1
|
Liu X, Ding H, Chen M, Li X, Xiao Y, Han Y, Zeng H. Shenfu Injection Mediated NLRP3/Caspase 1 Through (R)-Norcoclaurinee Alleviates Sepsis-Induced Cognitive Dysfunction. J Inflamm Res 2024; 17:7295-7310. [PMID: 39429846 PMCID: PMC11488353 DOI: 10.2147/jir.s481171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Background Shenfu injection (SF) has demonstrated its potential to enhance cellular immunity and induce clinical regression in patients suffering from sepsis or infectious shock. However, the therapeutic effect of SF on sepsis-induced cognitive dysfunction (SAE) and the mechanisms involved are still unclear. We aimed to investigate the mechanism of SF in mice with SAE. Methods Sepsis was constructed by caecal ligation and puncture. Mice were injected intraperitoneally with SF or NLRP3 inhibitor. The hippocampus injury of brain tissues was evaluated, and the levels of inflammatory cytokines (IL-1β, IL-18) and NLRP3 and Caspase 1 were measured. The active ingredients of SF were analyzed using network pharmacology, and molecular docking of the active ingredients of SF with NLRP3 and Caspase 1 was performed. BV-2 cells were treated with LPS or norcoclaurine. CCK-8 detected the cell viability, and the levels of inflammatory cytokines and NLRP3 and Caspase 1 were measured. Results SF and NLRP3 inhibitor increased survival rate and the number of crossing the platform and decreased the escape latency time of sepsis mice. Moreover, SF and NLRP3 inhibitor improved neuronal damage and apoptosis in hippocampus of sepsis mice. In addition, SF and NLRP3 inhibitor reduced the levels of inflammatory cytokines, as well as inflammasomes in sepsis mice. There were 43 active ingredients in SF. Among them, 22 were Renshen and 21 were Fuzi. Renshen and Fuzi, the main active components of SF, form a complex regulatory network with NLRP3 and Caspase 1. (R)-norcoclaurine was most closely bound to NLRP3 with binding energy of -7.2 kJ·mol-1, ignavine was most closely bound to Caspase 1 with binding energy of -8.3 kJ·mol-1. Norcoclaurine increased the cell viability and decreased inflammation and pyroptosis. Conclusion SF regulated NLRP3/Caspase 1 through (R)-norcoclaurinee to prevent SAE.
Collapse
Affiliation(s)
- Xinqiang Liu
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Miner Chen
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Xusheng Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Yan Xiao
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Yongli Han
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Hongke Zeng
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| |
Collapse
|
2
|
Zhou W, Yang Y, Feng Z, Zhang Y, Chen Y, Yu T, Wang H. Inhibition of Caspase-1-dependent pyroptosis alleviates myocardial ischemia/reperfusion injury during cardiopulmonary bypass (CPB) in type 2 diabetic rats. Sci Rep 2024; 14:19420. [PMID: 39169211 PMCID: PMC11339408 DOI: 10.1038/s41598-024-70477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Cardiovascular complications pose a significant burden in type 2 diabetes mellitus (T2DM), driven by the intricate interplay of chronic hyperglycemia, insulin resistance, and lipid metabolism disturbances. Myocardial ischemia/reperfusion (MI/R) injury during cardiopulmonary bypass (CPB) exacerbates cardiac vulnerability. This study aims to probe the role of Caspase-1-dependent pyroptosis in global ischemia/reperfusion injury among T2DM rats undergoing CPB, elucidating the mechanisms underlying heightened myocardial injury in T2DM. This study established a rat model of T2DM and compared Mean arterial pressure (MAP), heart rate (HR), and hematocrit (Hct) between T2DM and normal rats. Myocardial cell morphology, infarction area, mitochondrial ROS and caspase-1 levels, NLRP3, pro-caspase-1, caspase-1 p10, GSDMD expressions, plasma CK-MB, cTnI, IL-1β, and IL-18 levels were assessed after reperfusion in both T2DM and normal rats. The role of Caspase-1-dependent pyroptosis in myocardial ischemia/reperfusion injury during CPB in T2DM rats was examined using the caspase-1 inhibitor VX-765 and the ROS scavenger NAC. T2DM rats demonstrated impaired glucose tolerance but stable hemodynamics during CPB, while showing heightened vulnerability to MI/R injury. This was marked by substantial lipid deposition, disrupted myocardial fibers, and intensified cellular apoptosis. The activation of caspase-1-mediated pyroptosis and increased reactive oxygen species (ROS) production further contributed to tissue damage and the ensuing inflammatory response. Notably, myocardial injury was mitigated by inhibiting caspase-1 through VX-765, which also attenuated the inflammatory cascade. Likewise, NAC treatment reduced oxidative stress and partially suppressed ROS-mediated caspase-1 activation, resulting in diminished myocardial injury. This study proved that Caspase-1-dependent pyroptosis significantly contributes to the inflammation and injury stemming from global MI/R in T2DM rats under CPB, which correlate with the surplus ROS generated by oxidative stress during reperfusion.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Yingya Yang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China
| | - Zhouheng Feng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Yiman Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Haiying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Song R, He S, Wu Y, Tan S. Pyroptosis in sepsis induced organ dysfunction. Curr Res Transl Med 2024; 72:103419. [PMID: 38246070 DOI: 10.1016/j.retram.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/23/2024]
Abstract
As an uncontrolled inflammatory response to infection, sepsis and sepsis induced organ dysfunction are great threats to the lives of septic patients. Unfortunately, the pathogenesis of sepsis is complex and multifactorial, which still needs to be elucidated. Pyroptosis is a newly discovered atypical form of inflammatory programmed cell death, which depends on the Caspase-1 dependent classical pathway or the non-classical Caspase-11 (mouse) or Caspase-4/5 (human) dependent pathway. Many studies have shown that pyroptosis is related to sepsis. The Gasdermin proteins are the key molecules in the membrane pores formation in pyroptosis. After cut by inflammatory caspase, the Gasdermin N-terminal fragments with perforation activity are released to cause pyroptosis. Pyroptosis is closely related to the occurrence and development of sepsis induced organ dysfunction. In this review, we summarized the molecular mechanism of pyroptosis, the key role of pyroptosis in sepsis and sepsis induced organ dysfunction, with the aim to bring new diagnostic biomarkers and potential therapeutic targets to improve sepsis clinical treatments.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| |
Collapse
|
4
|
Sun J, Fleishman JS, Liu X, Wang H, Huo L. Targeting novel regulated cell death:Ferroptosis, pyroptosis, and autophagy in sepsis-associated encephalopathy. Biomed Pharmacother 2024; 174:116453. [PMID: 38513593 DOI: 10.1016/j.biopha.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
5
|
Fan Z, Wang K, Zhao X, Sun X. P2X7 receptor: A receptor closely linked with sepsis-associated encephalopathy. Open Life Sci 2024; 19:20220775. [PMID: 38585633 PMCID: PMC10998679 DOI: 10.1515/biol-2022-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 04/09/2024] Open
Abstract
Sepsis is defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis-associated encephalopathy (SAE) is the main manifestation of sepsis. Inflammation, peroxidation stress injury, and apoptosis are the main factors involved in the pathogenesis of SAE. A growing body of evidence has proved that P2X7 receptor (P2X7R), a cationic channel receptor that is widely distributed in the body, plays a major role in the occurrence and development of inflammatory injury. Therefore, this review mainly describes the activation of P2X7R in sepsis, which leads to the recruitment of inflammatory cells to the cerebral vasculature, the destruction of the blood-brain barrier, the activation of microglial cells in the brain, the apoptosis of brain cells, and other damage processes. This review also illustrates the potential therapeutic value of P2X7R inhibition in SAE.
Collapse
Affiliation(s)
- Zhao Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Xiaoyong Zhao
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- The Affiliated Hospital of Weifang Medical University, Weifang261021, Shandong, China
| | - Xude Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- Department of Anesthesiology, Tangdu Hospital, Air Force Military Medical University, Xian710038, Shanxi, China
| |
Collapse
|
6
|
Wann SR, Lo HR, Chang YT, Liao JB, Wen ZH, Chi PL. P2X7 receptor blockade reduces pyroptotic inflammation and promotes phagocytosis in Vibrio vulnificus infection. J Cell Physiol 2023; 238:2316-2334. [PMID: 37724600 DOI: 10.1002/jcp.31114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023]
Abstract
Vibrio vulnificus, a gram-negative bacterium, causes serious wound infections and septicemia. Once it develops into early phase sepsis, hyperinflammatory immune responses result in poor prognosis in patients. The present study aimed to examine the possible underlying pathogenic mechanism and explore potential agents that could protect against V. vulnificus cytotoxicity. Here, we report that infection of mouse macrophages with V. vulnificus triggers antiphagocytic effects and pyroptotic inflammation via ATP-mediated purinergic P2X7 receptor (P2X7R) signaling. V. vulnificus promoted P2X7-dependent nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 translocation, modulating the expression of the inflammasome sensor NLR family pyrin domain containing 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a card (ASC), and pyroptotic protein gasdermin D (GSDMD) in mouse macrophages. V. vulnificus induced the NLRP3/caspase-1 inflammasome signaling complex expression that drives GSDMD transmembrane pore formation and secretion of interleukin (IL)-1β, IL-18, and macrophage inflammatory protein-2 (MIP-2). This effect was blocked by P2X7R antagonists, indicating that the P2X7R mediates GSDMD-related pyroptotic inflammation in macrophages through the NF-κB/NLRP3/caspase-1 signaling pathway. Furthermore, blockade of P2X7R reduced V. vulnificus-colony-forming units in the spleen, immune cell infiltration into the skin and lung tissues, and serum concentrations of IL-1β, IL-18, and MIP-2 in mice. These results indicate that P2X7R plays a vital role in mediating phagocytosis by macrophages and pyroptotic inflammation during V. vulnificus infection and provides new opportunities for therapeutic intervention in bacterial infections.
Collapse
Affiliation(s)
- Shue-Ren Wann
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Department of Medicine, Pingtung Veterans General Hospital, Pingtung City, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Yun-Te Chang
- Department of Emergency & Critical Care Medicine, Pingtung Veterans General Hospital, Pingtung City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Sun S, Gong D, Liu R, Wang R, Chen D, Yuan T, Wang S, Xing C, Lv Y, Du G, Fang L. Puerarin Inhibits NLRP3-Caspase-1-GSDMD-Mediated Pyroptosis via P2X7 Receptor in Cardiomyocytes and Macrophages. Int J Mol Sci 2023; 24:13169. [PMID: 37685976 PMCID: PMC10488171 DOI: 10.3390/ijms241713169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a critical complication of long-term chronic diabetes mellitus, and it is characterized by myocardial fibrosis and myocardial hypertrophy. Previous studies have shown that the pyroptosis pathway was significantly activated in DCM and may be related to the P2X7 receptor. However, the role of the P2X7 receptor in the development of DCM with pyroptosis is still unclear. In this study, we aimed to explore the mechanism of puerarin and whether the P2X7 receptor can be used as a new target for puerarin in the treatment of DCM. We adopted systematic pharmacology and bioinformatic approaches to identify the potential targets of puerarin for treating DCM. Additionally, we employed D-glucose-induced H9C2 rat cardiomyocytes and lipopolysaccharide-treated RAW264.7 mouse mononuclear macrophages as the in vitro model on DCM research, which is close to the pathological conditions. The mRNA expression of cytokines in H9C2 cells and RAW264.7 macrophages was detected. The protein expressions of NLRP3, N-GSDMD, cleaved-caspase-1, and the P2X7 receptor were investigated with Western blot analysis. Furthermore, molecular docking of puerarin and the P2X7 receptor was conducted based on CDOCKER. A total of 348 puerarin targets and 4556 diabetic cardiomyopathy targets were detected, of which 218 were cross targets. We demonstrated that puerarin is effective in enhancing cardiomyocyte viability and improving mitochondrial function. In addition, puerarin is efficacious in blocking NLRP3-Caspase-1-GSDMD-mediated pyroptosis in H9C2 cells and RAW264.7 cells, alleviating cellular inflammation. On the other hand, similar experimental results were obtained by intervention with the P2X7 receptor antagonist A740003, suggesting that the protective effects of puerarin are related to the P2X7 receptor. The molecular docking results indicated key binding activity between the P2X7 receptor and puerarin. These findings indicate that puerarin effectively regulated the pyroptosis signaling pathway during DCM, and this regulation was associated with the P2X7 receptor.
Collapse
Affiliation(s)
- Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (S.S.); (D.G.); (R.W.); (Y.L.)
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (S.S.); (D.G.); (R.W.); (Y.L.)
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Ruiqi Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (S.S.); (D.G.); (R.W.); (Y.L.)
| | - Di Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Cheng Xing
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Yang Lv
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (S.S.); (D.G.); (R.W.); (Y.L.)
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (S.S.); (D.G.); (R.W.); (Y.L.)
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (R.L.); (D.C.); (T.Y.); (S.W.)
| |
Collapse
|
8
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Zhou S, Li Y, Hong Y, Zhong Z, Zhao M. Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3/Caspase-1/GSDMD pyroptosis pathway and reducing blood-brain barrier damage. Eur J Pharmacol 2023; 945:175616. [PMID: 36863556 DOI: 10.1016/j.ejphar.2023.175616] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Puerarin (Pue), an isoflavone compound extracted from Pueraria, has been shown to inhibit inflammation and reduce cerebral edema. The neuroprotective effect of puerarin has attracted much attention in recent years. Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that causes damage to the nervous system. This study aimed to investigate the effect of puerarin on SAE and elucidate the potential underlying mechanisms. A rat model of SAE was established by cecal ligation and puncture, and puerarin was injected intraperitoneally immediately after the operation. Puerarin was found to improve the survival rate and neurobehavioral score of SAE rats, alleviate symptoms, inhibit the level of brain injury markers NSE and S100β, and improve the pathological changes in rat brain tissue. Puerarin was also found to inhibit the level of factors related to the classical pathway of pyroptosis, such as NLRP3, Caspase-1, GSDMD, ASC, IL-1β, and IL-18. Puerarin also reduced the brain water content and penetration of Evan's Blue dye in SAE rats, and reduced the expression of MMP-9. In the in vitro experiments, we further confirmed the inhibitory effect of puerarin on neuronal pyroptosis by establishing a pyroptosis model in HT22 cells. Our findings suggest that puerarin may improve SAE by inhibiting the classical pathway of NLRP3/Caspase-1/GSDMD-mediated pyroptosis and reducing blood-brain barrier damage, thus playing a role in brain protection. Our study may provide a novel therapeutic strategy for SAE.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yuhua Li
- Department of Critical Care Medicine, Wuhan Children's Hospital, Wuhan, Hubei Province, 430014, China
| | - Yi Hong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhitao Zhong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Min Zhao
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
10
|
Ling M, Huang C, Hua T, Li H, Xiao W, Lu Z, Jia D, Zhou W, Zhang L, Yang M. Acetaldehyde dehydrogenase 2 activation attenuates sepsis-induced brain injury through NLRP3 inflammasome regulation. Brain Res Bull 2023; 194:128-138. [PMID: 36720319 DOI: 10.1016/j.brainresbull.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Acetaldehyde dehydrogenase 2 (ALDH2) plays an important part in neuroprotection; however, its effect on sepsis-induced brain injury is nuclear. Our aim is to investigate the potential effect and mechanism of ALDH2 in this condition. METHODS We established an animal model using cecal ligation and perforation (CLP). Twenty-four rats were divided into sham group (n = 6), CLP group (n = 6), CLP + Alda-1 group (n = 6) and CLP + Cyanamide (CYA) group (n = 6). Vital signs were monitored, and arterial blood gas analysis, hippocampal histological staining and ALDH2 activity analysis were conducted. Western blot analysis and enzyme-linked immunosorbent assays were also carried out. Lipopolysaccharide (LPS)-treated HT22 cells were employed as an in vitro model of sepsis-induced brain injury, with and without pretreatment with Alda-1 or CYA, to further examine the potential mechanisms. Real-time quantitative polymerase chain reaction and western blot were used to determine the levels of pyrin domain-containing 3 (NLRP3) inflammasome. RESULTS We found hippocampal cell injury in the CLP group (p < 0.05), with decreased ALDH2 activity (p < 0.05) and suspected overexpression of NLRP3/caspase-1 axis (p < 0.05). In the group pretreated with Alda-1, there were increased ALDH2 activity (p < 0.05), decreased hippocampal cell damage (p < 0.05), and reduced protein levels of NLRP3, apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), cleaved caspase-1 and Gasdermin D (GSDMD) (p < 0.05). The levels of interleukin 18 (IL-18) and interleukin 1β (IL-1β) were also reduced (p < 0.05). In the group pretreated with CYA, ALDH2 activity was further declined, the cell injury grade increased, and the elevated levels of pyroptosis-related proteins aggravated (p < 0.05). LPS treatment decreased the cell viability and ALDH2 activity of the HT22 cells (p < 0.05), along with increased mRNA levels of the NLRP3 inflammasome, as well as IL-1β and IL-18 (p < 0.05). Western blot further revealed elevated levels of NLRP3, ASC, cleaved caspase-1 and GSDMD (p < 0.05). In the LPS+Alda-1 group, there were increased cell viability (p < 0.05), elevated ALDH2 activity (p < 0.05), and reduced levels of NLRP3 inflammasome and pyroptosis-related proteins (p < 0.05). In the CYA+LPS group, cell viability and ALDH2 activity were further declined (p < 0.05), while levels of NLRP3 /caspase-1 axis were increased (p < 0.05). CONCLUSIONS The activation of ALDH2 can attenuate sepsis-induced brain injury, hypothetically through regulation of the NLRP3/caspase-1 signaling pathway. Therefore, ALDH2 could potentially be considered as a new therapeutic target for the treatment of sepsis-induced brain injury.
Collapse
Affiliation(s)
- Meng Ling
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; Department of Intensive Care Unit, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province 230031, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Chunxia Huang
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province 230601, China; Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Tianfeng Hua
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Hui Li
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Wenyan Xiao
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Zongqing Lu
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Di Jia
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Wuming Zhou
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Linlin Zhang
- Department of Intensive Care Unit, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province 230031, China.
| | - Min Yang
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| |
Collapse
|
11
|
Blocking P2RX7 Attenuates Ferroptosis in Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO by Inhibiting ERK1/2 and P53 Signaling Pathways. Mol Neurobiol 2023; 60:460-479. [PMID: 36282438 DOI: 10.1007/s12035-022-03092-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2023]
Abstract
Hyperglycemia is a risk factor for poor prognosis after acute ischemic stroke and promote the occurrence of hemorrhagic transformation (HT). The activation of P2RX7 play an important role in endotheliocyte damage and BBB disruption. Ferroptosis is a novel pattern of programmed cell death caused by the accumulation of intracellular iron and lipid peroxidation, resulting in ROS production and cell death. This study is to explore the mechanism of P2RX7 in reducing HT pathogenesis after acute ischemic stroke through regulating endotheliocyte ferroptosis. Male SD rats were performed to establish middle cerebral artery occlusion (MCAO) model injected with 50% high glucose (HG) and HUVECs were subjected to OGD/R treated with high glucose (30 mM) for establishing HT model in vivo and in vitro. P2RX7 inhibitor (BBG), and P2RX7 small interfering RNAs (siRNA) were used to investigate the role of P2RX7 in BBB after MCAO in vivo and OGD/R in vitro, respectively. The neurological deficits, infarct volume, degree of intracranial hemorrhage, integrity of the BBB, immunoblotting, and immunofluorescence were evaluated at 24 h after MCAO. Our study found that the level of P2RX7 was gradually increased after MCAO and/or treated with HG. Our results showed that treatment with HG after MCAO can aggravate neurological deficits, infarct volume, oxidative stress, iron accumulation, and BBB injury in HT model, and HG-induced HUVECs damage. The inhibition of P2RX7 reversed the damage effect of HG, significantly downregulated the expression level of P53, HO-1, and p-ERK1/2 and upregulated the level of SLC7A11 and GPX4, which implicated that P2RX7 inhibition could attenuate oxidative stress and ferroptosis of endothelium in vivo and in vitro. Our data provided evidence that the P2RX7 play an important role in HG-associated oxidative stress, endothelial damage, and BBB disruption, which regulates HG-induced HT by ERK1/2 and P53 signaling pathways after MCAO.
Collapse
|
12
|
He YF, Hu XM, Khan MA, Yu BY, Sheng YC, Xiao XZ, Wan XX, Tan SP, Xiong K. HSF1 Alleviates Brain Injury by Inhibiting NLRP3-Induced Pyroptosis in a Sepsis Model. Mediators Inflamm 2023; 2023:2252255. [PMID: 36741074 PMCID: PMC9897924 DOI: 10.1155/2023/2252255] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sepsis, which could cause a systemic inflammatory response, is a life-threatening disease with a high morbidity and mortality rate. There is evidence that brain injury may be related to severe systemic infection induced by sepsis. The brain injury caused by sepsis could increase the risk of mortality in septic patients, which seriously affects the septic patient's prognosis of survival. Although there remains a focus on sepsis research, clinical measures to prevent and treat brain injury in sepsis are not yet available, and the high mortality rate is still a big health burden. Therefore, it is necessary to investigate the new molecules or regulated pathways that can effectively inhibit the progress of sepsis. OBJECTIVE NLR family pyrin domain-containing 3 (NLRP3) increased in the procession of sepsis and functioned as the key regulator of pyroptosis. Heat shock factor 1 (HSF1) can protect organs from multiorgan dysfunction syndrome induced by lipopolysaccharides in mice, and NLRP3 could be inhibited by HSF1 in many organs. However, whether HSF1 regulated NLRP3 in sepsis-induced brain injury, as well as the detailed mechanism of HSF1 in brain injury, remains unknown in the sepsis model. In this research, we try to explore the relationship between HSF1 and NLRP3 in a sepsis model and try to reveal the mechanism of HSF1 inhibiting the process of brain injury. METHODS In this study, we used wild-type mice and hsf1 -/- mice for in vivo research and PC12 cells for in vitro research. Real-time PCR and Western blot were used to analyze the expression of HSF1, NLRP3, cytokines, and pyrolytic proteins. EthD-III staining was chosen to detect the pyroptosis of the hippocampus and PC12 cells. RESULTS The results showed that HSF1 is negatively related to pyroptosis. The pyroptosis in cells of brain tissue was significantly increased in the hsf1 -/- mouse model compared to hsf1 +/+ mice. In PC12 cells, hsf1 siRNA can upregulate pyroptosis while HSF1-transfected plasmid could inhibit the pyroptosis. HSF1 could negatively regulate the NLRP3 pathway in PC12 cells, while hsf1 siRNA enhanced the pyroptosis in PC12 cells, which could be reversed by nlrp3 siRNA. CONCLUSION These results imply that HSF1 could alleviate sepsis-induced brain injury by inhibiting pyroptosis through the NLRP3-dependent pathway in brain tissue and PC12 cells, suggesting HSF1 as a potential molecular target for treating brain injury in sepsis clinical studies.
Collapse
Affiliation(s)
- Yi-fu He
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi-min Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Bo-yao Yu
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi-cun Sheng
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xian-zhong Xiao
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Si-pin Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
13
|
Munc18-1 Contributes to Hippocampal Injury in Septic Rats Through Regulation of Syntanxin1A and Synaptophysin and Glutamate Levels. Neurochem Res 2023; 48:791-803. [PMID: 36335177 PMCID: PMC9638283 DOI: 10.1007/s11064-022-03806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction closely associated with mortality in the acute phase of sepsis. Abnormal neurotransmitters release, such as glutamate, plays a crucial role in the pathological mechanism of SAE. Munc18-1 is a key protein regulating neurotransmission. However, whether Munc18-1 plays a role in SAE by regulating glutamate transmission is still unclear. In this study, a septic rat model was established by the cecal ligation and perforation. We found an increase in the content of glutamate in the hippocampus of septic rat, the number of synaptic vesicles in the synaptic active area and the expression of the glutamate receptor NMDAR1. Meanwhile, it was found that the expressions of Munc18-1, Syntaxin1A and Synaptophysin increased, which are involved in neurotransmission. The expression levels of Syntaxin1A and Synaptophysin in hippocampus of septic rats decreased after interference using Munc18-1siRNA. We observed a decrease in the content of glutamate in the hippocampus of septic rats, the number of synaptic vesicles in the synaptic activity area and the expression of NMDAR1. Interestingly, it was also found that the down-regulation of Munc18-1 improved the vital signs of septic rats. This study shows that CLP induced the increased levels of glutamate in rat hippocampus, and Munc18-1 may participate in the process of hippocampal injury in septic rats by affecting the levels of glutamate via regulating Syntaxin1A and Synaptophysin. Munc18-1 may serve as a potential target for SAE therapy.
Collapse
|
14
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
15
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
16
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
17
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
18
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
19
|
Vardam-Kaur T, Sun J, Borges da Silva H. Metabolic regulation of tissue-resident memory CD8 + T cells. Curr Opin Pharmacol 2021; 57:117-124. [PMID: 33714873 DOI: 10.1016/j.coph.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Intracellular metabolic adaptations help define the function and homeostasis of memory CD8+ T cells. These cells, which promote protection against infections or cancer, undergo consecutive metabolic shifts, ultimately relying on mitochondrial-related pathways. Past CD8+ T cell metabolism studies focused on circulating memory cells, which are exclusive to secondary lymphoid organs or recirculate between lymphoid and non-lymphoid organs. Yet, now there is unequivocal evidence that memory CD8+ T cells reside in many non-lymphoid organs and mediate protective immunity in barrier tissues. The metabolic adaptations occurring in forming and established tissue-resident memory CD8+ T cells are currently subject of intense research. In this review, we discuss the latest breakthroughs on the transcriptional and protein control of tissue-resident memory CD8+ T cell metabolism.
Collapse
Affiliation(s)
| | - Jie Sun
- Mayo Clinic, Department of Immunology, Rochester, MN, USA
| | | |
Collapse
|
20
|
Pi S, Nie G, Wei Z, Yang F, Wang C, Xing C, Hu G, Zhang C. Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis alleviates excess molybdenum-induced apoptosis in duck renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111528. [PMID: 33157513 DOI: 10.1016/j.ecoenv.2020.111528] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Excess molybdenum (Mo) is harmful to the body, and the kidney is the vital target organ for Mo exposure. This study focused on the impacts of excess Mo on pyroptosis and the relationship between pyroptosis and apoptosis in kidney. METHODS The duck renal tubular epithelial cells were treated with (NH4)6Mo7O24·4H2O (0, 480, 720 and 960 μM Mo), N-acetyl-L-cysteine (NAC) (100 μM), Z-YVAD-fluoromethylketone (YVAD) (10 μM) and the combination of Mo and NAC or YVAD for 12 h. The LDH release and IL-1β, IL-18 contents of cell supernatant were detected by LDH and ELISA kits. The MMP and ROS level were measured using MMP and ROS kits by flow cytometry. The apoptotic rate of cell was detected by AO/EB counterstaining. Pyroptosis and apoptosis-related factors mRNA and protein levels were assayed by real-time qPCR and western blot, respectively. RESULTS Excessive Mo markedly increased LDH, IL-18, IL-1β releases and induced overproduction of ROS, pyroptosis-related factors mRNA and protein levels. NAC and YVAD dramatically decreased pyroptosis induced by Mo. Simultaneously, YVAD significantly changed apoptosis-related factors mRNA and protein levels, and reduced cell apoptotic rate. CONCLUSION Excessive Mo exposure can induce pyroptosis by the ROS/NLRP3/Caspase-1 pathway in duck renal tubular epithelial cells, and restraining pyroptosis of Caspase-1 dependence might weaken excess Mo-induced apoptosis. The study provides theoretical basis for excess Mo exposure nephrotoxic researches on waterfowl and the interplay between pyroptosis and apoptosis highlights a new sight into the mechanism of Mo-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330032, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
21
|
Coutinho-Silva R, Savio LEB. Purinergic signalling in host innate immune defence against intracellular pathogens. Biochem Pharmacol 2021; 187:114405. [PMID: 33406411 DOI: 10.1016/j.bcp.2021.114405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Purinergic signalling is an evolutionarily conserved signalling pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides released from host cells during intracellular pathogen infections activate plasma membrane purinergic type 2 receptors (P2 receptors) that stimulate microbicidal mechanisms in host innate immune cells. P2X ion channels and P2Y G protein-coupled receptors are involved in activating host innate immune defence mechanisms, phagocytosis, phagolysosomal fusion, production of reactive species, acidification of parasitophorous vacuoles, inflammasome activation, and the release of cytokines, chemokines, and other inflammatory mediators. In this review, as part of a special issue in tribute to Geoffrey Burnstock, we discuss advances in understanding the importance of P2 receptors in the host antimicrobial innate mechanisms against intracellular pathogen infections.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|