1
|
Hassanshahi A, Ilaghi M, Ranjbar H, Razavinasab M, Kohlmeier KA, Hosseinmardi N, Behzadi G, Janahmadi M, Shabani M. Agmatine Mitigates Hyperexcitability of Ventral Tegmental Area Dopaminergic Neurons in Prenatally Stressed Male Offspring. Eur J Pharmacol 2025:177362. [PMID: 39923826 DOI: 10.1016/j.ejphar.2025.177362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Prenatal stress (PS) alters development of the brain, resulting in heightening the risk in offspring of cognitive deficits and addiction behaviors. The ventral tegmental area (VTA) plays a crucial role in processing stressful events, and promoting cognitively based motivational behavior. Previous research, including our own, has shown that PS affects the development of VTA dopaminergic (DA) neurons, leading to functional differences. In this study PS was induced in pregnant mice using both psychological and physical methods. Psychological stress involved placing the mice in a communication stress box to observe others under physical stress, while physical stress was applied by immersing them in water for 5 minutes daily for 7 days. Agmatine. a neuromodulator with neuroprotective properties, was examined for its effects on the electrophysiological functioning of VTA DA neurons in the male offspring of stressed mice. Patch-clamp recordings of VTA DA cells from offspring maternally exposed to psychological or physical stress revealed enhanced cellular excitability, evidenced by increased firing frequency and greater firing following inhibition. Additionally, a decrease in action potential half-width and latency to the first spike was observed, indicating altered firing properties. Prenatal administration of agmatine mitigated these effects, preventing the PS-induced hyperexcitability of the VTA DA cells. Our findings extend previous work by demonstrating that both physical and psychological PS can significantly alter the electrophysiological functionality of VTA DA neurons, resulting in increased excitability. Agmatine effectively reduced these electrophysiological changes, highlighting its potential as a neuroprotective agent against neural alterations caused by negative maternal events during gestation.
Collapse
Affiliation(s)
- Amin Hassanshahi
- Department of Physiology, Medical School, Bam University of Medical Sciences, Bam, Iran
| | - Mehran Ilaghi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Narges Hosseinmardi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Pirmoradi Z, Esmaili Z, Nakhaie M, Kohlmeier KA, Shabani M, Razavinasab M, Ilaghi M. Therapeutic Potential of Agmatine in Essential Tremor Through Regulation of Lingo-1 and Inflammatory Pathways. Brain Behav 2025; 15:e70241. [PMID: 39779480 PMCID: PMC11710932 DOI: 10.1002/brb3.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Essential tremor (ET) is a prevalent movement disorder, yet current therapeutic options remain limited. Emerging evidence implicates leucine-rich repeat and immunoglobulin-like domain-containing protein (Lingo-1) and neuroinflammation in the pathophysiology of ET. This study aimed to investigate whether agmatine, a biogenic amine neuromodulator attenuates tremors and modulates the expression of Lingo-1 and proinflammatory markers in a rodent model of ET. METHODS Tremor was induced in male Swiss Webster mice through intraperitoneal injections of harmaline (10 mg/kg) on Days 1, 3, and 5 of the study. During the same period, agmatine (40 mg/kg) was administered for 5 consecutive days. Behavioral assessments of tremor severity, gait, balance, muscular strength, locomotion, anxiety-like behavior, and memory were conducted. Moreover, Lingo-1 and interleukin (IL)-6 gene expression was examined in the cerebellum using real-time polymerase chain reaction (RT-PCR). FINDINGS Our findings demonstrated that agmatine administration significantly reduced tremors, ameliorated anxiety-like behaviors, and attenuated harmaline-induced locomotor deficits. At the molecular level, agmatine treatment significantly suppressed the overexpression of Lingo-1 elicited by harmaline. Moreover, IL-6 expression was attenuated to an extent comparable to control levels. CONCLUSIONS Collectively, this study provides the first evidence that agmatine dampens tremor severity, improves behavioral outcomes, and modulates key pathways implicated in ET pathogenesis in a rodent model. The ability of agmatine to normalize Lingo-1 and IL-6 expression suggests regulation of these pathways could underlie its neuroprotective action. These results suggest promise for agmatine as a prospective therapeutic agent in ET.
Collapse
Affiliation(s)
- Zeynab Pirmoradi
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Zahra Esmaili
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
- Department of Physiology, Medical SchoolKerman University of Medical SciencesKermanIran
| | - Mehran Ilaghi
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
3
|
Paliwal NP, Taksande BG, Jain SP, Borikar SP. Possible involvement of GABAergic system on central amygdala Mediated anxiolytic effect of agmatine in rats. Int J Neurosci 2024; 134:1346-1356. [PMID: 37801395 DOI: 10.1080/00207454.2023.2268262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To study the pharmacological interactions between agmatine and gamma aminobutyric acid (GABA) modulatory agents in the regulation of anxiety-like behavior in rats. MATERIALS AND METHODS Male Wistar rats were treated drugs per se or in combination and 15 min after last injection were subjected to elevated plus-maze (EPM) test. Anxiety-like behavior was evaluated by measuring behavioral conventional readout, open arm activity (duration and/or entries) for 5-minute duration. RESULTS Acute intra-central amygdala (CeA) injection of agmatine (0.1-0.6 μmol/site/rat), muscimol (0.25-1 nmol/site/rat), diazepam (5-20 μg/site/rat) and allopregnanolone (2-8 μg/site/rat) increased open arm entries of the rats in EPM suggesting anxiolytic effect in dose dependent manner. Moreover, the anxiolytic effect at subeffective dose of agmatine (0.1 μmol/site/rat) was potentiated by subeffective dose of muscimol (0.25 nmol/site/rat), diazepam (5 μg/site/rat) and allopregnanolone (4 μg/site/rat). Whereas, pretreatment with GABAA receptor antagonist, bicuculline (10 ng/site/rat) blocked the anxiolytic effect of agmatine and its synergistic effect of agmatine plus muscimol. Similarly, benzodiazepine (BZD) receptor antagonist, flumazenil (15 μg/site/rat) and GABA allosteric modulator antagonist, RO 15-45 13 (10 μg/site/rat) reduced the anxiolytic effect of agmatine, given alone and with diazepam and allopregnanolone, respectively. CONCLUSION These results indicated that anxiolytic effect of agmatine is medicated via GABAergic mechanisms, probably conciliated by the GABAA receptor subtypes. Modulation of interplay between agmatine and GABAA receptor activity might be a pertinent solution for the regulation of anxiety.
Collapse
Affiliation(s)
- Nikhilesh P Paliwal
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Shirish P Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Sachin P Borikar
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| |
Collapse
|
4
|
Zamanian MY, Nazifi M, Khachatryan LG, Taheri N, Ivraghi MS, Menon SV, Husseen B, Prasad KDV, Petkov I, Nikbakht N. The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms. Inflammation 2024:10.1007/s10753-024-02139-7. [PMID: 39225914 DOI: 10.1007/s10753-024-02139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), N.F, Moscow, Russia
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - K D V Prasad
- Symbiosis Institute of Business Management, Hyderabad, India
- Symbiosis International (Deemed University), Pune, India
| | - Iliya Petkov
- Department of Neurology, Medical University - Sofia, Sofia, Bulgaria
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Shi C, Qi Z, Yang C, Luo S, Huang S, Luo Y. Shikonin ameliorates depressive- and anxiogenic-like behaviors in rats via the suppression of inflammation in the hippocampus. Neurosci Lett 2024; 837:137893. [PMID: 38997082 DOI: 10.1016/j.neulet.2024.137893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Shikonin is an active naphthoquinone with antioxidative, anti-inflammatory, and anticancer properties. In this study, we investigated the effects of shikonin on depressive- and anxiety-like behaviors in lipopolysaccharide- (LPS-) induced depression and chronic unpredictable mild stress (CUMS) rat models and explored the potential mechanism. First, a 14-day intraperitoneal administration of shikonin (10 mg/kg) significantly decreased immobility time in forced swimming test (FST) and increased open arm entries in elevated plus maze (EPM) test, without affecting line crossings in open field test (OFT), indicating that shikonin has anti-depressant- and anxiolytic-like effects. Second, chronic shikonin administration (10 mg/kg) reversed depressive- and anxiety-like behaviors in LPS-induced and CUMS depression models, as shown in the sucrose preference test (SPT), FST, EPM, and novel object recognition test (NORT). Finally, shikonin significantly reduced the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in hippocampus, indicating that the anti-depressant- and anxiolytic-like effects of shikonin are related to the reduction of neuroinflammation in hippocampus. These findings suggest that shikonin exerts anti-depressant- and anxiolytic-like effects via an anti-inflammatory mechanism of shikonin in the hippocampus.
Collapse
Affiliation(s)
- Cuijie Shi
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Zihan Qi
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Shuting Luo
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191 Beijing, China.
| | - Yixiao Luo
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China; Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
6
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
7
|
Wei Y, Fan Y, Huang S, Lv J, Zhang Y, Hao Z. Baizhu shaoyao decoction restores the intestinal barrier and brain-gut axis balance to alleviate diarrhea-predominant irritable bowel syndrome via FoxO1/FoxO3a. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155163. [PMID: 37924689 DOI: 10.1016/j.phymed.2023.155163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disease. Besides, baizhu shaoyao decoction (BSD) is an effective treatment for IBS-D; however, its mechanism of action remains unclear. PURPOSE This study aims to assess the ability of BSD to therapy IBS-D and to elucidate the underlying mechanism. METHODS First, comprehensive analyses, including ADME (absorption, distribution, metabolism, excretion) screening, Venn analysis, Gene Ontology (GO) analysis, and network construction, were performed to characterize IBS-D-related pathways and explore the synergistic effects of BSD active compounds. Next, an IBS-D model was constructed using a three-factor superposition method of neonatal maternal separation, chronic immobilization stress stimulation, and Sennae folium aqueous extract lavage. Moreover, the impact of BSD was assessed based on the body weight, fecal water content, and abdominal withdrawal reflex (AWR), and the results of the open field test, sucrose preference test, intestinal permeability assessment, transmission electron microscopy, and TdT-mediated dUTP nick-end labeling (TUNEL) analysis. The factors that regulate the BSD effects on IBS-D were estimated using immunoblotting, quantitative reverse transcription polymerase chain reaction (q-RTPCR), immunohistochemistry, and transcriptome sequencing analyses. RESULTS We found that BSD improved depressive behavior, brain-gut peptide levels, and intestinal permeability induced by IBS-D by increasing the abundance of intestinal tight junctions. In addition, BSD reduced secretory immunoglobulin A levels and the number of intestinal mast cells in IBS-D rats. Network pharmacology and transcriptome sequencing analysis further revealed that the forkhead box O (FoxO) signaling pathway contributed to the BSD-induced alleviation of IBS-D, as BSD regulated the protein and mRNA levels of FoxO1, glycogen synthase kinase 3β, and FoxO3a. Importantly, a FoxO1 inhibitor effectively alleviated IBS-D symptoms in rats, whereas a FoxO3a agonist had the opposite effects. CONCLUSION These results demonstrate that BSD alleviates depression and intestinal symptoms by regulating brain-gut peptide expression and restoring the intestinal barrier function via the FoxO signaling pathway. Furthermore, our study uses serum pharmacochemistry technology to analyze the in vivo components of TCM formula under effective condition, solving the problem of the discovery of the effective components of TCM to some extent.
Collapse
Affiliation(s)
- Yuanyuan Wei
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yimeng Fan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Sijuan Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Jianyu Lv
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yannan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China.
| |
Collapse
|
8
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
9
|
Hassanshahi A, Janahmadi M, Razavinasab M, Ranjbar H, Hosseinmardi N, Behzadi G, Kohlmeier KA, Ilaghi M, Shabani M. Preventive putative effect of agmatine on cognitive and molecular outcomes in ventral tegmental area of male offspring following physical and psychological prenatal stress. Dev Psychobiol 2023; 65:e22410. [PMID: 37607891 DOI: 10.1002/dev.22410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/24/2023]
Abstract
Prenatal stress (PS) results from a maternal experience of stressful events during pregnancy, which has been associated with an increased risk of behavioral disorders including substance abuse and anxiety in the offspring. PS is known to result in heightened dopamine release in the ventral tegmental area (VTA), in part through the effects of corticotropin-releasing hormone, which directly excites dopaminergic cells. It has recently been suggested that agmatine plays a role in modulating anxiety-like behaviors. In this study, we investigated whether agmatine could reduce negative cognitive outcomes in male mice prenatally exposed to psychological/physical stress, and whether this could be associated with molecular changes in VTA. Agmatine (37.5 mg/kg) was administrated 30 min prior to PS induction in pregnant Swiss mice. Male offspring were evaluated in a series of behavioral and molecular assays. Findings demonstrated that agmatine reduced the impairment in locomotor activity induced by both psychological and physical PS. Agmatine also decreased heightened conditioned place preference to morphine seen in PS offspring. Moreover, agmatine ameliorated the anxiety-like behavior and drug-seeking behavior induced by PS in the male offspring. Molecular effects were seen in VTA as the enhanced brain-derived neurotrophic factor (BDNF) induced by PS in the VTA was reduced by agmatine. Behavioral tests indicate that agmatine exerts a protective effect on PS-induced impairments in male offspring, which could be due in part to agmatine-associated molecular alterations in the VTA. Taken together, our data suggest that prenatal treatment with agmatine exerts protective effect against negative consequences of PS on the development of affective circuits in the offspring.
Collapse
Affiliation(s)
- Amin Hassanshahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Hosseinmardi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mehran Ilaghi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Mucke HA. Patent highlights February-March 2023. Pharm Pat Anal 2023; 12:205-212. [PMID: 37982661 DOI: 10.4155/ppa-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
11
|
Zhang L, Lu N, Liu M. Selective serotonin reuptake inhibitors regulate the interrelation between 5-HT and inflammation after myocardial infarction. BMC Cardiovasc Disord 2023; 23:342. [PMID: 37422634 PMCID: PMC10329792 DOI: 10.1186/s12872-023-03378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a main cause of death all around the world. There is a close relationship between myocardial infarction (MI) and depression. MI patients with untreated depression had higher mortality than those without depression. Therefore, this study aimed to explore the effect of escitalopram in treating a model under MI and unpredictable chronic mild stress (UCMS). METHODS Male C57BL/6J mice were treated with sham surgery, or MI surgery, or UCMS, or escitalopram (ES) for a consecutive two weeks. And the mice were divided into Sham group, MI group, MI + UCMS group, MI + UCMS + ES group (n = 8 in each group). After treatment, the mice went through open field test for anxiety behavior, sucrose preference test for depressive behavior. After sacrificed, the blood, heart, hippocampus, and cortex were collected. RESULTS The escitalopram badly increased the area of cardiac fibrosis size. The sucrose preference test demonstrated that escitalopram treatment showed significant effect in improving depressive behaviors of mice under MI + UCMS. The potential mechanism involved the interrelation between 5-HT system and inflammation. MI significantly affected the level of cardiac SERT. Both UCMS and ES significantly affected the level of cortex TNF-α. UCMS significantly affected the level of cardiac IL-33. In the hippocampus tissue, TNF-α was positively correlated with SERT, and IL-10 was positively correlated with SERT. In the cortex tissue, IL-33 was positively correlated with 5-HT4R, and sST2 was positively correlated with 5-HT. CONCLUSIONS Two-week escitalopram treatment might worsen myocardial infarction. But escitalopram could benefit depressive behaviors, which may be related with the interrelationship between the 5-HT system and inflammatory factors in the brain.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Nan Lu
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Meiyan Liu
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
12
|
Yan S, Xu C, Yang M, Zhang H, Cheng Y, Xue Z, He Z, Wang T, Bai S, Wang G, Wu J, Tong Z, Cai X. The expression of agmatinase manipulates the affective state of rats subjected to chronic restraint stress. Neuropharmacology 2023; 229:109476. [PMID: 36849038 DOI: 10.1016/j.neuropharm.2023.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Agmatine is an endogenous polyamine produced from l-arginine and degraded by agmatinase (AGMAT). Studies in humans and animals have shown that agmatine has neuroprotective, anxiolytic, and antidepressant-like actions. However, little is known about the role of AGMAT in the action of agmatine or in the pathophysiology of psychiatric disorders. Therefore, this study aimed to investigate the role of AGMAT in the pathophysiology of MDD. In this study, we observed that AGMAT expression increased in the ventral hippocampus rather than in the medial prefrontal cortex in the chronic restraint stress (CRS) animal model of depression. Furthermore, we found that AGMAT overexpression in the ventral hippocampus elicited depressive- and anxiety-like behaviors, whereas knockdown of AGMAT exhibited antidepressant and anxiolytic effects in CRS animals. Field and whole-cell recordings of hippocampal CA1 revealed that AGMAT blockage increased Schaffer collateral-CA1 excitatory synaptic transmission, which was expressed both pre- and post-synaptically and was probably due to the inhibition of AGMAT-expressing local interneurons. Therefore, our results suggest that dysregulation of AGMAT is involved in the pathophysiology of depression and is a potential target for designing more effective antidepressants with fewer adverse effects to offer a better therapy for depression.
Collapse
Affiliation(s)
- Shi Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chang Xu
- College of Life Science, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Mengli Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Huiqiang Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ye Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zeping Xue
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zecong He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tiantian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shangying Bai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Gang Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital Capital Medical University, Beijing 100088, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China; Advanced Innovation Center for Human Brain Protection, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhiqian Tong
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Cai
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Beijing Institute of Brain Disorders, Advanced Innovation Center for Human Brain Protection, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
13
|
Peterson CD, Waataja JJ, Kitto KF, Erb SJ, Verma H, Schuster DJ, Churchill CC, Riedl MS, Belur LR, Wolf DA, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Long-term reversal of chronic pain behavior in rodents through elevation of spinal agmatine. Mol Ther 2023; 31:1123-1135. [PMID: 36710491 PMCID: PMC10124077 DOI: 10.1016/j.ymthe.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Jonathan J Waataja
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Samuel J Erb
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Harsha Verma
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel J Schuster
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Caroline C Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Lalitha R Belur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel A Wolf
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Xu J, Gao W, He T, Yao L, Wu H, Chen Z, Lai Y, Chen Y, Zhang J. The hyperthermic response to intra-preoptic area administration of agmatine in male rats. J Therm Biol 2023; 113:103529. [PMID: 37055134 DOI: 10.1016/j.jtherbio.2023.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.
Collapse
|
15
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
16
|
Li Q, Zhang J, Gao Z, Zhang Y, Gu J. Gut microbiota-induced microRNA-206-3p increases anxiety-like behaviors by inhibiting expression of Cited2 and STK39. Microb Pathog 2023; 176:106008. [PMID: 36736544 DOI: 10.1016/j.micpath.2023.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. The purpose of this study is to evaluate the clinical significance of gut microbiota regulating microRNA (miR)-206-3p as a biomarker in the anxiety-like behaviors. METHODS Initially, bioinformatics analysis was performed to predict the related factors for gut microbiota affecting anxiety-like behaviors. Next, the anxiety-like behaviors in mice were measured by multiple experiments. Western blot analysis, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were utilized to measure the levels of 5-hydroxytryptamine (5-HT), brain derived neurotrophic factor (BDNF), and neutrophil expressed (NE) in brain tissues and serum and cAMP responsive element binding protein 1 (CREB) phosphorylation in brain tissues of germ-free (GF) mice. Dual-luciferase reporter gene assay was employed to verify the relationship between miR-206-3p and Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (Cited2)/serine/threonine kinase 39 (STK39). Ectopic expression and depletion experiments of miR-206-3p were conducted to determine the expression of miR-206-3p and mRNA and protein levels of Cited2, and STK39 in HT22 cells and brain tissues. Finally, transmission electron microscope (TEM) was used to observe the effects of miR-206-3p on hippocampal mitochondria and synapses. RESULTS Gut microbiota could elevate miR-206-3p expression in brain tissues to increase the anxiety-like behaviors. GF mice displayed the increased levels of 5-HT, BDNF, and NE in brain tissues and serum and CREB phosphorylation in brain tissues. Cited2/STK39 was identified as the target genes of miR-206-3p. Upregulated miR-206-3p increased anxiety-like behaviors by promoting degeneration of mitochondria and synapses in hippocampus via downregulation of Cited2 and STK39. CONCLUSIONS In conclusion, the key findings of the current study demonstrate that gut microbiota aggravated anxiety-like behaviors via the miR-206-3p/Cited2/STK39 axis.
Collapse
Affiliation(s)
- Qian Li
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Jie Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Zhitao Gao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yujuan Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jingyang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| |
Collapse
|
17
|
Abstract
Major stress has systemic effects on the body that can have adverse consequences for physical and mental health. However, the molecular basis of these damaging effects remains incompletely understood. Here we use a longitudinal approach to characterise the acute systemic impact of major psychological stress in a pig model. We perform untargeted metabolomics on non-invasively obtained saliva samples from pigs before and 24 h after transfer to the novel physical and social environment of a slaughterhouse. The main molecular changes occurring include decreases in amino acids, B-vitamins, and amino acid-derived metabolites synthesized in B-vitamin-dependent reactions, as well as yet-unidentified metabolite features. Decreased levels of several of the identified metabolites are implicated in the pathology of human psychological disorders and neurodegenerative disease, suggesting a possible neuroprotective function. Our results provide a fingerprint of the acute effect of psychological stress on the metabolome and suggest candidate biomarkers with potential roles in stress-related disorders.
Collapse
|
18
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
19
|
Anxiolytic Effect of Carvedilol in Chronic Unpredictable Stress Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6906722. [PMID: 36035219 PMCID: PMC9417788 DOI: 10.1155/2022/6906722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders being also a comorbid state of other diseases. We aimed to evaluate the anxiolytic-like effects of carvedilol (CVD), a drug used to treat high blood pressure and heart failure with potent antioxidant effects, in animals exposed to chronic unpredictable stress (CUS). To do this, female Swiss mice were exposed to different stressors for 21 days. Between days 15 and 21, the animals received oral CVD (5 or 10 mg/kg) or the antidepressant desvenlafaxine (DVS 10 mg/kg). On the 22nd day, behavioral tests were conducted to evaluate locomotor activity (open field) and anxiety-like alterations (elevated plus-maze—EPM and hole board—HB tests). After behavioral determinations, the animals were euthanized, and the adrenal gland, blood and brain areas, prefrontal cortex (PFC), and hippocampus were removed for biochemical analysis. CUS reduced the crossings while increased rearing and grooming, an effect reversed by both doses of CVD and DVS. CUS decreased the number of entries and permanence time in the open arms of the EPM, while all treatments reversed this effect. CUS reduced the number of head dips in the HB, an effect reversed by CVD. The CUS reduced weight gain, while only CVD5 reversed this effect. A reduction in the cortical layer size of the adrenal gland was observed in stressed animals, which CVD reversed. Increased myeloperoxidase activity (MPO) and interferon-γ (IFN-γ), as well as reduction of interleukin-4 (IL-4) induced by CUS, were reversed by CVD. DVS and CVD increased IL-6 in both brain areas. In the hippocampus, DVS caused an increase in IFN-γ. Our data show that CVD presents an anxiolytic effect partially associated with immune-inflammatory mechanism regulation.
Collapse
|
20
|
Abdelmeguid NE, Hammad TM, Abdel-Moneim AM, Salam SA. Effect of Epigallocatechin-3-gallate on Stress-Induced Depression in a Mouse Model: Role of Interleukin-1β and Brain-Derived Neurotrophic Factor. Neurochem Res 2022; 47:3464-3475. [PMID: 35939172 PMCID: PMC9546794 DOI: 10.1007/s11064-022-03707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a natural polyphenolic antioxidant in green tea leaves with well-known health-promoting properties. However, the influence of EGCG on a chronic animal model of depression remains to be fully investigated, and the details of the molecular and cellular changes are still unclear. Therefore, the present study aimed to investigate the antidepressant effect of EGCG in mice subjected to chronic unpredictable mild stress (CUMS). After eight consecutive weeks of CUMS, the mice were treated with EGCG (200 mg/kg b.w.) by oral gavage for two weeks. A forced swimming test (FST) was used to assess depressive symptoms. EGCG administration significantly alleviated CUMS-induced depression-like behavior in mice. EGCG also effectively decreased serum interleukin-1β (IL-1β) and increased the mRNA expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampal CA3 region of CUMS mice. Furthermore, electron microscopic examination of CA3 neurons in CUMS mice showed morphological features of apoptosis, loss or disruption of the myelin sheath, and degenerating synapses. These neuronal injuries were diminished with the administration of EGCG. The treatment effect of EGCG in CUMS-induced behavioral alterations was comparable with that of clomipramine hydrochloride (Anafranil), a tricyclic antidepressant drug. In conclusion, our study demonstrates that the antidepressive action of EGCG involves downregulation of serum IL-1β, upregulation of BDNF mRNA in the hippocampus, and reduction of CA3 neuronal lesions.
Collapse
Affiliation(s)
- Nabila E Abdelmeguid
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Tasneem M Hammad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.,Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ashraf M Abdel-Moneim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
21
|
Dandi E, Spandou E, Tata DA. Investigating the role of environmental enrichment initiated in adolescence against the detrimental effects of chronic unpredictable stress in adulthood: Sex-specific differences in behavioral and neuroendocrinological findings. Behav Processes 2022; 200:104707. [PMID: 35842198 DOI: 10.1016/j.beproc.2022.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Environmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks. On postnatal day 66, a subgroup from each housing condition was daily exposed to a 4-week stress protocol. Following stress, adult rats underwent behavioral testing to evaluate anxiety, exploration/locomotor activity, depressive-like behavior and spatial learning/memory. Upon completion of behavioral testing, animals were exposed to a 10-m stressful event to test the neuroendocrine response to acute stress. CUS decreased body weight gain and increased adrenal weight. Some stress-induced behavioral adverse effects were sex-specific since learning impairments were limited to males while depressive-like behavior to females. EE housing protected against CUS-related behavioral deficits and body weight loss. Exposure to CUS affected the neuroendocrine response of males to acute stress as revealed by the increased corticosterone levels. Our findings highlight the significant role of EE in adolescence as a protective factor against the negative effects of stress and underline the importance of inclusion of both sexes in animal studies.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
22
|
Şorodoc V, Rusu-Zota G, Nechita P, Moraru C, Manole OM. Effects of imidazoline agents in a rat conditioned place preference model of addiction. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:365-376. [PMID: 34997272 PMCID: PMC8816376 DOI: 10.1007/s00210-021-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Agmatine (AG), idazoxan (IDZ), and efaroxan (EFR) are imidazoline receptor ligands with beneficial effects in central nervous system disorders. The present study aimed to evaluate the interaction between AG, IDZ, and EFR with an opiate, tramadol (TR), in a conditioned place preference (CPP) paradigm. In the experiment, we used five groups with 8 adult male Wistar rats each. During the condition session, on days 2, 4, 6, and 8, the rats received the drugs (saline, or TR, or IDZ and TR, or EFR and TR, or AG and TR) and were placed in their least preferred compartment. On days 1, 3, 5, and 7, the rats received saline in the preferred compartment. In the preconditioning, the preferred compartment was determined. In the postconditioning, the preference for one of the compartments was reevaluated. TR increased the time spent in the non-preferred compartment. AG decreased time spent in the TR-paired compartment. EFR, more than IDZ, reduced the time spent in the TR-paired compartment, but without statistical significance. AG reversed the TR-induced CPP, while EFR and IDZ only decreased the time spent in the TR-paired compartment, without statistical significance.
Collapse
Affiliation(s)
- V Şorodoc
- Department of Internal Medicine (Toxicology), University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania
| | - G Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania.
| | - P Nechita
- "Socola" Psychiatric Institute, 700282, Iasi, Romania
| | - C Moraru
- "Socola" Psychiatric Institute, 700282, Iasi, Romania
| | - O M Manole
- University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania
| |
Collapse
|
23
|
Ishola IO, Olubodun-Obadun TG, Bakre OA, Ojo ES, Adeyemi OO. Kolaviron ameliorates chronic unpredictable mild stress-induced anxiety and depression: involvement of the HPA axis, antioxidant defense system, cholinergic, and BDNF signaling. Drug Metab Pers Ther 2022; 37:277-287. [PMID: 35218172 DOI: 10.1515/dmpt-2021-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to investigate the beneficial effect of kolaviron (KV) (a biflavonoid) isolated from Garcinia kola seed on chronic unpredictable mild stress (CUMS)-induced anxiety- and depressive-like behavior. METHODS Male albino mice were randomly divided into six groups (n=8) as follows; Group I: vehicle-control unstressed; Group II: CUMS-control; Group III-V: CUMS + KV 1, 5 or 50 mg/kg, respectively, Group VI: KV (50 mg/kg, p.o.) unstressed mice. Animals were subjected to CUMS for 14 days, followed by estimation of depressive- and anxiety-like behavior from days 14-16. This was followed by biochemical assays for oxidative stress, hypothalamo-pituitary axis, cholinergic, and BDNF signaling. RESULTS CUMS caused significant reduction in time spent in open arms of elevated plus maze test (EPM) and increase in immobility time in tail suspension test (TST) and forced swim test (FST) ameliorated by KV treatments. KV administration also attenuated CUMS-induced malondialdehyde/nitrite generation and decrease in antioxidant enzymes activities in the prefrontal cortex and hippocampus. CUMS increased serum corticosterone, acetylcholinesterase activity, and reduced BDNF level in the PFC and hippocampus were attenuated by KV administration. CONCLUSIONS KV prevented CUMS induced anxiety- and depression-like behavior in mice through enhancement of antioxidant defense mechanisms, neurotrophic factors, and cholinergic systems.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| | - Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwasayo A Bakre
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Emmanuel S Ojo
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| |
Collapse
|
24
|
Zhang C, Zhu L, Lu S, Li M, Bai M, Li Y, Xu E. The antidepressant-like effect of formononetin on chronic corticosterone-treated mice. Brain Res 2022; 1783:147844. [PMID: 35218705 DOI: 10.1016/j.brainres.2022.147844] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Previous studies reported the neuroprotective effects of formononetin (FMN), however, whether it has antidepressant-like effects have not been reported. To evaluate the antidepressant-like effects of FMN, a mice model of depression was established by chronic corticosterone (CORT) injection. The serum corticosterone levels and hippocampal protein expression were detected by ELISA and Western blot. Nissl staining was used to observe the damage of hippocampal neurons and immunofluorescence was used to observe the neurogenesis in the hippocampus. Our results showed that FMN significantly increased the sucrose preference and shorten the immobility time in the forced swimming test in CORT-treated mice. Moreover, FMN reduced the serum corticosterone levels, upregulated the protein expression levels of the glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in the hippocampus, protected against the CORT-induced neuronal impairment, and promoted the neurogenesis in the hippocampus. Taken together, the present study was the first to demonstrate the antidepressant-like effects of FMN in the CORT-induced mice model of depression, which may contribute to the discovery of a new candidate for treating depression.
Collapse
Affiliation(s)
- Changjing Zhang
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Leilei Zhu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Shuaifei Lu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Mengyuan Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Ming Bai
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Yucheng Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Erping Xu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
25
|
Ostovan VR, Amiri Z, Moezi L, Pirsalami F, Esmaili Z, Moosavi M. The effects of subchronic agmatine on passive avoidance memory, anxiety-like behavior and hippocampal Akt/GSK-3β in mice. Behav Pharmacol 2022; 33:42-50. [PMID: 34954711 DOI: 10.1097/fbp.0000000000000666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Agmatine, a polyamine derived from l-arginine, has been suggested to modulate memory. However, the available evidence regarding the effect of agmatine on the memory of intact animals is contradictory. This study aimed to assess the dose-response effect of subchronic agmatine on passive avoidance memory and anxiety-like parameters of elevated plus maze in adult intact mice. Furthermore, considering the roles of Akt/GSK-3β signaling pathway in memory and Alzheimer's disease, the hippocampal contents of phosphorylated and total forms of Akt and GSK-3β proteins were determined using the western blot technique. Agmatine was administered intraperitoneally at the doses of 10, 20, 30, 40 and 80 mg/kg/daily to adult male NMRI mice for 10 days after which the behavioral assessments were performed. Upon completion of the passive avoidance test, the hippocampi were removed for western blot analysis to detect the phosphorylated and total levels of Akt and GSK-3β proteins. Results showed the biphasic effect of agmatine on passive avoidance memory; in lower doses (10, 20 and 30 mg/kg), agmatine impaired memory whereas in higher ones (40 and 80 mg/kg) improved it. Though, agmatine in none of the doses affected animals' anxiety-like parameters in an elevated plus maze. Moreover, the memory-improving doses of agmatine augmented Akt/GSK-3β pathway. This study showed the biphasic effect of agmatine on passive avoidance memory and an augmentation of hippocampal Akt/GSK-3β signaling pathway following the memory-improving doses of this polyamine.
Collapse
Affiliation(s)
- Vahid Reza Ostovan
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz
| | - Zeynab Amiri
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz
| | - Leila Moezi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz
| | - Fatema Pirsalami
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz
| | - Zahra Esmaili
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moosavi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz
| |
Collapse
|
26
|
Yu H, Tang MH, Zeng ZY, Huang SJ, Zheng XF, Liu ZY. Suppressive Effects of Gelsemine on Anxiety-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Brain Sci 2022; 12:brainsci12020191. [PMID: 35203954 PMCID: PMC8870043 DOI: 10.3390/brainsci12020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Gelsemine is an active principle and a major alkaloid found in Gelsemium genus of plants belonging to the Loganiaceae family. The aim of the present study was to explore whether gelsemine exerts anxiolytic effects on a mouse model of chronic-unpredictable-mild-stress (CUMS)-induced anxiety-like behaviors. NOD-like receptor protein 3 (NLRP3) inflammasome, downregulated cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were also evaluated as potential mechanisms. First, gelsemine reversed a CUMS-induced decrease in body-weight gain in mice. Next, gelsemine alleviated CUMS-induced anxiety-like behaviors, as evidenced by the increased distance traveled in the central zone of the open-field test, both the increased percentage of time spent and distance traveled in the light compartment, the increased number of transitions between compartments in the light/dark-transition test, and the increased percentage of entries and time spent in the open arm of the elevated plus-maze. In addition, gelsemine decreased the levels of pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6, in the hypothalamus and hippocampus of CUMS mice. Interestingly, further investigations revealed that gelsemine inhibited the CUMS-induced activation of NLRP3-inflammasome pathways and downregulated CREB and BDNF overexpression in the hypothalamus. In summary, gelsemine alleviated anxiety-like behaviors in the CUMS-induced mouse model. Gelsemine exerted its anxiolytic effects by modulating the NLRP3 and CREB/BDNF pathways.
Collapse
Affiliation(s)
- Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Yue Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
27
|
Involvement of oxidative pathways and BDNF in the antidepressant effect of carvedilol in a depression model induced by chronic unpredictable stress. Psychopharmacology (Berl) 2022; 239:297-311. [PMID: 35022822 DOI: 10.1007/s00213-021-05994-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/30/2021] [Indexed: 01/30/2023]
Abstract
RATIONALE Depression is a severe psychiatric disorder with oxidative imbalance and neurotrophic deficits as underlying mechanisms. OBJECTIVES Based on the antioxidant effects of carvedilol (CARV), here, we aimed to evaluate CARV's effects against depression induced by the chronic unpredictable stress (CUS) model. METHODS Female Swiss mice were submitted to the CUS protocol for 21 days. Between days 15 and 22, the animals received CARV (5 or 10 mg/kg) or desvenlafaxine (DVS 10 mg/kg) orally. On the 22nd day, mice were subjected to behavioral tests to evaluate locomotion, depressive-like behavior (tail suspension test), motivation/self-care with the splash test (ST), social interaction, and working memory Y-maze test. The prefrontal cortex (PFC) and hippocampus were dissected to evaluate alterations of oxidative and brain-derived neurotrophic factor (BDNF). RESULTS The CUS model reduced locomotion and increased grooming latency, while it reduced the number of groomings in the ST. Both doses of CARV and DVS reverted these alterations. In addition, DVS and CARV reversed CUS model-induced working memory and social interaction deficits. The CUS model decreased hippocampal reduced glutathione (GSH), while DVS and CARV increased GSH in the PFC (CARV5) and hippocampus (CARV5 and 10). The CUS model increased nitrite and malondialdehyde (MDA) concentrations in both areas. All treatments reversed nitrite alterations, while CARV10 changed MDA levels in PFC and all treatments in the hippocampus. The CUS model reduced BDNF levels. CARV10 increased BDNF in the PFC, while both doses of CARV increased hippocampal levels of this neurotrophin. CONCLUSIONS CARV presents antidepressant-like effects comparable to those observed with DVS. In addition, it has an antioxidant effect and is capable of increasing BDNF brain concentrations. Further studies are needed to elucidate the mechanisms involved in the antidepressant effect of CARV.
Collapse
|
28
|
Huang L, Lv X, Ze X, Ma Z, Zhang X, He R, Fan J, Zhang M, Sun B, Wang F, Liu H. Combined probiotics attenuate chronic unpredictable mild stress-induced depressive-like and anxiety-like behaviors in rats. Front Psychiatry 2022; 13:990465. [PMID: 36159940 PMCID: PMC9490273 DOI: 10.3389/fpsyt.2022.990465] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Increasing evidence indicated that probiotics can be effective in improving behaviors similar to depression and anxiety disorders. However, the underlying mechanisms remain unclear, as is the effects of single vs. combined probiotics on depression and anxiety. This study aimed to determine whether combined probiotics could attenuate depressive-like and anxiety-like behavior induced by chronic unpredictable mild stress (CUMS) and its potential mechanisms. Rats underwent CUMS treatment and then administered Lactobacillus rhamnosus HN001 (HN001) or Bifidobacterium animalis subsp. lactis HN019 (HN019), alone or in combination. Levels of neurotransmitters, inflammatory factors, and the gut microbiota were measured. HN001 and (or) HN019 treatment improved depressive-like and anxiety-like behavior in rats, including increased moving distance and exploratory behavior (p < 0.05). In addition, altered gut microbiota structure induced by CUMS was amended by HN001 and/or HN019 (p < 0.05). HN001 and/or HN019 intervention also remarkably normalized levels of 5-HT, DA, NE, HVA, DOPAC, HIAA, TNF-α, IL-6, IL-18 and IL-1β in CUMS rats (p < 0.05). Furthermore, the effects of combined probiotics on decreasing inflammation and improved gut microbiota (Chao1 index and ACE index, p < 0.05) were superior to the single probiotics. Moreover, spearman analysis showed a certain correlation between the different microbiota, such as Firmicutes, Bacteroidetes, Verrucomicrobias, Proteobacterias and Actinobacterias, and inflammation and neurotransmitters. These findings suggested that CUMS induced depressive and anxiety-like behaviors can be alleviated by the combination of probiotics, which was possibly associated with the alterations in the gut microbiota composition and increased neurotransmitters and decreased inflammatory factors.
Collapse
Affiliation(s)
- Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xia Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Boran Sun
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China.,Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Fang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Rafi H, Rafiq H, Farhan M. Antagonization of monoamine reuptake transporters by agmatine improves anxiolytic and locomotive behaviors commensurate with fluoxetine and methylphenidate. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:26. [DOI: 10.1186/s43088-021-00118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Agmatine (AGM) is known for its protective effects including neuroprotection, nephroprotection, gastroprotection, cardioprotection, and glucoprotection. Studies have validated the neuroprotective role of AGM as antidepressant, anxiolytic, locomotive, and antipsychotic agent in psychopathologies. Fluoxetine (FLX) is the most extensively prescribed antidepressant while methylphenidate (MPD) is the most frequently prescribed psychoactive stimulant for ADHD (attention deficit hyperactivity disorder) treatment worldwide. The mechanism of action of FLX and MPD involves reuptake inhibition of serotonin and dopamine and norepinephrine at presynaptic transporters. Present study was designed to determine the safety and efficacy of AGM administration along with conventional antidepressant and psychostimulative drugs. The study also aimed to establish underlying mechanism of action of AGM at monoamine reuptake transporters.
Results
AGM significantly ameliorated locomotion in activity box and open field while anxiolytic behaviors in light/dark transition box and EPM were also improved (p<0.01). The growth and appetite of animals were enhanced along with antidepressive behavior in FST (p<0.01). Moreover, co-administration of AGM with FLX or MPD improved rats’ behaviors as compared to single AGM administration.
Conclusion
Present study determined the significant anxiolytic, locomotor, and antidepressive effects of AGM compared with FLX and MPD. The study also showed improved behaviors of rats treated with combined doses of AGM with FLX or MPD along with food intake and body weights. This study has also proposed the potential mechanism of action of AGM at monoamine receptors that may lead to inhibition of monoamine reuptake transporters that may lead to increase in 5-HT, D, and NE concentrations at synaptic level.
Collapse
|
30
|
Sana SRGL, Li EY, Deng XJ, Guo L. Association between plasma dipeptidyl peptidase-4 levels and cognitive function in perinatal pregnant women with gestational diabetes mellitus. World J Clin Cases 2021; 9:10161-10171. [PMID: 34904086 PMCID: PMC8638028 DOI: 10.12998/wjcc.v9.i33.10161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/13/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP4) is associated with cognitive dysfunction in patients with type 2 diabetes.
AIM To assess a possible relationship between serum DPP4 and cognitive function in perinatal pregnant women with gestational diabetes mellitus (GDM).
METHODS The study subjects were divided into three groups: GDM group (n = 81), healthy pregnant (HP) group (n = 85), and control group (n = 51). The Montreal Cognitive Assessment (MoCA) was used to assess the cognitive status of each group. Venous blood samples were collected to measure blood lipids, glycated hemoglobin, and glucose levels. For each participant, a 3-mL blood sample was collected and centrifuged, and the serum was collected. Blood samples were stored at -80 ℃, and DPP4, interleukin-6 (IL-6), and 8-iso-prostaglandin F2α (8-iso-PGF2α), and brain-derived neurotrophic factor (BDNF) were detected using ELISA.
RESULTS The MoCA scores in the GDM and HP groups were significantly different from those in the control group in terms of visuospatial/executive function and attention (P < 0.05); however, the scores were not significantly different between the GDM and HP groups (P > 0.05). In terms of language, the GDM group had significantly different scores from those in the other two groups (P < 0.05). In terms of memory, a significant difference was found between the HP and control groups (P < 0.05), as well as between the GDM and HP groups. The levels of DPP4, IL-6, and 8-iso-PGF2α in the GDM group were significantly higher than those in the HP and control groups (P < 0.05); however, the differences between these levels in the HP and control groups were not significant (P > 0.05). The level of BDNF in the GDM group was significantly lower than that in the HP and control groups (P < 0.05), although the difference in this level between the HP and control groups was not significant (P > 0.05).
CONCLUSION Cognitive dysfunction in perinatal pregnant women with GDM mainly manifested as memory loss, which might be associated with elevated DPP4 levels.
Collapse
Affiliation(s)
- Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - En-You Li
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xi-Jin Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Guo
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
31
|
Kotagale N, Rahangdale S, Borkar A, Singh K, Ikhar A, Takale N, Umekar M, Taksande B. Possible involvement of agmatine in neuropharmacological actions of metformin in diabetic mice. Eur J Pharmacol 2021; 907:174255. [PMID: 34129880 DOI: 10.1016/j.ejphar.2021.174255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
The risk of psychiatric and neurological disorders is significantly higher in patients with diabetes mellitus. Diabetic patients are more susceptible to depression, anxiety and memory impairment as compared with non-diabetic individuals. Metformin, a biguanide used for the management of type 2 diabetes mellitus (T2DM), promotes neurogenesis, enhances spatial memory function and protects the brain against oxidative imbalance beyond its effect on glucose metabolism. However, the exact mechanism of its neuropharmacological actions in T2DM is not known. We investigated the role of the agmatinergic system in neuropharmacological actions of metformin in diabetic mice. Diabetes was induced by the streptozotocin (STZ) injection and confirmed by high blood glucose levels. After 28 days, STZ treated mice exhibited memory impairment in radial arm maze, depression-like behavior in forced swim test and anxiety-like behavior in elevated plus maze along with increased expression of pro-inflammatory cytokines like TNF-α, IL-1β, IL-6, IL-10 also, reduced agmatine and BDNF levels in the hippocampus and prefrontal cortex compared to the control animals. Metformin and agmatine alone or in combination, by once-daily administration during 14-27 day of the protocol significantly reversed the STZ induced high blood glucose levels, memory impairment, depression and anxiety-like behaviors. It also reduced neuro-inflammatory markers and increased agmatine and BDNF levels in the hippocampus and prefrontal cortex. The present study suggests the importance of endogenous agmatine in the neuropharmacological action of metformin in diabetic mice. The data projects agmatine and metformin combination as a potential therapeutic strategy for diabetes associated memory impairment, depression, anxiety, and other comorbidities.
Collapse
Affiliation(s)
- Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India; Government College of Pharmacy, Kathora Naka, Amravati, 444604, India
| | - Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Anjali Borkar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Kundan Singh
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Abhilasha Ikhar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Nikita Takale
- Government College of Pharmacy, Kathora Naka, Amravati, 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India.
| |
Collapse
|
32
|
Sana S, Deng X, Guo L, Wang X, Li E. Cognitive Dysfunction of Pregnant Women with Gestational Diabetes Mellitus in Perinatal Period. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2302379. [PMID: 34422242 PMCID: PMC8371610 DOI: 10.1155/2021/2302379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 01/25/2023]
Abstract
Purpose To explore whether pregnant women with gestational diabetes mellitus (GDM) had cognitive impairment and assess cognitive function in normal pregnant women. Methods A total of 75 consecutive women diagnosed with GDM (GDM group), 70 normal pregnant women (NP group) without diabetes and matched for age, and 51 female volunteers (CG group) with the similar age level, normal blood glucose, and nonpregnancy were included in the study. For the assessment of cognitive functions, Montreal Cognitive Assessment (MoCA) was performed. Venous blood samples were collected to measure blood glucose, glycated hemoglobin (HbA1c), methylglyoxal (MGO), beta amyloid (Aβ), and tau protein. Results The score of MoCA of GDM was lowest, and the score of the NP group was lower than volunteers (P < 0.05). The incidence of cognitive dysfunction increased significantly in the GDM group with statistical significance (P < 0.05). The levels of tau and MGO in the GDM group were significantly less than those in the NP and CG groups, and Aβ in the GDM group was significantly more than that in the NP and CG groups (P < 0.05), but the differences between NP and CG groups were not statistically significant (P < 0.05). Conclusion The pregnant women with GDM showed a significant decline in cognitive function, and the normal pregnant women also showed a decline in cognitive function which is very light.
Collapse
Affiliation(s)
- Siriguleng Sana
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xijin Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Guo
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xunhong Wang
- Department of Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Enyou Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
33
|
Zhou Y, Huang S, Wu F, Zheng Q, Zhang F, Luo Y, Jian X. Atractylenolide III reduces depressive- and anxiogenic-like behaviors in rat depression models. Neurosci Lett 2021; 759:136050. [PMID: 34126179 DOI: 10.1016/j.neulet.2021.136050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022]
Abstract
Atractylenolide III, a major component of the atractylodes macrocephala Koidz, derived from the rhizoma atractylodes, has been reported to produce various pharmacological effects including anti-aging, anti-inflammation, anti-tumor, and other effects. Growing evidence suggests that proinflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-α, are increased in depressed patients. The present study was aimed at investigating the antidepressant- and anxiolytic-like effects of atractylenolide III in lipopolysaccharide (LPS) challenge and chronic unpredictable mild stress (CUMS) rat model. We found that 30 mg/kg of atractylenolide III administered by oral gavage for 14 days, significantly reduced the immobility time in a forced swimming test (FST), but did not alter the number of crossings in an open field test (OFT), respectively. The results indicated that atractylenolide III has an antidepressant-like effect without affecting locomotor activity. We then used the LPS-induced depression model to assess the effects of atractylenolide III on behaviors in FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT). Interestingly, in addition to the antidepressant-like effects, 30 mg/kg of atractylenolide III also produced an anxiolytic-like effect. To further identify the antidepressant- and anxiolytic-like effects of atractylenolide III, we used the CUMS model with 28 consecutive days of the atractylenolide III treatment, followed by the SPT, FST, and NSFT. Atractylenolide III prevented CUMS-induced depressive- and anxiety-like behaviors in rats. To illustrate the underlying possible mechanisms of action of atractylenolide III, we measured the proinflammatory cytokines levels. The results showed that atractylenolide III decreased the proinflammatory cytokines levels in the hippocampus of CUMS exposed rats. In summary, our findings demonstrated that atractylenolide III produces antidepressant- and anxiolytic-like effects in rats, and these effects appear to be mediated by inhibition of hippocampal neuronal inflammation.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China; Yiyang Medical College, Yiyang 413000, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qiuyao Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Fushen Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China.
| | - Xiaohong Jian
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
34
|
Acero-Castillo MC, Ardila-Figueroa MC, Botelho de Oliveira S. Anhedonic Type Behavior and Anxiety Profile of Wistar-UIS Rats Subjected to Chronic Social Isolation. Front Behav Neurosci 2021; 15:663761. [PMID: 34122025 PMCID: PMC8192826 DOI: 10.3389/fnbeh.2021.663761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic Social Isolation (CSI) is a model of prolonged stress employed in a variety of studies to induce depression and anxious behavior in rats. The present study aims to evaluate the effect of CSI on male Wistar rats in terms of "anhedonic-type" behavior in the Sucrose Preference Test (SPT) and anxiogenic profile in the elevated-plus-maze (EPM) test, as well as evaluating the effect of resocialization upon sucrose consumption. A total of 24 adolescent male Wistar rats were evaluated. The animals were housed either together (communally) or socially isolated for 21 days, and then exposed for four consecutive days to the SPT test [water vs. a 32% sucrose solution (SS)]. Four days later, they were again subjected to the SPT test (32% vs. 0.7% SS), and then tested on the EPM apparatus 3 days later. Following the completion of the anxiogenic profile of the model, the animals were resocialized for 72 h and then re-tested once again using the SPT (32% vs. 0.7% SS). Twenty-four hours after this final consumption, the animals were euthanized to record the weight of their adrenal glands (AG). It was found that exposure to CSI produces anhedonic-type behavior and an anxiogenic profile in adolescent male rats, as evidenced in both the SPT and EPM tests, as well as in the animals' physiological stress response. It was also demonstrated that resocialization does not reverse the anhedonic-type behavior, nor the physiological response to stress.
Collapse
Affiliation(s)
- María Camila Acero-Castillo
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Health Sciences, Universidade de Brasilia, Brasilia, Brazil
| | - María Camila Ardila-Figueroa
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| | - Silvia Botelho de Oliveira
- Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Psychology, Universidade Estadual Paulista, São Paulo, Brazil.,Psychobiology, Universidade de São Paulo, São Paulo, Brazil.,Faculty of Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Laboratory of Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| |
Collapse
|
35
|
Liu X, Wang Y, Lv M, Zhao S, Chen S, Li S, Qin X. Serum metabolomics reveals compatibility rules of the antidepressant effects of Xiaoyaosan and its efficacy groups. Psychiatry Res 2021; 299:113827. [PMID: 33676173 DOI: 10.1016/j.psychres.2021.113827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/21/2021] [Indexed: 01/03/2023]
Abstract
Traditional Chinese medicines (TCMs) have attracted more attentions in the treatment of depression. Xiaoyaosan (XYS), a classic anti-depression TCM prescription, contains eight herbs. However, the compatibility effects of XYS in modern pharmacology need to be investigated in depth. In this study, the chronic unpredictable mild stress (CUMS) depression-like model was constructed. Afterwards, XYS was divided into the Shugan and the Jianpi groups according to the research strategy ofefficacy groups. Meanwhile, a proton nuclear magnetic resonance spectrometry (1H NMR) based serum metabolomics was applied. XYS and its efficacy groups significantly regulated the abnormal levels of differential metabolites related to depression, but to different degrees. Metabolic profiling by orthogonal partial least squares discriminant analysis showed that XYS at high dose (XH) exhibited the strongest effects than other treatment groups. Ten metabolites related to depression were identified as differential metabolites. Besides, relative distance (Rd) was calculated to quantitatively evaluate the effects. We found that XH group had the highest Rd value. Moreover, among the five metabolic pathways of depression, XYS and Jianpi groups significantly regulated all pathways while Shugan group regulated four pathways. These findings lay a solid foundation for comprehensively and deeply understanding the compatibility effects of XYS against depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China.
| | - Yaze Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Meng Lv
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Sijun Zhao
- Shanxi Institute for Food and Drug Control, Taiyuan 030001, China
| | - Shijian Chen
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Shunyong Li
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
36
|
Dala-Paula BM, Starling MDFV, Gloria MBA. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Zhu Z, Zhao X, OuYang Q, Wang Y, Xiong Y, Cong S, Zhou M, Zhang M, Luo X, Cheng M. Waterfall Forest Environment Regulates Chronic Stress via the NOX4/ROS/NF-κB Signaling Pathway. Front Neurol 2021; 12:619728. [PMID: 33868142 PMCID: PMC8044934 DOI: 10.3389/fneur.2021.619728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Forest therapy has been proven to have beneficial effects on people with depression and anxiety. However, it remains unknown whether the waterfall forest environment (WF) affects the physical and psychological health of patients with chronic fatigue and how the WF regulates chronic stress. Methods: Twenty-four patients with chronic fatigue were randomly divided into two groups: the WF group and the urban (U) group. Scores on the Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD), and Fatigue Scale-14 (FS-14) were evaluated before and after environmental intervention. Detection of physiological indexes and inflammatory factor levels and immunological analysis were also performed. In addition, the chronic stress rat model was constructed, and the effects of the WF on hopelessness and liver damage of rats were investigated. Results: Patients with chronic fatigue in the WF group showed a significant decrease in FS-14, HAMA, and HAMD scores compared with the U group. The expression levels of glutathione peroxidase and superoxide dismutase were remarkably higher in the WF group than in the U group. However, the expression levels of malondialdehyde and inflammatory factors (IL-1β, TNF-α, IL-6, and IL-10) were remarkably decreased after the intervention of the WF. In addition, animal experiments confirmed that the WF improved hopelessness, liver damage, and excitability of neurons of chronic stress rats. Mechanistically, the WF reduced the liver damage caused by chronic stress in rats by inhibiting the NOX4/ROS/NF-κB signaling pathway. Conclusions: Collectively, the WF had a positive effect on immune enhancement and physical and psychological health in patients with chronic fatigue and might inhibit chronic stress by regulating the NOX4/ROS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zixin Zhu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qiuyue OuYang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yinghui Wang
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Xiong
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuo Cong
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mingyu Zhou
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Manman Zhang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xinhua Luo
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
38
|
Wei D, Zhao Y, Zhang M, Zhu L, Wang L, Yuan X, Wu C. The Volatile Oil of Zanthoxylum bungeanum Pericarp Improved the Hypothalamic-Pituitary-Adrenal Axis and Gut Microbiota to Attenuate Chronic Unpredictable Stress-Induced Anxiety Behavior in Rats. Drug Des Devel Ther 2021; 15:769-786. [PMID: 33654382 PMCID: PMC7910097 DOI: 10.2147/dddt.s281575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background Anxiety disorders (ADs) are the most prevalent mental disorders worldwide. Stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis and dysbiosis of gut microbiota seem to contribute to the onset of ADs. This study was designed to investigate the ameliorative effect of volatile oil of Zanthoxylum bungeanum (VOZB) on chronic unpredictable stress (CUS) induced anxiety behavior, as well as the altered HPA axis and gut microbiota. Methods Experimental rats were exposed to the CUS for 14 consecutive days. Meanwhile, VOZB was administered at doses of 50, 100 and 200 mg/kg/day for 14 days. The anxiety behavior was evaluated by elevated plus-maze (EPM) and open field (OF). The protein expressions and mRNA levels of corticotropin-releasing hormone (CRH) and glucocorticoid receptor (GR) in hypothalamus was determined, as well the hormone levels of HPA axis in serum. Furthermore, gut microbiota was detected by16S rRNA gene sequencing. The chemical constituents of VOZB were identified by GC-MS analysis. Results VOZB treatment (100 and 200 mg/kg/day) increased the ratio of open-arm entries and time in EPM test, as well as the central zone entries and time in OF test. Moreover, VOZB treatment reduced the protein expressions and mRNA levels of CRH, but elevated those of GR in hypothalamus. Similarly, the hormone levels of the HPA axis in serum were decreased by VOZB treatment. Besides, VOZB treatment restored the CUS-induced dysbiosis of gut microbiota, raising the Sobs and Chao indexes, inhibiting Lachnospiraceae, but facilitating Bacteroidales_S24-7_group, Lactobacillaceae, and Prevotellaceae. Additionally, Sobs and Chao indexes were negatively correlated to the serum corticosterone and CRH levels. Conclusion VOZB showed an ameliorative effect on CUS-induced anxiety behavior, potentially via inhibiting activation of the HPA axis and restoring the dysbiosis of gut microbiota, thus improving the stress-induced abnormality of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Daneng Wei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yafei Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| | - Mengmeng Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lei Zhu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Xing Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Chunjie Wu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
39
|
Colla ARS, Pazini FL, Lieberknecht V, Camargo A, Rodrigues ALS. Ursolic acid abrogates depressive-like behavior and hippocampal pro-apoptotic imbalance induced by chronic unpredictable stress. Metab Brain Dis 2021; 36:437-446. [PMID: 33394285 DOI: 10.1007/s11011-020-00658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023]
Abstract
Emerging evidence has shown that ursolic acid exerts antidepressant-like effects, however, its ability to elicit an antidepressant-like response in rodents subjected to stress model that mimics behavioral and neurochemical alterations found in depression remains to be determined. Thus, this study investigated the possible antidepressant-like effect of ursolic acid in mice subjected to chronic unpredictable stress (CUS) for 14 days, and whether this effect could be associated with the modulation of serum corticosterone levels and hippocampal Bcl-2/Bax mRNA expression. Our results indicated that CUS induced a depressive-like behavior, as demonstrated by an increase in the immobility time and latency to first grooming in the tail suspension test and splash test, respectively. Conversely, the repeated administration of ursolic acid (0.1 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.) in the last 7 days of CUS completely prevented CUS-induced behavioral alterations, suggesting an antidepressant-like effect. Additionally, CUS significantly increased the mRNA expression of Bax (pro-apoptosis marker), but not Bcl-2 (anti-apoptosis marker) in the hippocampus. Moreover, reduced hippocampal mRNA expression of Bcl-2/Bax ratio was detected in CUS-exposed mice. Ursolic acid, but not fluoxetine, prevented CUS-induced increase in the expression of Bax, but both ursolic acid and fluoxetine prevented CUS-induced reduction on Bcl-2/Bax ratio. Furthermore, neither CUS nor treatments with ursolic acid or fluoxetine altered serum corticosterone levels. Our study unveils the ability of ursolic acid to prevent the depressive-like behavior induced by stress and the modulation of Bcl-2/Bax expression could be associated with this response.
Collapse
Affiliation(s)
- André R S Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
40
|
Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats. ACTA ACUST UNITED AC 2021; 57:medicina57030194. [PMID: 33668888 PMCID: PMC7996498 DOI: 10.3390/medicina57030194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Background and objectives: The connections between the imidazoline system and multiple other neurotransmitter systems in the brain (adrenergic, dopaminergic, serotoninergic, glutamatergic, opioid) indicate the complexity of the mechanisms underlying motor activity and behavior. The aim of the present research was to investigate the effects of the combination of ephedrine (EPD) and imidazoline antagonists idazoxan (IDZ) and efaroxan (EFR) on the endurance performance in the treadmill test in rats. Materials and Methods: We used Wistar rats distributed as follows: Group 1 (Control) receiving distilled water 0.3 mL/100 g body weight; Group 2 (EPD) receiving 20 mg/kg ephedrine; Group 3 (EPD + IDZ) receiving 20 mg/kg ephedrine + 3 mg/kg idazoxan; Group 4 (EPD + EFR) receiving 20 mg/kg ephedrine + 1 mg/kg efaroxan. An additional group (C) of animals receiving 0.3 mL/100 g body weight distilled water (but not subjected to effort) was used. Endurance capacity was evaluated using a treadmill running PanLAB assay. The evaluation of the substances’ influence on oxidative stress was performed by spectrophotometric determination of superoxide dismutase (SOD) and glutathione peroxidase (GPX) activity. Results: Treatment with EPD-IDZ and EPD-EFR were correlated with a longer distance traveled on the belt and with a decrease in the necessary electric shocks to motivate the animal to continue running in the forced locomotion test. Additionally, an increase in the activity of antioxidant enzymes was found. Conclusions: Idazoxan and efaroxan potentiated the physical effort-related effects of ephedrine with regard to endurance capacity and antioxidant activity in rats.
Collapse
|
41
|
Rahangdale S, Fating R, Gajbhiye M, Kapse M, Inamdar N, Kotagale N, Umekar M, Taksande B. Involvement of agmatine in antidepressant-like effect of HMG-CoA reductase inhibitors in mice. Eur J Pharmacol 2020; 892:173739. [PMID: 33220274 DOI: 10.1016/j.ejphar.2020.173739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
3-Hydroxy-3-methyl-glutaryl-co-enzyme-A (HMG-CoA) reductase inhibitors (statins) are popularly used for the treatment of obesity and hypercholesterolemia with established safety profile. Statins exhibits a wide range of neurobehavioral effects in addition to their peripheral actions, and may be beneficial in treatment of psychiatric conditions. Present study investigated the role of agmatine and imidazoline receptors in antidepressant-like effect of statins in mouse forced swimming test (FST). The antidepressant-like effect of atorvastatin (5 mg/kg, p.o.) and simvastatin (10 mg/kg, p.o.) was potentiated by pretreatment with agmatine (5 mg/kg, i.p.) as well as the drugs known to increase endogenous agmatine levels in brain viz., L-arginine (40 μg/mouse, i.c.v.), an agmatine biosynthetic precursor; arcaine (50 μg/mouse, i.c.v), agmatinase inhibitor; and aminoguanidine (6.5 μg/mouse, i.c.v.), a diamine oxidase inhibitor. Further, both the statins increased agmatine levels within hippocampus and prefrontal cortex. Conversely, prior administration of I1 receptor antagonist, efaroxan (1 mg/kg, i.p.) and I2 receptor antagonist, idazoxan (0.25 mg/kg, i.p.) blocked the antidepressant-like effect of statins and their synergistic combination with agmatine. These results demonstrate the involvement of agmatine and imidazoline receptors in antidepressant-like effect of statins and suggest as a potential therapeutic target for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Rajshree Fating
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Mona Gajbhiye
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Mona Kapse
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Nazma Inamdar
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S, 444604, India
| | - Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India; Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S, 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India.
| |
Collapse
|
42
|
Hassan MAM, Gad AM, Menze ET, Badary OA, El-Naga RN. Protective effects of morin against depressive-like behavior prompted by chronic unpredictable mild stress in rats: Possible role of inflammasome-related pathways. Biochem Pharmacol 2020; 180:114140. [PMID: 32652141 DOI: 10.1016/j.bcp.2020.114140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023]
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Osama A Badary
- Department of Clinical Pharmacy, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Eriodictyol produces antidepressant-like effects and ameliorates cognitive impairments induced by chronic stress. Neuroreport 2020; 31:1111-1120. [DOI: 10.1097/wnr.0000000000001525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
CUMS Promotes the Development of Premature Ovarian Insufficiency Mediated by Nerve Growth Factor and Its Receptor in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1946853. [PMID: 32685448 PMCID: PMC7345596 DOI: 10.1155/2020/1946853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate whether chronic unpredictable mild stress (CUMS) affects follicular development in ovaries through the nerve growth factor (NGF)/high affinity nerve growth factor receptor, the Tropomyosin-related kinase A (TrkA) receptor, mediated signaling pathway and to reveal the relationship between chronic stress and premature ovarian insufficiency (POI) development. In this experiment, a CUMS rat model was constructed. It was found that serum estradiol (E2), anti-Mullerian hormone (AMH), and gonadotropin-releasing hormone (GnRH) levels decreased, while follicle-stimulating hormone (FSH) levels increased. The expression of NGF, TrkA, p75, and FSHR in ovarian tissue decreased significantly. The expression levels of TrkA and p75 protein in ovarian stroma and small follicles were observed by an immunofluorescence assay. In addition, the numbers of small follicles were significantly reduced. The expression of TrkA, p75, and FSHR in CUMS ovarian tissue was upregulated by exogenous NGF in vitro. Furthermore, after treatment with NGF combined with FSH, E2 secretion in ovarian tissue culture supernatant of CUMS rats also increased significantly. Therefore, CUMS downregulates NGF and TrkA and promotes the occurrence of POI in rats. Exogenous NGF and FSH can upregulate the NGF receptor, E2, and AMH in vitro, and improve the rat ovarian function. Future studies may associate these results with female population.
Collapse
|
45
|
Şahin TD, Gocmez SS, Duruksu G, Yazir Y, Utkan T. Infliximab prevents dysfunction of the vas deferens by suppressing inflammation and oxidative stress in rats with chronic stress. Life Sci 2020; 250:117545. [PMID: 32173313 DOI: 10.1016/j.lfs.2020.117545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
|
46
|
The involvement of GABAergic system in the antidepressant-like effect of agmatine. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1931-1939. [DOI: 10.1007/s00210-020-01910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
|
47
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
48
|
Ozden A, Angelos H, Feyza A, Elizabeth W, John P. Altered plasma levels of arginine metabolites in depression. J Psychiatr Res 2020; 120:21-28. [PMID: 31629205 DOI: 10.1016/j.jpsychires.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
L-Arginine pathway metabolites appear to play differential roles in the pathogenesis of major depressive disorder (MDD). Studies have revealed an antidepressant and anxiolytic effect of agmatine and putrescine. Possible mechanisms of these effects include inhibition of nitric oxide synthase and N-methyl-D-aspartate receptors. The present study sought to determine whether MDD is associated with altered levels of arginine metabolites and whether these metabolites are associated with depression, anxiety and stress severity. Seventy seven MDD patients 21-65 years of age with a minimum score of 18 on the Hamilton Depression Scale, and 27 age and sex matched healthy controls (HC) were included. Patients with uncontrolled physical diseases, abnormal routine lab tests, other psychiatric diagnoses, or under psychotropic medication were excluded. HC subjects were recruited from the community. Rating instruments included Hamilton Depression and Anxiety Scales, Beck Depression and Anxiety Inventory and Perceived Stress Scale. Fasting blood was drawn between 8:30 and 11:00 a.m. and High Performance Liquid Chromatography (HPLC) was used to measure plasma arginine metabolites. ADMA (Asymmetrical dimethylarginine) and putrescine were significantly lower while SDMA (Symmetric dimethylarginine), agmatine and ornithine were significantly higher in MDD patients (p˂0.05). Depression, anxiety and stress severity were negatively correlated with ADMA and putrescine (p˂0.05). Stress was positively correlated with citrulline, NOHA (N-omega-hydroxy-nor-l-arginine), SDMA, agmatine and ornithine (p˂0.05). Lower putrescine levels predicted depression diagnosis (p = 0.039) and depression severity (p = 0.003). Low ADMA level predicted depression severity as well. Arginine pathway metabolites are associated with the pathophysiology of depression. Putrescine may be a biomarker to predict MDD.
Collapse
Affiliation(s)
- Arisoy Ozden
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Psychiatry, Bolu Abant Izzet Baysal University Medical Faculty, Bolu, Turkey
| | - Halaris Angelos
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - Aricioglu Feyza
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Pharmacology, Faculty of Pharmacy and Psychopharmacology Research Unit, Marmara University, Haydarpasa, Istanbul, Turkey
| | - Wild Elizabeth
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Louisiana State University Health Sciences Center Shreveport, Department of Neurosurgery, USA
| | - Piletz John
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Biology, Missisipi College, Jackson, Missisipi, USA
| |
Collapse
|
49
|
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in Depression: Potential Mechanisms of Action and Current Evidence-A Narrative Review. Front Psychiatry 2020; 11:572533. [PMID: 33329109 PMCID: PMC7728608 DOI: 10.3389/fpsyt.2020.572533] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating disorders. Current available treatments are somehow limited, so alternative therapeutic approaches targeting different biological pathways are being investigated to improve treatment outcomes. Curcumin is the main active component in the spice turmeric that has been used for centuries in Ayurvedic medicine to treat a variety of conditions, including anxiety and depressive disorders. In the past decades, curcumin has drawn researchers' attention and displays a broad range of properties that seem relevant to depression pathophysiology. In this review, we break down the potential mechanisms of action of curcumin with emphasis on the diverse systems that can be disrupted in MDD. Curcumin has displayed, in a number of studies, a potency in modulating neurotransmitter concentrations, inflammatory pathways, excitotoxicity, neuroplasticity, hypothalamic-pituitary-adrenal disturbances, insulin resistance, oxidative and nitrosative stress, and endocannabinoid system, all of which can be involved in MDD pathophysiology. To date, a handful of clinical trials have been published and suggest a benefit of curcumin in MDD. With evidence that is progressively growing, curcumin appears as a promising alternative option in the management of MDD.
Collapse
|
50
|
Resveratrol and quercetin attenuate depressive-like behavior and restore impaired contractility of vas deferens in chronic stress-exposed rats: involvement of oxidative stress and inflammation. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:761-775. [DOI: 10.1007/s00210-019-01781-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
|