1
|
Chen XL, Li SX, Ge T, Zhang DD, Wang HF, Wang W, Li YZ, Song XM. Epimedium Linn: A Comprehensive Review of Phytochemistry, Pharmacology, Clinical Applications and Quality Control. Chem Biodivers 2024; 21:e202400846. [PMID: 38801026 DOI: 10.1002/cbdv.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Epimedium genus is a traditional Chinese medicine, which has functions of tonifying kidney and yang, strengthening tendons and bones, dispelling wind and emoving dampness. It is mainly used for the treatment of impotence and spermatorrhea, osteoporosis, Parkinson's, Alzheimer's, and cardiovascular diseases. The aim of this review is to provide a systematic summary of the phytochemistry, pharmacology, and clinical applications of the Epimedium Linn. In this paper, the relevant literature on Epimedium Linn. was collected from 1987 to the present day, and more than 274 chemical constituents, including flavonoids, phenylpropanoids, lignans, phenanthrenes, and others, were isolated from this genus. Modern pharmacological studies have shown that Epimedium Linn. has osteoprotective, neuroprotective, cardiovascular protective, and immune enhancing pharmacological effects. In addition, Epimedium Linn. has been commonly used to treat osteoporosis, erectile dysfunction, hypertension and cardiovascular disease. In this paper, the distribution of resources, chemical compositions, pharmacological effects, clinical applications and quality control of Epimedium Linn. are progressed to provide a reference for further research and development of the resources of this genus.
Collapse
Affiliation(s)
- Xiao-Lin Chen
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Shi-Xing Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Teng Ge
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, P. R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Hai-Fang Wang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Wei Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, P. R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
2
|
Wei W, Ma D, Gu L, Li Y, Zhang L, Li L, Zhang L. Epimedium flavonoids improve cerebral white matter lesions by inhibiting neuroinflammation and activating neurotrophic factor signal pathways in spontaneously hypertensive rats. Int Immunopharmacol 2024; 139:112683. [PMID: 39018691 DOI: 10.1016/j.intimp.2024.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions. We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months. The learning and memorization abilities were tested by new object recognition test. The pathological changes of WM were assessed using magnetic resonance imaging, transmission electron microscopy (TEM), Luxol fast blue and Black Gold staining. Oligodendrocytes (OLs) and myelin basic protein were detected by immunohistochemistry. The ultrastructure of the tight junctions was examined using TEM. Microglia and astrocytes were detected by immunofluorescence. RNA-seq was performed on the corpus callosum of rats. The results revealed that EF could significantly improve the learning and memory impairments in SHR, alleviate the injury and demyelination of WM nerve fibers, promote the differentiation of oligodendrocyte precursor cells (OPCs) into mature OLs, inhibit the activation of microglia and astrocytes, inhibit the expression of p38 MAPK/NF-κB p65/NLRP3 and inflammatory cytokines, and increase the expression of tight-junction related proteins ZO-1, occludin, and claudin-5. RNA-seq analysis showed that the neurotrophin signaling pathway played an important role in the disease. RT-qPCR and WB results showed that EF could regulate the expression of nerve growth factor and brain-derived neurotrophic factor and their downstream related proteins in the neurotrophin signaling pathway, which might explain the potential mechanism of EF's effects on the cognitive impairment and WM damage caused by hypertension.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Lihong Gu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
3
|
Zhang L, Cui H, Hu W, Meng X, Zhang C. Targeting MAD2B as a strategy for ischemic stroke therapy. J Adv Res 2024:S2090-1232(24)00269-8. [PMID: 38972542 DOI: 10.1016/j.jare.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Post-stroke cognitive impairment is one of the major causes of disability due to cerebral ischemia. MAD2B is an inhibitor of Cdh1/APC, and loss of Cdh1/APC function in mature neurons increases ROCK2 activity, leading to changes in synaptic plasticity and memory loss in mouse neurons. Whether MAD2B regulates learning memory capacity through ROCK2 in cerebral ischemia is not known. OBJECTIVES We investigated the role and mechanism of MAD2B in cerebral ischemia-induced cognitive dysfunction. METHODS The expression of MAD2B and its downstream related molecules was detected by immunoblotting and intervened with neuroprotectants after middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). We constructed MAD2B-cKO-specific knockout mice, knocked down and overexpressed MAD2B in mouse hippocampus by lentiviral injection in brain stereotaxis, modeled cerebral ischemia by using MCAO, and explored the role of MAD2B in post-stroke cognitive impairment (PSCI) by animal behaviors such as Y-maze and Novel object recognition test. Then the expression of MAD2B/ROCK2, downstream molecules and apoptosis-related molecules was detected. Finally, ROCK2 expression was intervened using its inhibitor and shRNA-ROCK2 lentivirus. RESULTS The expression of MAD2B and its downstream molecules increased after MCAO and OGD/R. Nonetheless, this expression underwent a decline post-therapy with neuroprotective agents. Deletion of MAD2B in the hippocampus ameliorated memory and learning deficits and improved motor coordination in MCAO mice. Conversely, the overexpression of MAD2B in the hippocampus exacerbated learning and memory deficits. Deletion of MAD2B resulted in the downregulation of ROCK2/LIMK1/cofilin. It effectively reduced ischemia-induced upregulation of BAX and cleaved caspase-3, which could be reversed by MAD2B overexpression. Inhibition or knockdown of ROCK2 expression in primary cultured neurons led to the downregulation of LIMK1/cofilin expression and reduced the expression of apoptosis-associated molecules induced by ischemia. CONCLUSIONS Our findings suggest that MAD2B affects neuronal apoptosis via Rock2, which affects neurological function and cerebral infarction.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengzhen Cui
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wandi Hu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
5
|
Ning JW, Zang CX, Shang MY, Bao XQ, Zhang D. Natural products and their derivatives alleviating cerebral white matter lesions. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:146-153. [PMID: 38419338 DOI: 10.1080/10286020.2024.2301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
White matter lesions (WMLs), characterized by focal demyelination or myelination disorders, are commonly present in cerebral small vessel disease and various neurological diseases. Multiple etiologies lead to WMLs. However, there is no specific therapy or effective drugs for relieving WMLs. Natural products and their derivatives originate from bacterial, fungal, plant, and marine animal sources, many of which have multiple therapeutic targets. Compared to single target compounds, natural products and their derivatives are promising to be developed as better drugs to attenuate WMLs. Thus, this review attempts to summarize the status of natural products and their derivatives (2010-to date) alleviating cerebral white matter lesions for the discovery of new drugs.
Collapse
Affiliation(s)
- Jing-Wen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mei-Yu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Zhang H, Wang Y, Liang Y, Zhao X, Chen G. One new prenylated flavonoid with cytotoxic activity from Epimedium brevicornu maxim. Nat Prod Res 2023:1-4. [PMID: 37966979 DOI: 10.1080/14786419.2023.2282114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
One previously undescribed prenylated flavonoid (1) and three known ones (2-4) were isolated from leaves of Epimedium brevicornu maxim. Their structures were determined through extensive spectroscopic analysis and comparison with the NMR data in the literature. Compound 1 showed a moderate cytotoxicity with an IC50 value of 18.7 μM, while known compounds 2 and 3 elicited weak cytotoxicities with IC50 values of 29.2 and 32.8 μM against Lewis Lung cancer cells (LLC cells), respectively.
Collapse
Affiliation(s)
- Hui Zhang
- Traditional Chinese Medicine department, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - YanRu Wang
- Department of Oncology, Anshan Cancer Hospital, Anshan, China
| | - Yuhang Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xu Zhao
- School of Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
7
|
Wang X, Chen W, Yuan P, Xu H. RAGE acted as a new anti-inflammatory target for Icariin's treatment against vascular dementia based on network pharmacology-directed verification. J Biomol Struct Dyn 2023; 42:10189-10209. [PMID: 37768122 DOI: 10.1080/07391102.2023.2256409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Vascular dementia (VaD) ranks as the second most prevalent form of dementia and poses a considerable global health challenge. Icariin has been recognized for its robust neuroprotective effects in combating VaD. Nonetheless, the underlying mechanisms have not been fully elucidated. An integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulations (MDS) was employed to systematically investigate the potential pharmacological actions of Icariin in counteracting VaD. The AGE/RAGE pathway was identified as a promising anti-inflammatory pathway. A chronic cerebral hypoperfusion mouse model was utilized to establish VaD. Both Icariin and FP S-ZM1 (a RAGE inhibitor) were administered through oral gavage and intraperitoneal injection, respectively. The Morris water maze (MWZ) was used to evaluate cognitive functions. Moreover, immunofluorescence, RT-qP CR, and Western blot analyses were carried out to evaluate the effects of FP S-ZM1 on neuroinflammation. Network analysis identified 14 crucial targets and highlighted the AGE-RAGE signaling cascade in diabetic complications as the foremost KEGG pathway with potential anti-neuroinflammatory property. MDS results suggested a stable binding of the RAGE-Icariin complex. Remarkably, Icariin was found to effectively mitigate cognitive deficits in VaD mice, which was correlated with the upregulation of the P I3K/AKT pathway and downregulation of the JNK/cJUN signaling cascade. Critically, co-administration of FP S-ZM1 enhanced Icariin's ameliorative effects on cognitive deficits, owing to bolstered anti-neuroinflammatory action. This study unveils the potential of Icariin in alleviating cognitive dysfunction and neuroinflammation in VaD, which may be attributed to the modulation of the AGE/RAGE pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Wei Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
8
|
Yuan P, Chen W, Wang X, Li L, Peng Z, Mu S, You M, Xu H. RAGE: a potential target for Epimedium's anti-neuroinflammation role in vascular dementia-insights from network pharmacology and molecular simulation. J Biomol Struct Dyn 2023; 42:10856-10875. [PMID: 37732621 DOI: 10.1080/07391102.2023.2259480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Vascular dementia (VaD), a cognitive impairment resulting from cerebrovascular issues, could be mitigated by Epimedium. This study investigates Epimedium's efficacy in VaD management through a systematic review, network pharmacology, molecular docking, and molecular dynamic simulations (MDS). Comprehensive literature searches were conducted across various databases. Epimedium's pharmacological properties were analyzed using the TCMSP database. Integration with the Aging Atlas database enabled the identification of shared targets between Epimedium and VaD. A protein-protein interaction (PPI) network was constructed, and central targets' topological attributes were analyzed using Cytoscape 3.9.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using "ClusterProfiler" R package. The interactions between Epimedium and central targets were assessed by Molecular docking and MDS. Epimedium and its 23 bioactive components counteracted oxidative stress, neuroinflammation, and neuronal damage, thereby attenuating cognitive deterioration in VaD. A total of 78 common targets were identified, with 22 being significantly related to aging. Enrichment analysis identified 1769 GO terms and 139 KEGG pathways, highlighting the AGE-RAGE signaling pathway. Molecular docking revealed that 23 bioactive components, except Linoleyl acetate, effectively interacted with top central targets (JUN, MAPK14, IL6, FOS, TNF). MDS demonstrated that flavonoids Icariin, Kaempferol, Luteolin, and Quercetin formed stable complexes with RAGE. The study identifies RAGE as a novel therapeutic target for Epimedium in the mitigation of VaD via its anti-inflammatory properties.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Wei Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiaohu Wang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Liangqian Li
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Zijun Peng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Song Mu
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
9
|
Sha Z, Zhao Z, Li N, Xiao S, Li O, Zhang J, Li Z, Xu J. Efficacy and safety of Yi Shen Fang granules in elderly people with MCI: study protocol for a multicentre, randomized, double-blind, parallel-group, controlled trial. BMC Complement Med Ther 2023; 23:101. [PMID: 37013520 PMCID: PMC10068223 DOI: 10.1186/s12906-023-03940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a transitional state between normal ageing and dementia. Most MCI patients will progress to dementia within 5 years; therefore, early intervention for MCI is important for delaying the occurrence and progression of dementia. Yi Shen Fang (YSF) granules are a promising traditional Chinese medicine (TCM) treatment that shows great neuroprotective potential against cognitive impairment, as evidenced in clinical and basic studies. This trial aims to systematically evaluate the efficacy and safety of YSF granules in elderly people with MCI. METHODS This study is a multicentre, randomized, double-blind, parallel-group, controlled trial. Based on the results of previous clinical trials, 280 elderly patients with MCI will be randomly divided into a treatment group (n = 140) and control group (n = 140). The study will last 33 weeks, including 1 week of screening, 8 weeks of intervention, and 24 weeks of follow-up. The primary outcomes will be the changes in Montreal Cognitive Assessment (MoCA) and Memory and Executive Screening (MES) scores before and after the intervention. The secondary outcome measures will be homocysteine (HCY) levels, Functional Assessment Questionnaire (FAQ) scores and event-related potential (ERP) detection in typical cases. The TCM symptom scale is a combined measure of syndrome differentiation and treatment. During this study, the classifications and characteristics of adverse events, the times of occurrence and disappearance, the measures of treatment, their impact on the primary disease, and outcomes will be reported truthfully. DISCUSSION This study will provide valuable clinical evidence that YSF can help to improve the cognitive function of elderly people with MCI, and the results will be disseminated via conferences and publications. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2000036807. Registered on August 25, 2020.
Collapse
Affiliation(s)
- Zhongwei Sha
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenghao Zhao
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nana Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyun Xiao
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ou Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhang
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhimin Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Sun ZY, Ma DL, Gu LH, Chen X, Zhang L, Li L. DHF-7 Ameliorates Behavioral Disorders and White Matter Lesions by Regulating BDNF and Fyn in a Mouse Model of Schizophrenia Induced by Cuprizone and MK-801. Int J Neuropsychopharmacol 2022; 25:600-612. [PMID: 35353146 PMCID: PMC9352181 DOI: 10.1093/ijnp/pyac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder including multiple clinical symptoms such as severe psychosis and cognitive dysfunction. DHF-7 is a novel dihydroflavanone derivative that was designed and synthesized to treat schizophrenia. This study aimed to investigate the effects and mechanisms of DHF-7 in a mouse model of schizophrenia induced by a combination of cuprizone and MK-801. METHODS After intragastric administration of DHF-7 for 7 weeks, open field, Y-maze, and novel object recognition tests were performed to detect behavioral changes in the mouse model. White matter lesions and myelin loss were determined using transmission electron microscopy and oil red O staining. Western blotting and immunohistochemistry were used to detect the expression of the related proteins. RESULTS The results showed that DHF-7 treatment significantly improved cognitive impairment and positive symptoms in the model mice. Moreover, DHF-7 alleviated white matter lesions and demyelination and promoted the differentiation and maturation of oligodendrocytes for remyelination in the corpus callosum of model mice. The mechanistic study showed that DHF-7 increased the expression of brain-derived neurotrophic factor and phosphorylated Fyn, thus activating the tyrosine kinase receptor B (Trk B)/Fyn/N-methyl-D-aspartate receptor subunit 2 B (NMDAR2B) and Raf/mitogen-activated protein kinase (MEK)/ extracellular signal-related kinase (ERK) signaling pathways. CONCLUSIONS Our results provide an experimental basis for the development of DHF-7 as a novel therapeutic agent for schizophrenia.
Collapse
Affiliation(s)
| | | | - Li-Hong Gu
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xi Chen
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Correspondence: Lin Li, MD, PhD, Department of Pharmacy, Xuanwu Hospital, Capital Medical University, 45 Chang-chun Street, Beijing 100053, China ()
| |
Collapse
|
12
|
Chen C, Hayden KM, Kaufman JD, Espeland MA, Whitsel EA, Serre ML, Vizuete W, Orchard TS, Wang X, Chui HC, D’Alton ME, Chen JC, Kahe K. Adherence to a MIND-Like Dietary Pattern, Long-Term Exposure to Fine Particulate Matter Air Pollution, and MRI-Based Measures of Brain Volume: The Women's Health Initiative Memory Study-MRI. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127008. [PMID: 34939828 PMCID: PMC8698852 DOI: 10.1289/ehp8036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2021] [Accepted: 12/01/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Previous studies suggest that certain dietary patterns and constituents may be beneficial to brain health. Airborne exposures to fine particulate matter [particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 )] are neurotoxic, but the combined effects of dietary patterns and PM 2.5 have not been investigated. OBJECTIVES We examined whether previously reported association between PM 2.5 exposure and lower white matter volume (WMV) differed between women whose usual diet during the last 3 months before baseline was more or less consistent with a Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND)-like diet, a dietary pattern that may slow neurodegenerative changes. METHODS This study included 1,302 U.S. women who were 65-79 y old and free of dementia in the period 1996-1998 (baseline). In the period 2005-2006, structural brain magnetic resonance imaging (MRI) scans were performed to estimate normal-appearing brain volumes (excluding areas with evidence of small vessel ischemic disease). Baseline MIND diet scores were derived from a food frequency questionnaire. Three-year average PM 2.5 exposure prior to MRI was estimated using geocoded participant addresses and a spatiotemporal model. RESULTS Average total and temporal lobe WMVs were 0.74 cm 3 [95% confidence interval (CI): 0.001, 1.48) and 0.19 cm 3 (95% CI: 0.002, 0.37) higher, respectively, with each 0.5-point increase in the MIND score and were 4.16 cm 3 (95% CI: - 6.99 , - 1.33 ) and 1.46 cm 3 (95% CI: - 2.16 , - 0.76 ) lower, respectively, with each interquartile range (IQR) (IQR = 3.22 μ g / m 3 ) increase in PM 2.5 . The inverse association between PM 2.5 per IQR and WMV was stronger (p -interaction < 0.001 ) among women with MIND scores below the median (for total WMV, - 12.47 cm 3 ; 95% CI: - 17.17 , - 7.78 ), but absent in women with scores above the median (0.16 cm 3 ; 95% CI: - 3.41 , 3.72), with similar patterns for WMV in the frontal, parietal, and temporal lobes. For total cerebral and hippocampus brain volumes or WMV in the corpus callosum, the associations with PM 2.5 were not significantly different for women with high MIND scores and women with low MIND scores. DISCUSSION In this cohort of U.S. women, PM 2.5 exposure was associated with lower MRI-based WMV, an indication of brain aging, only among women whose usual diet was less consistent with the MIND-like dietary pattern at baseline. https://doi.org/10.1289/EHP8036.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences; Department of Medicine; Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, Department of Medicine, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marc L. Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tonya S. Orchard
- Department of Human Sciences, Human Nutrition Program, Ohio State University, Columbus, Ohio, USA
| | - Xinhui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mary E. D’Alton
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, New York, USA
| | - Jiu-Chiuan Chen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
13
|
Shi J, Gao X, Zhang A, Qin X, Du G. Characterization of multiple chemical components of GuiLingJi by UHPLC-MS and 1H NMR analysis. J Pharm Anal 2021; 12:460-469. [PMID: 35811626 PMCID: PMC9257439 DOI: 10.1016/j.jpha.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022] Open
Abstract
GuiLingJi (GLJ), a classic traditional Chinese medicine (TCM) formula, is composed of over 20 herbs, according to the Pharmacopeia of the People's Republic of China. Owing to its various activities, GLJ has been used in clinical settings for more than 400 years in China. However, the ambiguous chemical material basis limits the development of studies on the quality control and pharmacological mechanisms of GLJ. Therefore, comprehensive characterization of the multiple chemical components of GLJ is of great significance for the modernization of this formula. Given the great variety of herbs in GLJ, both UHPLC-MS and 1H NMR techniques were employed in this study. In addition, solvent extraction with different polarities was used to eliminate signal interference and the concentration of trace components. A variety of MS analytic methods were also used, including implementation of a self-built compound database, diagnostic ion filtering, mass defect filtering, and Compound Discoverer 3.0 analysis software. Based on the above strategies, a total of 150 compounds were identified, including 5 amino acids, 13 phenolic acids and glycosides, 11 coumarins, 72 flavones, 20 triterpenoid and triterpenoid saponins, 23 fatty acids, and 6 other compounds. Moreover, 13 compounds were identified by 1H NMR spectroscopy. The UHPLC-MS and 1H NMR results supported and complemented each other. This strategy provides a rapid approach to analyzing and identifying the chemical composition of Chinese herbal prescriptions. The current study provides basis for further research on the quality control and pharmacological mechanism of GLJ. The integrated approach of UHPLC-MS and 1H NMR techniques coupled with polarity partition strategy has been used for comprehensively characterizing the multiple chemical components of GLJ. A variety of HRMS analytic methods used included self-built compounds database, diagnostic ions filtering, mass defect filtering, and software analysis for rapid identification the chemical components of GLJ. The 163 compounds including flavones, phenolic acids and glycosides, triterpenoid and triterpenoid saponins, coumarin, fatty acids, amino acids, organic acids, organic bases and sugars were rapidly identified, and to clarify the chemical material basis of GLJ. Established an analysis strategy which could be applied to other TCM formula for comprehensive characterization and identification of chemical components.
Collapse
|
14
|
He R, Han W, Song X, Cheng L, Chen H, Jiang L. Knockdown of Lingo-1 by short hairpin RNA promotes cognitive function recovery in a status convulsion model. 3 Biotech 2021; 11:339. [PMID: 34221810 DOI: 10.1007/s13205-021-02876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/02/2021] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to determine the dynamic changes of the Nogo-66 receptor 1 (NgR1) pathway during epileptogenesis and the potential beneficial of leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (Lingo-1) inhibition on epilepsy rats. The hippocampal changes of the NgR1 pathway during epileptogenesis were determined by western blot analysis of multiple proteins, including neurite outgrowth inhibitor protein A (NogoA), myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), Lingo-1, ras homolog family member A (RhoA) and phosphorylated RhoA (p-RhoA). Lentivirus-mediated short hairpin RNA (shRNA) was used to knockdown the hippocampal expression of Lingo-1. Novel object recognition (NOR) test and Morris Water Maze (MWM) test were employed to determine the cognitive functions of rats. Hematoxylin and eosin (H&E) staining, protein expressions of RhoA, p-RhoA, and myelin basic protein (MBP), as well as convulsion susceptibility test were additionally performed. Our results showed that the NgR1 pathway was activated during epileptogenesis, characterized by up-regulation of NogoA, MAG, OMgp, and Lingo-1, which was especially significant at the chronic phase of epilepsy. The cognitive function, convulsion susceptibility and hippocampal neuronal survival of rats were impaired at the chronic phase of epileptogenesis but all improved by Lingo-1 inhibition; besides, the hippocampal protein expressions of p-RhoA and MBP were significantly decreased at the chronic phase of SC rats but increased after Lingo-1 inhibition. Our results demonstrated that Lingo-1 shRNA can improve epilepsy-induced cognitive impairment, which may be related with the pro-myelination and neuroprotection effects of Lingo-1 inhibition.
Collapse
|
15
|
Icariin Promotes Survival, Proliferation, and Differentiation of Neural Stem Cells In Vitro and in a Rat Model of Alzheimer's Disease. Stem Cells Int 2021; 2021:9974625. [PMID: 34257671 PMCID: PMC8249160 DOI: 10.1155/2021/9974625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) involves the degeneration of cholinergic neurons in the basal forebrain. Neural stem cell (NSC) transplantation has emerged as a promising therapeutic approach for treating AD. Icariin (ICA) is the main active component in Epimedium, a traditional Chinese herb. The purpose of the present study was to investigate the effects and mechanisms of ICA on the proliferation and differentiation of NSCs in the basal forebrain of a fimbria-fornix transection (FFT) rat model. In the present study, ICA promoted the survival, proliferation, and migration of NSCs in vitro. In FFT rats, ICA promoted the proliferation and differentiation of NSCs into neurons and increased the number of cholinergic neurons in the MS and VDB of the basal forebrain. These results suggest that combination therapy of ICA oral administration and NSC transplantation may provide a new potential and effective approach for AD therapy.
Collapse
|
16
|
Yoo JY, Kim HB, Baik TK, Lee JH, Woo RS. Neuregulin 1/ErbB4/Akt signaling attenuates cytotoxicity mediated by the APP-CT31 fragment of amyloid precursor protein. Exp Mol Pathol 2021; 120:104622. [PMID: 33684392 DOI: 10.1016/j.yexmp.2021.104622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by neuronal and synaptic loss. The cytoplasmic tail of amyloid precursor protein (APP) undergoes sequential cleavage at a specific intracellular caspase site to generate the cytoplasmic terminal 31 (CT31) fragment. The APP-CT31 fragment is a potent inducer of apoptosis. The cytotoxicity of APP-CT31 in SH-SY5Y cells was evaluated by the lactate dehydrogenase (LDH) assay. TUNEL staining was used to detect apoptotic signals in SH-SY5Y cells and primary cortical neurons. The expression of apoptosis-related proteins, such as p53, PUMA (p53 up-regulated modulator of apoptosis), and cleaved was investigated by immunofluorescence analysis and Western blotting. In this study, we investigated the neuroprotective effect of neuregulin 1 (NRG1) against cytotoxicity induced by APP-CT31. Our data showed that CT31 induced cytotoxicity and apoptosis in SH-SY5Y cells and primary cortical neurons. NRG1 attenuated the neurotoxicity induced by the expression of APP-CT31. We also showed that APP-CT31 altered the expression of p53 and cleaved caspase 3. However, treatment with NRG1 rescued the APP-CT31-induced upregulation of p53 and cleaved caspase 3 expression. The protective effect of NRG1 was abrogated by inhibition of the ErbB4 receptor and Akt. These results indicate an important role of ErbB4/Akt signaling in NRG1-mediated neuroprotection, suggesting that endogenous NRG1/ErbB4 signaling represents a valuable therapeutic target in AD.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon 34520, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea.
| |
Collapse
|