1
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
2
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
4
|
Xiong M, Roshanbin S, Sehlin D, Hansen HD, Knudsen GM, Rokka J, Eriksson J, Syvänen S. Synaptic density in aging mice measured by [ 18F]SynVesT-1 PET. Neuroimage 2023:120230. [PMID: 37355199 DOI: 10.1016/j.neuroimage.2023.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Johanna Rokka
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
5
|
Rossano S, Toyonaga T, Berg E, Lorence I, Fowles K, Nabulsi N, Ropchan J, Li S, Ye Y, Felchner Z, Kukis D, Huang Y, Benveniste H, Tarantal AF, Groman S, Carson RE. Imaging the fetal nonhuman primate brain with SV2A positron emission tomography (PET). Eur J Nucl Med Mol Imaging 2022; 49:3679-3691. [PMID: 35633376 PMCID: PMC9826644 DOI: 10.1007/s00259-022-05825-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Exploring synaptic density changes during brain growth is crucial to understanding brain development. Previous studies in nonhuman primates report a rapid increase in synapse number between the late gestational period and the early neonatal period, such that synaptic density approaches adult levels by birth. Prenatal synaptic development may have an enduring impact on postnatal brain development, but precisely how synaptic density changes in utero are unknown because current methods to quantify synaptic density are invasive and require post-mortem brain tissue. METHODS We used synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) radioligands [11C]UCB-J and [18F]Syn-VesT-1 to conduct the first assessment of synaptic density in the developing fetal brain in gravid rhesus monkeys. Eight pregnant monkeys were scanned twice during the third trimester at two imaging sites. Fetal post-mortem samples were collected near term in a subset of subjects to quantify SV2A density by Western blot. RESULTS Image-derived fetal brain SV2A measures increased during the third trimester. SV2A concentrations were greater in subcortical regions than in cortical regions at both gestational ages. Near term, SV2A density was higher in primary motor and visual areas than respective associative regions. Post-mortem quantification of SV2A density was significantly correlated with regional SV2A PET measures. CONCLUSION While further study is needed to determine the exact relationship of SV2A and synaptic density, the imaging paradigm developed in the current study allows for the effective in vivo study of SV2A development in the fetal brain.
Collapse
Affiliation(s)
- Samantha Rossano
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Eric Berg
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Isabella Lorence
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Krista Fowles
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Songye Li
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Yunpeng Ye
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Zachary Felchner
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - David Kukis
- Center for Molecular and Genomic Imaging, University of California, Davis, CA, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Stephanie Groman
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
7
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Pazarlar BA, Aripaka SS, Petukhov V, Pinborg L, Khodosevich K, Mikkelsen JD. Expression profile of synaptic vesicle glycoprotein 2A, B, and C paralogues in temporal neocortex tissue from patients with temporal lobe epilepsy (TLE). Mol Brain 2022; 15:45. [PMID: 35578248 PMCID: PMC9109314 DOI: 10.1186/s13041-022-00931-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSynaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known. We have here analyzed the expression of SV2 genes in neuronal subtypes in the temporal neocortex in selected specimens by using single nucleus-RNA sequencing, and performed quantitative PCR in populations of temporal lobe epilepsy (TLE) patients and healthy controls. [3H]-UCB-J autoradiography was performed to analyze the correlation between the mRNA transcript and binding capacity to SV2A. Our data showed that the SV2A transcript is expressed in all glutamatergic and GABAergic cortical subtypes, while SV2B expression is restricted to only the glutamatergic neurons and SV2C has very limited expression in a small subgroup of GABAergic interneurons. The level of [3H]-UCB-J binding and the concentration of SV2A mRNA is strongly correlated in each patient, and the expression is lower in the TLE patients. There is no relationship between SV2A expression and age, sex, seizure frequency, duration of epilepsy, or whether patients were recently treated with levetiracetam or not. Collectively, these findings point out a neuronal subtype-specific distribution of the expression of the three SV2 genes, and the lower levels of both radioligand binding and expression further emphasize the significance of these proteins in this disease.
Collapse
|
9
|
Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, Nicotera AG, Di Rosa G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front Neurol 2022; 13:826211. [PMID: 35350397 PMCID: PMC8957959 DOI: 10.3389/fneur.2022.826211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
The proper connection between the pre- and post-synaptic nervous cells depends on any element constituting the synapse: the pre- and post-synaptic membranes, the synaptic cleft, and the surrounding glial cells and extracellular matrix. An alteration of the mechanisms regulating the physiological synergy among these synaptic components is defined as “synaptopathy.” Mutations in the genes encoding for proteins involved in neuronal transmission are associated with several neuropsychiatric disorders, but only some of them are associated with Developmental and Epileptic Encephalopathies (DEEs). These conditions include a heterogeneous group of epilepsy syndromes associated with cognitive disturbances/intellectual disability, autistic features, and movement disorders. This review aims to elucidate the pathogenesis of these conditions, focusing on mechanisms affecting the neuronal pre-synaptic terminal and its role in the onset of DEEs, including potential therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- *Correspondence: Vincenzo Salpietro
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Ahmed H, Khan MA, Ali Zaidi SA, Muhammad S. In Silico and In Vivo: Evaluating the Therapeutic Potential of Kaempferol, Quercetin, and Catechin to Treat Chronic Epilepsy in a Rat Model. Front Bioeng Biotechnol 2021; 9:754952. [PMID: 34805114 PMCID: PMC8599161 DOI: 10.3389/fbioe.2021.754952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Recently, alternative therapies are gaining popularity in the treatment of epilepsy. The present study aimed to find out the antiepileptic potential of quercetin, catechin, and kaempferol. In vivo and in silico experiments were conducted to investigate their therapeutic potential. 25 mg/kg/day of pentylenetetrazole was administered for 4 weeks after epilepsy was induced in the rats; this was followed by the behavioral studies and histological analysis of rat brain slices. Binding affinities of kaempferol, quercetin, and catechin were assessed by performing in silico studies. Kaempferol, quercetin, and catechin were found to have the highest binding affinity with the synaptic vesicle 2A (SV2A) protein, comparable to standard levetiracetam (LEV). The mRNA levels of SV2A, as well as the expression of TNF, IL 6, IL 1 beta, NFkB, IL 1Ra, IL 4, and IL 10, were investigated using qPCR. Our results indicate for the first time that SV2A is also a transporter of understudied phytoflavonoids, due to which a significant improvement was observed in epileptic parameters. The mRNA levels of SV2A were found to be significantly elevated in the PF-treated rats when compared with those of the control rats with epilepsy. Additionally, downregulation of the pro-inflammatory cytokines and upregulation of the anti-inflammatory cytokines were also noted in the PF-treated groups. It is concluded that kaempferol, quercetin, and catechin can effectively decrease the epileptic seizures in our chronic epilepsy rat model to a level that is comparable to the antiepileptic effects induced by levetiracetam drug.
Collapse
Affiliation(s)
- Hammad Ahmed
- Faculty of Pharmacy, The University of Lahore, Defence Road Campus, Lahore, Pakistan.,Imran Idrees College of Pharmacy, Sialkot, Pakistan
| | | | | | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Neurosurgery, University of Helsinki and University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Zhou J, Liang W, Wang J, Chen J, Liu D, Wang X, Wu Y, Zhang Q, Shen D. An epileptic encephalopathy associated GABRG2 missense mutation leads to pre- and postsynaptic defects in zebrafish. Hum Mol Genet 2021; 31:3216-3230. [PMID: 34957497 DOI: 10.1093/hmg/ddab338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated with a variety of epilepsy syndromes. A de novo mutation (c.T1027C, p.F343L) in GABRG2 was identified in a patient with early onset epileptic encephalopathy. Zebrafish overexpressing mutant human GABRG2 (F343L) subunits displayed spontaneous seizure activity and convulsive behaviors. In this study, we demonstrated that Tg (hGABRG2F343L) zebrafish displayed hyperactivity during light phase with normal circadian rhythm, as well as increased drug-induced locomotor activity. Real-time quantitative PCR, whole mount in situ hybridization and western blotting showed that Tg(hGABRG2F343L) zebrafish had altered expression of GABAA receptor subunits. Furthermore, investigation of synaptic protein expression and synapse ultrastructure uncovered a robust synaptic phenotype that is causally linked to GABRG2(F343L) mutation. Strikingly, Tg(hGABRG2F343L) zebrafish not only had postsynaptic defects, but also displayed an unanticipated deficit at the presynaptic level. Overall, our Tg(hGABRG2F343L) overexpression zebrafish model has expanded the GABAergic paradigm in epileptic encephalopathy from channelopathy to synaptopathy.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Juan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dingding Shen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kong Y, Zhang S, Huang L, Zhang C, Xie F, Zhang Z, Huang Q, Jiang D, Li J, Zhou W, Hua T, Sun B, Wang J, Guan Y. Positron Emission Computed Tomography Imaging of Synaptic Vesicle Glycoprotein 2A in Alzheimer's Disease. Front Aging Neurosci 2021; 13:731114. [PMID: 34795573 PMCID: PMC8593388 DOI: 10.3389/fnagi.2021.731114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Early diagnosis of AD is of great significance to control the development of the disease. Synaptic loss is an important pathology in the early stage of AD, therefore the measurement of synaptic density using molecular imaging technology may be an effective way to early diagnosis of AD. Synaptic vesicle glycoprotein 2A (SV2A) is located in the presynaptic vesicle membrane of virtually all synapses. SV2A Positron Emission Computed Tomography (PET) could provide a way to measure synaptic density quantitatively in living humans and to track changes in synaptic density in AD. In view of the fact that synaptic loss is the pathology of both epilepsy and AD, this review summarizes the potential role of SV2A in the pathogenesis of AD, and suggests that SV2A should be used as an important target molecule of PET imaging agent for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Smart K, Liu H, Matuskey D, Chen MK, Torres K, Nabulsi N, Labaree D, Ropchan J, Hillmer AT, Huang Y, Carson RE. Binding of the synaptic vesicle radiotracer [ 11C]UCB-J is unchanged during functional brain activation using a visual stimulation task. J Cereb Blood Flow Metab 2021; 41:1067-1079. [PMID: 32757741 PMCID: PMC8054713 DOI: 10.1177/0271678x20946198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The positron emission tomography radioligand [11C]UCB-J binds to synaptic vesicle glycoprotein 2 A (SV2A), a regulator of vesicle release. Increased neuronal firing could potentially affect tracer concentrations if binding site availability is altered during vesicle exocytosis. This study assessed whether physiological brain activation induces changes in [11C]UCB-J tissue influx (K1), volume of distribution (VT), or binding potential (BPND). Healthy volunteers (n = 7) underwent 60-min [11C]UCB-J PET scans at baseline and during intermittent presentation of 8-Hz checkerboard visual stimulation. Sensitivity to intermittent changes in kinetic parameters was assessed in simulations, and visual stimulation was repeated using functional magnetic resonance imaging to characterize neural responses. VT and K1 were determined using the one-tissue compartment model and BPND using the simplified reference tissue model. In primary visual cortex, K1 increased 34.3 ± 15.5% (p = 0.001) during stimulation, with no change in other regions (ps > 0.12). K1 change was correlated with fMRI BOLD response (r = 0.77, p = 0.043). There was no change in VT (-3.9 ± 8.8%, p = 0.33) or BPND (-0.2 ± 9.6%, p = 0.94) in visual cortex nor other regions (ps > 0.19). Therefore, despite robust increases in regional tracer influx due to blood flow increases, binding measures were unchanged during stimulation. [11C]UCB-J VT and BPND are likely to be stable in vivo measures of synaptic density.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Heather Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - David Matuskey
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Ming-Kai Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kristen Torres
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Labaree
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ansel T Hillmer
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| |
Collapse
|
14
|
Contreras-García IJ, Gómez-Lira G, Phillips-Farfán BV, Pichardo-Macías LA, García-Cruz ME, Chávez-Pacheco JL, Mendoza-Torreblanca JG. Synaptic Vesicle Protein 2A Expression in Glutamatergic Terminals Is Associated with the Response to Levetiracetam Treatment. Brain Sci 2021; 11:brainsci11050531. [PMID: 33922424 PMCID: PMC8145097 DOI: 10.3390/brainsci11050531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
Synaptic vesicle protein 2A (SV2A), the target of the antiepileptic drug levetiracetam (LEV), is expressed ubiquitously in all synaptic terminals. Its levels decrease in patients and animal models of epilepsy. Thus, changes in SV2A expression could be a critical factor in the response to LEV. Epilepsy is characterized by an imbalance between excitation and inhibition, hence SV2A levels in particular terminals could also influence the LEV response. SV2A expression was analyzed in the epileptic hippocampus of rats which responded or not to LEV, to clarify if changes in SV2A alone or together with glutamatergic or GABAergic markers may predict LEV resistance. Wistar rats were administered saline (control) or pilocarpine to induce epilepsy. These groups were subdivided into untreated or LEV-treated groups. All epileptic rats were video-monitored to assess their number of seizures. Epileptic rats with an important seizure reduction (>50%) were classified as responders. SV2A, vesicular γ-aminobutyric acid transporter and vesicular glutamate transporter (VGLUT) expression were assessed by immunostaining. SV2A expression was not modified during epilepsy. However, responders showed ≈55% SV2A-VGLUT co-expression in comparison with the non-responder group (≈40%). Thus, SV2A expression in glutamatergic terminals may be important for the response to LEV treatment.
Collapse
Affiliation(s)
- Itzel Jatziri Contreras-García
- Área de Neurociencias, Biología de la Reproducción, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico;
| | - Gisela Gómez-Lira
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico;
| | - Bryan Víctor Phillips-Farfán
- Laboratorio de Nutrición Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México 07738, Mexico;
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Juan Luis Chávez-Pacheco
- Laboratorio de Farmacología, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Julieta G. Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Correspondence: ; Tel.: +52-55-840900 (ext. 1425) or +52-55-21836345
| |
Collapse
|
15
|
Glorie D, Verhaeghe J, Miranda A, De Lombaerde S, Stroobants S, Staelens S. Sapap3 deletion causes dynamic synaptic density abnormalities: a longitudinal [ 11C]UCB-J PET study in a model of obsessive-compulsive disorder-like behaviour. EJNMMI Res 2020; 10:140. [PMID: 33185747 PMCID: PMC7666267 DOI: 10.1186/s13550-020-00721-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Currently, the evidence on synaptic abnormalities in neuropsychiatric disorders—including obsessive–compulsive disorder (OCD)—is emerging. The newly established positron emission tomography (PET) ligand ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) provides the opportunity to visualize synaptic density changes in vivo, by targeting the synaptic vesicle protein 2A (SV2A). Here, we aim to evaluate such alterations in the brain of the SAP90/PSD-95-associated protein 3 (Sapap3) knockout (ko) mouse model, showing an abnormal corticostriatal neurotransmission resulting in OCD-like behaviour. Methods Longitudinal [11C]UCB-J µPET/CT scans were acquired in Sapap3 ko and wildtype (wt) control mice (n = 9/group) to study SV2A availability. Based on the Logan reference method, we calculated the volume of distribution (VT(IDIF)) for [11C]UCB-J. Both cross-sectional (wt vs. ko) and longitudinal (3 vs. 9 months) volume-of-interest-based statistical analysis and voxel-based statistical parametric mapping were performed. Both [11C]UCB-J ex vivo autoradiography and [3H]UCB-J in vitro autoradiography were used for the validation of the µPET data. Results At the age of 3 months, Sapap3 ko mice are already characterized by a significantly lower SV2A availability compared to wt littermates (i.a. cortex − 12.69%, p < 0.01; striatum − 14.12%, p < 0.001, thalamus − 13.11%, p < 0.001, and hippocampus − 12.99%, p < 0.001). Healthy ageing in control mice was associated with a diffuse and significant (p < 0.001) decline throughout the brain, whereas in Sapap3 ko mice this decline was more confined to the corticostriatal level. A strong linear relationship (p < 0.0001) was established between the outcome parameters of [11C]UCB-J µPET and [11C]UCB-J ex vivo autoradiography, while such relationship was absent for [3H]UCB-J in vitro autoradiography. Conclusions [11C]UCB-J PET is a potential marker for synaptic density deficits in the Sapap3 ko mouse model for OCD, parallel to disease progression. Our data suggest that [11C]UCB-J ex vivo autoradiography is a suitable proxy for [11C]UCB-J PET data in mice.
Collapse
Affiliation(s)
- Dorien Glorie
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| |
Collapse
|
16
|
Varnäs K, Stepanov V, Halldin C. Autoradiographic mapping of synaptic vesicle glycoprotein 2A in non-human primate and human brain. Synapse 2020; 74:e22157. [PMID: 32259300 DOI: 10.1002/syn.22157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/05/2023]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) has been previously characterized as an imaging biomarker for assessment of synaptic density in positron emission tomography (PET) studies of patients with neurological conditions. To provide detailed maps of the brain localization of SV2A autoradiography studies were carried out using the SV2A radioligand [11 C]UCB-J and whole hemisphere sections of non-human primate (NHP) and human brain. Binding of [11 C]UCB-J was observed in all evaluated grey matter structures of the primate brain, with highest density in the caudate nucleus and cortex and lowest density in pons and globus pallidus. The density of [11 C]UCB-J binding sites in human brain showed a good correlation with that in NHP brain. Binding of [11 C]UCB-J in the white matter was very low relative to that in grey matter containing structures and was only inhibited to a minor extent by co-incubation with a saturating concentration of unlabelled UCB-J. The high-resolution images obtained in the present study may aid the interpretation of data acquired in human subjects examined using [11 C]UCB-J in PET studies. In addition, observation of low binding for [11 C]UCB-J in white matter (centrum semiovale) supports that this structure can be used as a reference region for quantitative analysis of [11 C]UCB-J PET data.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
17
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|