojeni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| |
Collapse
|
27
|
Role of neurotoxicants and traumatic brain injury in α-synuclein protein misfolding and aggregation. Brain Res Bull 2016; 133:60-70. [PMID: 27993598 DOI: 10.1016/j.brainresbull.2016.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
Protein misfolding and aggregation are key pathological features of many neurodegenerative diseases including Parkinson's disease (PD) and other forms of human Parkinsonism. PD is a complex and multifaceted disorder whose etiology is not fully understood. However, several lines of evidence support the multiple hit hypothesis that genetic vulnerability and environmental toxicants converge to trigger PD pathology. Alpha-synuclein (α-Syn) aggregation in the brain is an important pathophysiological characteristic of synucleinopathies including PD. Epidemiological and experimental studies have shown that metals and pesticides play a crucial role in α-Syn aggregation leading to the onset of various neurodegenerative diseases including PD. In this review, we will emphasize key findings of several epidemiological as well as experimental studies of metal- and pesticide-induced α-Syn aggregation and neurodegeneration. We will also discuss other factors such as traumatic brain injury and oxidative insult in the context of α-Syn-related neurodegenerative processes.
Collapse
|
28
|
Neuroprotective Effects of Paeoniflorin on 6-OHDA-Lesioned Rat Model of Parkinson’s Disease. Neurochem Res 2016; 41:2923-2936. [DOI: 10.1007/s11064-016-2011-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 02/01/2023]
|