1
|
Khayatan D, Razavi SM, Arab ZN, Khanahmadi M, Samanian A, Momtaz S, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Barreto GE, Sahebkar A. Protective Effects of Plant-Derived Compounds Against Traumatic Brain Injury. Mol Neurobiol 2024; 61:7732-7750. [PMID: 38427213 DOI: 10.1007/s12035-024-04030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirreza Samanian
- Department of Neurology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Vasily N Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow, 121609, Russia
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Amirhossein Sahebkar
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Koc Yildirim E, Kaya M, Guler AG, Yildirim E, Ozturan YA, Uner AA. Beneficial effects of swimming and pomegranate juice in rats with hypertension: A possible role of serum adropin. Nutr Res 2024; 126:167-179. [PMID: 38759500 DOI: 10.1016/j.nutres.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Hypertension, characterized by persistent and uncontrolled high blood pressure, is one of the most common significant causes of mortality worldwide. Lifestyle modifications such as exercise and antioxidant intake have showed beneficial effects on hypertensive conditions. Adropin and endothelin-1 (ET-1) have important vasoregulatory functions in the endothelium. However, the underlying mechanisms linking exercise- and/or antioxidant intake-mediated improvement of hypertension are not fully understood. In this study, it was hypothesized that swimming exercise and pomegranate juice (PJ) (as an antioxidant) administration might have protective effects on hypertension development and possible involvements of serum adropin and ET-1. To test the hypothesis, the rats with hypertension, induced by Nω-nitro-L-arginine methyl ester hydrochloride, were subjected to swimming exercise and received PJ for 8 weeks. Weekly systolic and diastolic pressures, serum concentrations of adropin and ET-1, and oxidant/antioxidant parameters in various tissues were measured. The obtained data show that swimming exercise leads to complete protection against hypertension within the 8-week duration, whereas the PJ administration causes an ameliorative effect. In addition, the combination of swimming exercise and PJ administration do not have additive effects in protection against hypertension. Notably, the 8-week swimming exercise restores the diminished serum adropin concentration in rats with hypertension to the control level. Serum adropin significantly correlated with systolic and diastolic pressures, depending on swimming exercise, but not PJ administration. Serum ET-1 concentration inconsistently fluctuates in response to Nω-nitro-L-arginine methyl ester hydrochloride, swimming exercise, and PJ intake. In addition, swimming exercise and/or PJ administration lead to a complete normalization in liver malondialdehyde concentrations of rats with hypertension, whereas these interventions cause slight or no improvements in superoxide dismutase, catalase, and glutathione in the heart, liver, and kidney. In conclusion, 8-week swimming exercise modulates hypertension, possibly by influencing adropin concentration and oxidative stress.
Collapse
Affiliation(s)
- Ece Koc Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, 09000 Turkiye
| | - Mehmet Kaya
- Department of Animal Science and Animal Nutrition, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09000, Turkiye
| | - Asude Gulce Guler
- Department of Parasitology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09000, Turkiye
| | - Edasu Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, 09000 Turkiye
| | - Yalcin Alper Ozturan
- Department of Surgery, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09000, Turkiye
| | - Aaron Aykut Uner
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, 09000 Turkiye; Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Li S, Wei X, Huang H, Ye L, Ma M, Sun L, Lu Y, Wu Y. Neuroplastin exerts antiepileptic effects through binding to the α1 subunit of GABA type A receptors to inhibit the internalization of the receptors. J Transl Med 2023; 21:707. [PMID: 37814294 PMCID: PMC10563248 DOI: 10.1186/s12967-023-04596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Seizures are associated with a decrease in γ-aminobutyric type A acid receptors (GABAaRs) on the neuronal surface, which may be regulated by enhanced internalization of GABAaRs. When interactions between GABAaR subunit α-1 (GABRA1) and postsynaptic scaffold proteins are weakened, the α1-containing GABAaRs leave the postsynaptic membrane and are internalized. Previous evidence suggested that neuroplastin (NPTN) promotes the localization of GABRA1 on the postsynaptic membrane. However, the association between NPTN and GABRA1 in seizures and its effect on the internalization of α1-containing GABAaRs on the neuronal surface has not been studied before. METHODS An in vitro seizure model was constructed using magnesium-free extracellular fluid, and an in vivo model of status epilepticus (SE) was constructed using pentylenetetrazole (PTZ). Additionally, in vitro and in vivo NPTN-overexpression models were constructed. Electrophysiological recordings and internalization assays were performed to evaluate the action potentials and miniature inhibitory postsynaptic currents of neurons, as well as the intracellular accumulation ratio of α1-containing GABAaRs in neurons. Western blot analysis was performed to detect the expression of GABRA1 and NPTN both in vitro and in vivo. Immunofluorescence co-localization analysis and co-immunoprecipitation were performed to evaluate the interaction between GABRA1 and NPTN. RESULTS The expression of GABRA1 was found to be decreased on the neuronal surface both in vivo and in vitro seizure models. In the in vitro seizure model, α1-containing GABAaRs showed increased internalization. NPTN expression was found to be positively correlated with GABRA1 expression on the neuronal surface both in vivo and in vitro seizure models. In addition, NPTN overexpression alleviated seizures and NPTN was shown to bind to GABRA1 to form protein complexes that can be disrupted during seizures in both in vivo and in vitro models. Furthermore, NPTN was found to inhibit the internalization of α1-containing GABAaRs in the in vitro seizure model. CONCLUSION Our findings provide evidence that NPTN may exert antiepileptic effects by binding to GABRA1 to inhibit the internalization of α1-containing GABAaRs.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Li H, Su W, Cai J, Zhao L, Li Y. Effects of exercise of different intensities on withdrawal symptoms among people with substance use disorder: a systematic review and meta-analysis. Front Physiol 2023; 14:1126777. [PMID: 37234417 PMCID: PMC10208401 DOI: 10.3389/fphys.2023.1126777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Exercise can effectively attenuate withdrawal symptoms and reduce relapse, but it is unknown whether exercise of different intensities produces different results. This study aimed to systematically review the effects of different exercise intensities on withdrawal symptoms among people with substance use disorder (SUD). Methods: Systematic searches for randomized controlled trials (RCTs) on exercise, SUD, and abstinence symptoms were conducted via electronic databases, including PubMed, up to June 2022. Study quality was evaluated using the Cochrane Risk of Bias tool (RoB 2.0) for assessment of risk of bias in randomized trials. The meta-analysis was performed by calculating the standard mean difference (SMD) in outcomes of interventions involving light-, moderate-, and high-intensity exercise for each individual study using Review Manager version 5.3 (RevMan 5.3). Results: In total, 22 RCTs (n = 1,537) were included. Overall, exercise interventions had significant effects on withdrawal symptoms, but the effect size varied with exercise intensity and by outcome measure (i.e., for different negative emotions). Light-, moderate-, and high-intensity exercise reduced cravings after the intervention [SMD = -0.71, 95% CI = (-0.90, -0.52)], and there were no statistical differences between the subgroups (p > 0.05). Light-, moderate-, and high-intensity exercise reduced depression after the intervention [light, SMD = -0.33, 95% CI = (-0.57, -0.09); moderate, SMD = -0.64, 95% CI = (-0.85, -0.42); high, SMD = -0.25, 95% CI = (-0.44, -0.05)], with moderate-intensity exercise producing the best effect (p < 0.05). Only light- and moderate-intensity exercise relieved anxiety after the intervention [light, SMD = -0.48, 95% CI = (-0.71, -0.26); moderate, SMD = -0.58, 95% CI = (-0.85, -0.31)]. Only high-intensity exercise worked in alleviating stress [SMD = -1.13, 95% CI = (-2.22, -0.04)]. Both irritability and restlessness could be improved by light- and moderate-intensity exercise [irritability, SMD = -0.74, 95% CI = (-0.98, -0.50); restless, SMD = -0.72, 95% CI = (-0.98, -0.47)], and there were no statistical differences between the subgroups (p > 0.05). Moderate- and high-intensity exercise decreased withdrawal syndrome after the intervention [moderate, SMD = -0.30, 95% CI = (-0.55, -0.05); high, SMD = -1.33, 95% CI = (-1.90, -0.76)], with high-intensity exercise producing the best effects (p < 0.01). Conclusion: Overall, exercise leads to improvements in withdrawal symptoms in individuals with SUD, but these effects vary significantly between the exercise of different intensities and according to the type of withdrawal symptoms. Moderate-intensity exercise has the greatest benefits in improving depression and anxiety; high-intensity exercise has the greatest benefits in improving withdrawal syndrome. Systematic Review Registration: www.crd.york.ac.uk/PROSPERO/, identifier, CRD42022343791.
Collapse
Affiliation(s)
- Hao Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Wantang Su
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
5
|
Guo Y, Yan M, Li L, Zhao L, Li Y. Treadmill Exercise Prevents Cognitive Impairments in Adolescent Intermittent Ethanol Rats by Reducing the Excessive Activation of Microglia Cell in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314701. [PMID: 36499029 PMCID: PMC9740642 DOI: 10.3390/ijms232314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The excessive activation of microglia cell induced by adolescent intermittent ethanol (AIE) leads to neuroinflammation in the hippocampus. The endocannabinoid system plays a key role in the modulation of microglia activation. Accumulating evidence suggests that regular exercise improves learning and memory deficits in AIE models. The purpose of this study was to explore the effects of treadmill exercise intervention on the cognitive performance, activation of microglia cells and the expression of monoacylglycerol lipase (MAGL), cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) in the hippocampus of AIE rats. Here, we show that AIE rats exhibited cognitive impairments, whereas the treadmill exercise improves the cognitive performance in AIE rats. In order to explore the possible mechanisms for the exercise-induced attenuation of cognitive disorder, we examined the neuroinflammation in the hippocampus. We found that treadmill exercise led to the decrease in the level of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increase in the level of anti-inflammatory cytokine (IL-10). In addition, we found that treadmill exercise reduced the excessive activation of the microglia cell in the hippocampus of AIE rats. Finally, we found that AIE led to a decrease in the expression of CB1R and CB2R in the hippocampus; however, the treadmill exercise further decreased the expression of CB2R in the hippocampus of AIE rats. Our results suggest that treadmill exercise attenuates AIE-induced neuroinflammation and the excessive activation of hippocampus microglial cells, which may contribute to the exercise-induced improvement of cognitive performance in AIE rats.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Min Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
6
|
Li S, Huang H, Wei X, Ye L, Ma M, Ling M, Wu Y. The recycling of AMPA receptors/GABAa receptors is related to neuronal excitation/inhibition imbalance and may be regulated by KIF5A. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1103. [PMID: 36388788 PMCID: PMC9652568 DOI: 10.21037/atm-22-4337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 09/01/2023]
Abstract
BACKGROUND Excitation/inhibition imbalance (E/I imbalance), which involves an increase of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors (AMPARs) and decrease of gamma-aminobutyric acid type A (GABA) type A receptors (GABAaRs) on the neuron surface, has been documented in the pathogenesis of seizures. Notably, it has been established that both the glutamate receptor subunit 2 (GluR2) of AMPARs and beta 2/3 subunits of GABAaRs (Gabrb2+3) participate in the recycling mechanism mediated by the kinesin heavy chain isoform 5A (KIF5A), which determines the number of neuron surface receptors. However, it remains unclear whether receptor recycling is involved in the pathogenesis of seizures. METHODS Twelve adult male Sprague-Dawley rats were randomly allocated to the normal control (Ctl) group (n=6) and the pentylenetetrazol (PTZ)-induced seizure (Sez) group (n=6). The rats in the Ctl group were treated with saline. The rats in the Sez group received an intraperitoneal injection of PTZ at an initial dose of 40 mg/kg. Primary cultured neurons were obtained from newborn rats (24-hour-old). The neurons were exposed to magnesium-free (Mg2+-free) extracellular fluid for 3 hours to establish the seizure model in vitro. We detected the electrophysiology of the seizure model, the expression levels of KIF5A, GluR2, and Gabrb2+3, the recycling ratio of GluR2 and Gabrb2+3, the interaction between KIF5A and GluR2, and the interaction between KIF5A and Gabrb2+3. RESULTS In the Sez group, the expression of GluR2 on the cell surface was increased and the expression of Gabrb2+3 on the cell surface was decreased. The amplitude and frequency of action potentials were significantly increased in the Mg2+-free group. The amplitude and decay time of AMPAR-mediated miniature excitatory postsynaptic currents were increased in the Mg2+-free group. The amplitude and decay time of miniature inhibitory postsynaptic currents were decreased in the Mg2+-free group. The recycling ratio of GluR2 was increased and the recycling ratio of Gabrb2+3 was decreased in the Mg2+-free group. The interaction between KIF5A and GluR2 was increased, and the interaction between KIF5A and Gabrb2+3 was decreased in the seizure model in vivo and in vitro. CONCLUSIONS The recycling of AMPA receptors/GABAa receptors is related to E/I imbalance and may be regulated by KIF5A.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Ling
- Department of Biotechnology, Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Chen XY, Lin C, Liu GY, Pei C, Xu GQ, Gao L, Wang SZ, Pan YX. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. J Appl Physiol (1985) 2022; 132:1460-1467. [PMID: 35546127 DOI: 10.1152/japplphysiol.00459.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) or exercise training (ExT) is beneficial to hypertension, but their combined effects remain unknown. In this study, lentivirus containing enhanced green fluorescent protein (eGFP) and ACE2 were microinjected into the paraventricular nucleus (PVN) of young male spontaneous hypertensive rats (SHRs), and SHRs were assigned into five groups: sedentary (SHR), SHR-ExT, SHR-eGFP, ACE2 gene (SHR-ACE2), and ACE2 gene combined with ExT (SHR-ACE2-ExT). Wistar-Kyoto (WKY) rats were used as a control. ACE2 gene or ExT significantly delayed the elevation of blood pressure, and the combined effect prevented the development and progression of prehypertension. Either ACE2 overexpression or ExT improved arterial baroreflex sensitivity (BRS), whereas the combined effect normalized BRS in SHR. Compared with SHR, SHR-ACE2 and SHR-ExT displayed a significantly higher level of ACE2 protein but had lower plasma norepinephrine (NE) and angiotensin II (AngII) as well as angiotensin II type 1 receptor (AT1) protein expression in the PVN. SHR-ACE2-ExT showed the largest decrease in AngII and AT1 protein expression. Reactive oxygen species (ROS) level and NADPH oxidase (NOX2 and NOX4) protein expression in PVN were also decreased in SHR-ACE2-ExT group than in SHR-ACE2 and SHR-ExT groups. It was concluded that the combined effect has effectively prevented prehypertension progression and baroreflex dysfunction in SHR, which is associated with the reduction in AngII/AT1 axis function and oxidative stress in the PVN.NEW & NOTEWORTHY Angiotensin-converting enzyme 2 (ACE2) gene in combination with exercise training (ExT) delayed the progression of hypertension via normalizing the blunted baroreflex sensitivity (BRS) and inhibiting sympathetic nerve activity (SNA). Its underlying mechanism may be related to the inhibition of AngII/AT1 axis function and central oxidative stress in the paraventricular nucleus (PVN) of prehypertensive rats.
Collapse
Affiliation(s)
- Xiu-Yun Chen
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Cheng Lin
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Guo-Ying Liu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Chun Pei
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Gui-Qing Xu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Lie Gao
- Department of Cellular and Integrative, Physiology of University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Yan-Xia Pan
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Zhu X, Li K, Gao Y. Adeno-associated virus-mediated in vivo suppression of expression of EPHX2 gene modulates the activity of paraventricular nucleus neurons in spontaneously hypertensive rats. Biochem Biophys Res Commun 2022; 606:121-127. [PMID: 35344709 DOI: 10.1016/j.bbrc.2022.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypertension can be attributed to increased sympathetic activities. Presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus are capable of modulating sympathetic outflow, thus contributing to the pathogenesis of neurogenic hypertension. Epoxyeicosatrienoic acids (EETs) were reported to have anti-hypertensive effects, which could be degraded by soluble epoxide hydrolase (sEH), encoded by EPHX2. However, the potential effect of EETs on PVN neuron activity and the underlying molecular mechanism are largely unknown. METHODS Knockdown of EPHX2 in spontaneously hypertensive rats (SHRs) was achieved by tail-intravenous injection of AAV plasmid containing shRNA targeting EPHX2. Whole-cell patch clamp was used to record action potentials of PVN neurons. An LC-MS/MS System was employed to determine 14,15-EET levels in rat cerebrospinal fluid. qPCR and western blotting were applied to examine the expression level of EPHX2 in various tissues. ELISA and immunofluorescence staining were applied to examine the levels of ATP, D-serine and glial fibrillary acidic protein (GFAP) in isolated astrocytes. RESULTS The expression level of EPHX2 was higher, while the level of 14,15-EET was lower in SHRs than normotensive Wistar-Kyoto rats (WKY) rats. The spike firing frequency of PNV neurons in SHRs was higher than in WKY rats at a given stimulus current, which could be reduced by either EPHX2 downregulation or 14,15-EET administration. In isolated hypothalamic astrocytes, the elevated intracellular ATP or D-serine induced by Angiotensin II (Ang II) treatment could be rescued by 14,15-EET addition or 14,15-EET combing serine racemase (SR) downregulation by siRNA, respectively. Furthermore, 14,15-EET treatment reduced the Ang II-induced elevation of GFAP immunofluorescence. CONCLUSIONS The elevation of EET levels by EPHX2 downregulation reduced presympathetic neuronal activity in the PVN of SHRs, leading to a reduced sympathetic outflow in hypertension rats. The ATP/SR/D-serine pathway of astrocytes is involved in EET-mediated neuroprotection.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Kuibao Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yuanfeng Gao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Renal denervation based on experimental rationale. Hypertens Res 2021; 44:1385-1394. [PMID: 34518650 PMCID: PMC9577563 DOI: 10.1038/s41440-021-00746-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Excessive activation of the sympathetic nervous system is one of the pathophysiological hallmarks of hypertension and heart failure. Within the central nervous system, the paraventricular nucleus (PVN) of the hypothalamus and the rostral ventrolateral medulla in the brain stem play critical roles in the regulation of sympathetic outflow to peripheral organs. Information from the peripheral circulation, including serum concentrations of sodium and angiotensin II, is conveyed to the PVN via adjacent structures with a weak blood-brain barrier. In addition, signals from baroreceptors, chemoreceptors and cardiopulmonary receptors as well as afferent input via the renal nerves are all integrated at the level of the PVN. The brain renin-angiotensin system and the balance between nitric oxide and reactive oxygen species in these brain areas also determine the final sympathetic outflow. Additionally, brain inflammatory responses have been shown to modulate these processes. Renal denervation interrupts both the afferent inputs from the kidney to the PVN and the efferent outputs from the PVN to the kidney, resulting in the suppression of sympathetic outflow and eliciting beneficial effects on both hypertension and heart failure.
Collapse
|
10
|
Gardim CB, Veiga AC, Aguilar BA, Philbois SV, Souza HCD. Effects of chronic cholinergic stimulation associated with aerobic physical training on cardiac morphofunctional and autonomic parameters in spontaneously hypertensive rats. Sci Rep 2021; 11:17141. [PMID: 34433865 PMCID: PMC8387354 DOI: 10.1038/s41598-021-96505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
We investigated hemodynamic, cardiac morphofunctional, and cardiovascular autonomic adaptations in spontaneously hypertensive rats (SHRs) after aerobic physical training associated with chronic cholinergic stimulation. Fifty-four SHRs were divided into two groups: trained and untrained. Each group was further subdivided into three smaller groups: vehicle, treated with pyridostigmine bromide at 5 mg/kg/day, and treated with pyridostigmine bromide at 15 mg/kg/day. The following protocols were assessed: echocardiography, autonomic double pharmacological blockade, heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS). Physical training and pyridostigmine bromide reduced BP and HR and increased vagal participation in cardiac autonomic tonic balance. The associated responses were then potentialized. Treatment with pyridostigmine bromide increased HRV oscillation of both low frequency (LF: 0.2-0.75 Hz) and high frequency (HF: 0.75-3 Hz). However, the association with physical training attenuated HF oscillations. Additionally, treatment with pyridostigmine bromide also increased LF oscillations of BPV. Both treatment groups promoted morphofunctional adaptations, and associated increased ejection volume, ejection fraction, cardiac output, and cardiac index. In conclusion, the association of pyridostigmine bromide and physical training promoted greater benefits in hemodynamic parameters and increased vagal influence on cardiac autonomic tonic balance. Nonetheless, treatment with pyridostigmine bromide alone seems to negatively affect BPV and the association of treatment negatively influences HRV.
Collapse
Affiliation(s)
- Camila B Gardim
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Catarine Veiga
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno A Aguilar
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Stella V Philbois
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hugo C D Souza
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Zaychik Y, Fainstein N, Touloumi O, Goldberg Y, Hamdi L, Segal S, Nabat H, Zoidou S, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-Intensity Exercise Training Protects the Brain Against Autoimmune Neuroinflammation: Regulation of Microglial Redox and Pro-inflammatory Functions. Front Cell Neurosci 2021; 15:640724. [PMID: 33708074 PMCID: PMC7940666 DOI: 10.3389/fncel.2021.640724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Exercise training induces beneficial effects on neurodegenerative diseases, and specifically on multiple sclerosis (MS) and it’s model experimental autoimmune encephalomyelitis (EAE). However, it is unclear whether exercise training exerts direct protective effects on the central nervous system (CNS), nor are the mechanisms of neuroprotection fully understood. In this study, we investigated the direct neuroprotective effects of high-intensity continuous training (HICT) against the development of autoimmune neuroinflammation and the role of resident microglia. Methods: We used the transfer EAE model to examine the direct effects of training on the CNS. Healthy mice performed HICT by treadmill running, followed by injection of encephalitogenic proteolipid (PLP)-reactive T-cells to induce EAE. EAE severity was assessed clinically and pathologically. Brain microglia from sedentary (SED) and HICT healthy mice, as well as 5-days post EAE induction (before the onset of disease), were analyzed ex vivo for reactive oxygen species (ROS) and nitric oxide (NO) formation, mRNA expression of M1/M2 markers and neurotrophic factors, and secretion of cytokines and chemokines. Results: Transfer of encephalitogenic T-cells into HICT mice resulted in milder EAE, compared to sedentary mice, as indicated by reduced clinical severity, attenuated T-cell, and neurotoxic macrophage/microglial infiltration, and reduced loss of myelin and axons. In healthy mice, HICT reduced the number of resident microglia without affecting their profile. Isolated microglia from HICT mice after transfer of encephalitogenic T-cells exhibited reduced ROS formation and released less IL-6 and monocyte chemoattractant protein (MCP) in response to PLP-stimulation. Conclusions: These findings point to the critical role of training intensity in neuroprotection. HICT protects the CNS against autoimmune neuroinflammation by reducing microglial-derived ROS formation, neurotoxicity, and pro-inflammatory responses involved in the propagation of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Yifat Zaychik
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Sofia Zoidou
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
12
|
Matta L, Fonseca TS, Faria CC, Lima-Junior NC, De Oliveira DF, Maciel L, Boa LF, Pierucci APTR, Ferreira ACF, Nascimento JHM, Carvalho DP, Fortunato RS. The Effect of Acute Aerobic Exercise on Redox Homeostasis and Mitochondrial Function of Rat White Adipose Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4593496. [PMID: 33603946 PMCID: PMC7868166 DOI: 10.1155/2021/4593496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/01/2020] [Accepted: 01/16/2021] [Indexed: 12/21/2022]
Abstract
Physical exercise is characterized by an increase in physical and metabolic demand in face of physical stress. It is reported that a single exercise session induces physiological responses through redox signaling to increase cellular function and energy support in diverse organs. However, little is known about the effect of a single bout of exercise on the redox homeostasis and cytoprotective gene expression of white adipose tissue (WAT). Thus, we aimed at evaluating the effects of acute aerobic exercise on WAT redox homeostasis, mitochondrial metabolism, and cytoprotective genic response. Male Wistar rats were submitted to a single moderate-high running session (treadmill) and were divided into five groups: control (CTRL, without exercise), and euthanized immediately (0 h), 30 min, 1 hour, or 2 hours after the end of the exercise session. NADPH oxidase activity was higher in 0 h and 30 min groups when compared to CTRL group. Extramitochondrial ROS production was higher in 0 h group in comparison to CTRL and 2 h groups. Mitochondrial respiration in phosphorylative state increased in 0 h group when compared to CTRL, 30 min, 1, and 2 h groups. On the other hand, mitochondrial ATP production was lower in 0 h in comparison to 30 min group, increasing in 1 and 2 h groups when compared to CTRL and 0 h groups. CAT activity was lower in all exercised groups when compared to CTRL. Regarding oxidative stress biomarkers, we observed a decrease in reduced thiol content in 0 h group compared to CTRL and 2 h groups, and higher levels of protein carbonylation in 0 and 30 min groups in comparison to the other groups. The levels returned to basal condition in 2 h group. Furthermore, aerobic exercise increased NRF2, GPX2, HMOX1, SOD1, and CAT mRNA levels. Taken together, our results suggest that one session of aerobic exercise can induce a transient prooxidative state in WAT, followed by an increase in antioxidant and cytoprotective gene expression.
Collapse
Affiliation(s)
- Leonardo Matta
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | - Túlio S. Fonseca
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | - Caroline C. Faria
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | | | - Dahienne F. De Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | - Luiz F. Boa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | | | - Andrea C. F. Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
- NUMPEX, Duque de Caxias Campus, Federal University of Rio de Janeiro, Brazil
| | - José H. M. Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | - Denise P. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| | - Rodrigo S. Fortunato
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-590, Brazil
| |
Collapse
|