1
|
Booms A, Pierce SE, van der Schans EJ, Coetzee GA. Parkinson's disease risk enhancers in microglia. iScience 2024; 27:108921. [PMID: 38323005 PMCID: PMC10845915 DOI: 10.1016/j.isci.2024.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Genome-wide association studies have identified thousands of single nucleotide polymorphisms that associate with increased risk for Parkinson's disease (PD), but the functions of most of them are unknown. Using assay for transposase-accessible chromatin (ATAC) and H3K27ac chromatin immunoprecipitation (ChIP) sequencing data, we identified 73 regulatory elements in microglia that overlap PD risk SNPs. To determine the target genes of a "risk enhancer" within intron two of SNCA, we used CRISPR-Cas9 to delete the open chromatin region where two PD risk SNPs reside. The loss of the enhancer led to reduced expression of multiple genes including SNCA and the adjacent gene MMRN1. It also led to expression changes of genes involved in glucose metabolism, a process that is known to be altered in PD patients. Our work expands the role of SNCA in PD and provides a connection between PD-associated genetic variants and underlying biology that points to a risk mechanism in microglia.
Collapse
Affiliation(s)
- Alix Booms
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Van Andel Institute graduate student, Grand Rapids, MI 49503, USA
| | - Steven E. Pierce
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Gerhard A. Coetzee
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
2
|
Lin Z, Huang L, Cao Q, Luo H, Yao W, Zhang JC. Inhibition of abnormal C/EBPβ/α-Syn signaling pathway through activation of Nrf2 ameliorates Parkinson's disease-like pathology. Aging Cell 2023; 22:e13958. [PMID: 37614147 PMCID: PMC10577548 DOI: 10.1111/acel.13958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. These LBs are primarily composed of α-Synuclein (α-Syn), which has aggregated. A recent report proposes that CCAAT/enhancer-binding proteins β (C/EBPβ) may act as an age-dependent transcription factor for α-Syn, thereby initiating PD pathologies by regulating its transcription. Potential therapeutic approaches to address PD could involve targeting the regulation of α-Syn by C/EBPβ. This study has revealed that Nrf2, also known as nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), suppresses the transcription of C/EBPβ in SH-SY5Y cells when treated with MPP+ . To activate Nrf2, sulforaphane, an Nrf2 activator, was administered. Additionally, C/EBPβ was silenced using C/EBPβ-DNA/RNA heteroduplex oligonucleotide (HDO). Both approaches successfully reduced abnormal α-Syn expression in primary neurons treated with MPP+ . Furthermore, sustained activation of Nrf2 via its activator or inhibition of C/EBPβ using C/EBPβ-HDO resulted in a reduction of aberrant α-Syn expression, thus leading to an improvement in the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) in mouse models induced by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and those treated with preformed fibrils (PFFs). The data presented in this study illustrate that the activation of Nrf2 may provide a potential therapeutic strategy for PD by inhibiting the abnormal C/EBPβ/α-Syn signaling pathway.
Collapse
Affiliation(s)
- Zefang Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Qianqian Cao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hanyue Luo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Zanotti LC, Malizia F, Cesatti Laluce N, Avila A, Mamberto M, Anselmino LE, Menacho-Márquez M. Synuclein Proteins in Cancer Development and Progression. Biomolecules 2023; 13:980. [PMID: 37371560 PMCID: PMC10296229 DOI: 10.3390/biom13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Synucleins are a family of small, soluble proteins mainly expressed in neural tissue and in certain tumors. Since their discovery, tens of thousands of scientific reports have been published about this family of proteins as they are associated with severe human diseases. Although the physiological function of these proteins is still elusive, their relationship with neurodegeneration and cancer has been clearly described over the years. In this review, we summarize data connecting synucleins and cancer, going from the structural description of these molecules to their involvement in tumor-related processes, and discuss the putative use of these proteins as cancer molecular biomarkers.
Collapse
Affiliation(s)
- Lucía C. Zanotti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Florencia Malizia
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Nahuel Cesatti Laluce
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Aylén Avila
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Macarena Mamberto
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Luciano E. Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
5
|
C/EBPβ Regulates TFAM Expression, Mitochondrial Function and Autophagy in Cellular Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24021459. [PMID: 36674978 PMCID: PMC9865173 DOI: 10.3390/ijms24021459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Since there are only symptomatic treatments available, new cellular and molecular targets involved in the onset and progression of this disease are needed to develop effective treatments. CCAAT/Enhancer Binding Protein β (C/EBPβ) transcription factor levels are altered in patients with a variety of neurodegenerative diseases, suggesting that it may be a good therapeutic target for the treatment of PD. A list of genes involved in PD that can be regulated by C/EBPβ was generated by the combination of genetic and in silico data, the mitochondrial transcription factor A (TFAM) being among them. In this paper, we observed that C/EBPβ overexpression increased TFAM promoter activity. However, downregulation of C/EBPβ in different PD/neuroinflammation cellular models produced an increase in TFAM levels, together with other mitochondrial markers. This led us to propose an accumulation of non-functional mitochondria possibly due to the alteration of their autophagic degradation in the absence of C/EBPβ. Then, we concluded that C/EBPβ is not only involved in harmful processes occurring in PD, such as inflammation, but is also implicated in mitochondrial function and autophagy in PD-like conditions.
Collapse
|
6
|
Wang H, Chen G, Ahn EH, Xia Y, Kang SS, Liu X, Liu C, Han MH, Chen S, Ye K. C/EBPβ/AEP is age-dependently activated in Parkinson's disease and mediates α-synuclein in the gut and brain. NPJ Parkinsons Dis 2023; 9:1. [PMID: 36609384 PMCID: PMC9822984 DOI: 10.1038/s41531-022-00430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/11/2022] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder, and its pathologic hallmarks include extensive dopaminergic neuronal degeneration in the Substantia nigra associated with Lewy bodies, predominantly consisting of phosphorylated and truncated α-Synuclein (α-Syn). Asparagine endopeptidase (AEP) cleaves human α-Syn at N103 residue and promotes its aggregation, contributing to PD pathogenesis. However, how AEP mediates Lewy body pathologies during aging and elicits PD onset remains incompletely understood. Knockout of AEP or C/EBPβ from α-SNCA mice, and their chronic rotenone exposure models were used, and the mechanism of α-Syn from the gut that spread to the brain was observed. Here we report that C/EBPβ/AEP pathway, aggravated by oxidative stress, is age-dependently activated and cleaves α-Syn N103 and regulates Lewy body-like pathologies spreading from the gut into the brain in human α-SNCA transgenic mice. Deletion of C/EBPβ or AEP substantially diminished the oxidative stress, neuro-inflammation, and PD pathologies, attenuating motor dysfunctions in aged α-SNCA mice. Noticeably, PD pathologies initiate in the gut and progressively spread into the brain. Chronic gastric exposure to a low dose of rotenone initiates Lewy body-like pathologies in the gut that propagate into the brain in a C/EBPβ/AEP-dependent manner. Hence, our studies demonstrate that C/EBPβ/AEP pathway is critical for mediating Lewy body pathology progression in PD.
Collapse
Affiliation(s)
- Hualong Wang
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China ,grid.452458.aDepartment of Neurology, The First Hospital of Hebei Medical University (Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University), Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, 050031 Hebei P. R. China ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Guiqin Chen
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA ,grid.412632.00000 0004 1758 2270Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060 China
| | - Eun Hee Ahn
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA ,grid.256753.00000 0004 0470 5964Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil, Chuncheon-si, Gangwon-Do, 24252, South Korea
| | - Yiyuan Xia
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Seong Su Kang
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Xia Liu
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Chang Liu
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China ,grid.458489.c0000 0001 0483 7922Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Ming-Hu Han
- grid.458489.c0000 0001 0483 7922Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Shengdi Chen
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Keqiang Ye
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA ,grid.458489.c0000 0001 0483 7922Department of Biology, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| |
Collapse
|
7
|
Kim BS, Song JA, Jang KH, Jang T, Jung B, Yoo SE, Lee JM, Kim E. Pharmacological Intervention Targeting FAF1 Restores Autophagic Flux for α-Synuclein Degradation in the Brain of a Parkinson's Disease Mouse Model. ACS Chem Neurosci 2022; 13:806-817. [PMID: 35230076 DOI: 10.1021/acschemneuro.1c00828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
α-Synuclein accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Previously, we reported that Fas-associated factor 1 (FAF1), which plays a role in PD pathogenesis, potentiates α-synuclein accumulation through autophagy impairment in dopaminergic neurons. In this study, we show that KM-819, a FAF1-targeting compound, which has completed phase I clinical trials, interferes with α-synuclein accumulation in the mouse brain, as well as in human neuronal cells (SH-SY5Ys). KM-819 suppressed the accumulation of monomeric, oligomeric, and aggregated forms of α-synuclein in neuronal cells. Furthermore, KM-819 restored the turnover rate of α-synuclein in FAF1-overexpressing SH-SY5Y cells, implicating KM-819-mediated reconstitution of the α-synuclein degradative pathway. In addition, KM-819 reconstituted autophagic flux in FAF1-transfected SH-SY5Y cells, also suppressing α-synuclein-induced mitochondrial dysfunction. Moreover, oral administration of KM-819 also interfered with α-synuclein accumulation in the midbrain of mice overexpressing FAF1 via an adeno-associated virus system. Consistently, KM-819 reduced α-synuclein accumulation in both the hippocampus and the midbrain of human A53T α-synuclein transgenic mice. Collectively, these data imply that KM-819 may have therapeutic potential for patients with PD.
Collapse
Affiliation(s)
- Bok-Seok Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-A Song
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Taeik Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Bumjun Jung
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | | | | | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
8
|
C/EBPβ/δ-secretase signaling mediates Parkinson's disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB. Mol Psychiatry 2021; 26:568-585. [PMID: 32086435 DOI: 10.1038/s41380-020-0687-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neuronal loss and the presence of intra-neuronal Lewy body (LB) inclusions with aggregated α-synuclein (α-Syn) as the major component. MAOB, a crucial monoamine oxidase for dopamine metabolism, triggers oxidative stress in dopaminergic neurons and α-Syn aggregation. However, the key molecular mechanism that mediates PD pathogenesis remains elusive. Here we show that C/EBPβ acts as an age-dependent transcription factor for both α-Syn and MAOB, and initiates the PD pathologies by upregulating these two pivotal players, in addition to escalating δ-secretase activity to cleave α-Syn and promotes its neurotoxicity. Overexpression of C/EBPβ in human wild-type α-Syn transgenic mice facilitates PD pathologies and elicits motor disorders associated with augmentation of δ-secretase, α-Syn, and MAOB. In contrast, depletion of C/EBPβ from human α-Syn Tg mice abolishes rotenone-elicited PD pathologies and motor impairments via downregulating the expression of these key factors. Hence, our study supports that C/EBPβ/δ-secretase signaling mediates PD pathogenesis via regulating the expression and cleavage of α-Syn and MAOB.
Collapse
|
9
|
CCAAT/enhancer binding protein δ is a transcriptional repressor of α-synuclein. Cell Death Differ 2019; 27:509-524. [PMID: 31209363 DOI: 10.1038/s41418-019-0368-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
α-Synuclein is the main component of Lewy bodies, the intracellular protein aggregates representing the histological hallmark of Parkinson's disease. Elevated α-synuclein levels and mutations in SNCA gene are associated with increased risk for Parkinson's disease. Despite this, little is known about the molecular mechanisms regulating SNCA transcription. CCAAT/enhancer binding protein (C/EBP) β and δ are b-zip transcription factors that play distinct roles in neurons and glial cells. C/EBPβ overexpression increases SNCA expression in neuroblastoma cells and putative C/EBPβ and δ binding sites are present in the SNCA genomic region suggesting that these proteins could regulate SNCA transcription. Based on these premises, the goal of this study was to determine if C/EBPβ and δ regulate the expression of SNCA. We first observed that α-synuclein CNS expression was not affected by C/EBPβ deficiency but it was markedly increased in C/EBPδ-deficient mice. This prompted us to characterize further the role of C/EBPδ in SNCA transcription. C/EBPδ absence led to the in vivo increase of α-synuclein in all brain regions analyzed, both at mRNA and protein level, and in primary neuronal cultures. In agreement with this, CEBPD overexpression in neuroblastoma cells and in primary neuronal cultures markedly reduced SNCA expression. ChIP experiments demonstrated C/EBPδ binding to the SNCA genomic region of mice and humans and luciferase experiments showed decreased expression of a reporter gene attributable to C/EBPδ binding to the SNCA promoter. Finally, decreased CEBPD expression was observed in the substantia nigra and in iPSC-derived dopaminergic neurons from Parkinson patients resulting in a significant negative correlation between SNCA and CEBPD levels. This study points to C/EBPδ as an important repressor of SNCA transcription and suggests that reduced C/EBPδ neuronal levels could be a pathogenic factor in Parkinson's disease and other synucleinopathies and C/EBPδ activity a potential pharmacological target for these neurological disorders.
Collapse
|
10
|
Kang SS, Ahn EH, Zhang Z, Liu X, Manfredsson FP, Sandoval IM, Dhakal S, Iuvone PM, Cao X, Ye K. α-Synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson's disease. EMBO J 2018; 37:embj.201798878. [PMID: 29769405 DOI: 10.15252/embj.201798878] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular α-Synuclein (α-Syn) aggregates, called the Lewy body. However, the molecular relationship between α-Syn and MAO-B remains unclear. Here, we show that α-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent α-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of α-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits α-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes α-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of α-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of α-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis.
Collapse
Affiliation(s)
- Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhentao Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Fredric P Manfredsson
- Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ivette M Sandoval
- Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Susov Dhakal
- Department of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - P Michael Iuvone
- Department of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA .,Translational Center for Stem Cell Research, Department of Regenerative Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
12
|
Abstract
Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, indicating that p27 and p21 collaborate in the repression of α-SYN transcription. We demonstrated that this repression is mediated by the transcription factor E2F4 and the member of the retinoblastoma protein family p130 and that it is dependent of Cdk activity. Chromatin immunoprecipitation analysis revealed specific binding sites for p27, p21 and E2F4 in the proximal α-SYN gene promoter. Finally, luciferase assays revealed a direct action of p27, p21 and E2F4 in α-SYN gene expression. Our findings reveal for the first time a negative regulatory mechanism of α-SYN expression, suggesting a putative role for cell cycle regulators in the etiology of synucleinopathies.
Collapse
|
13
|
Abstract
α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson's disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleinopathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Thomas C Südhof
- Departments of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
14
|
Morales-Garcia JA, Gine E, Hernandez-Encinas E, Aguilar-Morante D, Sierra-Magro A, Sanz-SanCristobal M, Alonso-Gil S, Sanchez-Lanzas R, Castaño JG, Santos A, Perez-Castillo A. CCAAT/Enhancer binding protein β silencing mitigates glial activation and neurodegeneration in a rat model of Parkinson's disease. Sci Rep 2017; 7:13526. [PMID: 29051532 PMCID: PMC5648790 DOI: 10.1038/s41598-017-13269-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
The CCAAT/Enhancer binding protein β (C/EBPβ) is a transcription factor involved in numerous physiological as well as pathological conditions in the brain. However, little is known regarding its possible role in neurodegenerative disorders. We have previously shown that C/EBPβ regulates the expression of genes involved in inflammatory processes and brain injury. Here, we have analyzed the effects of C/EBPβ interference in dopaminergic cell death and glial activation in the 6-hydroxydopamine model of Parkinson's disease. Our results showed that lentivirus-mediated C/EBPβ deprivation conferred marked in vitro and in vivo neuroprotection of dopaminergic cells concomitant with a significant attenuation of the level of the inflammatory response and glial activation. Additionally, C/EBPβ interference diminished the induction of α-synuclein in the substantia nigra pars compacta of animals injected with 6-hydroxydopamine. Taking together, these results reveal an essential function for C/EBPβ in the pathways leading to inflammatory-mediated brain damage and suggest novel roles for C/EBPβ in neurodegenerative diseases, specifically in Parkinson's disease, opening the door for new therapeutic interventions.
Collapse
Affiliation(s)
- Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Elena Gine
- Departamento de Biología Celular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla. Departamento de Fisiología Médica y Biofísica, 41013, Sevilla, Spain
| | - Ana Sierra-Magro
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Raul Sanchez-Lanzas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Departamento de Bioquímica Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Jose G Castaño
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Departamento de Bioquímica Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
15
|
Kofoed RH, Zheng J, Ferreira N, Lykke-Andersen S, Salvi M, Betzer C, Reimer L, Jensen TH, Fog K, Jensen PH. Polo-like kinase 2 modulates α-synuclein protein levels by regulating its mRNA production. Neurobiol Dis 2017. [PMID: 28648742 DOI: 10.1016/j.nbd.2017.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Variations in the α-synuclein-encoding SNCA gene represent the greatest genetic risk factor for Parkinson's disease (PD), and duplications/triplications of SNCA cause autosomal dominant familial PD. These facts closely link brain levels of α-synuclein with the risk of PD, and make lowering α-synuclein levels a therapeutic strategy for the treatment of PD and related synucleinopathies. In this paper, we corroborate previous findings on the ability of overexpressed Polo-like kinase 2 (PLK-2) to decrease cellular α-synuclein, but demonstrate that the process is independent of PLK-2 phosphorylating S129 in α-synuclein because a similar reduction is achieved with the non-phosphorable S129A mutant α-synuclein. Using a specific PLK-2 inhibitor (compound 37), we demonstrate that endogenous PLK-2 phosphorylates S129 only in some cells, but increases α-synuclein protein levels in all tested cell cultures and brain slices. PLK-2 is found to regulate the transcription of α-synuclein mRNA from both the endogenous mouse SNCA gene and transgenic vectors that only contain the open reading frame. Moreover, we are the first to show that regulation of α-synuclein by PLK-2 is of physiological importance since 10days' inhibition of endogenous PLK-2 in wt C57BL/6 mice increases endogenous α-synuclein protein levels. Our findings collectively demonstrate that PLK-2 regulates α-synuclein levels by a previously undescribed transcription-based mechanism. This mechanism is active in cells and brain tissue, opening up for alternative strategies for modulating α-synuclein levels and thereby for the possibility of modifying disease progression in synucleinopaties.
Collapse
Affiliation(s)
- Rikke H Kofoed
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Jin Zheng
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Nelson Ferreira
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Søren Lykke-Andersen
- Aarhus University, Dept. of Molecular Biology and Genetics, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark.
| | - Mauro Salvi
- University of Padova, Dept. of Biomedical Sciences, Via U. Bassi 58/B, I-35131, Padova, Italy.
| | - Cristine Betzer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Lasse Reimer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Torben Heick Jensen
- Aarhus University, Dept. of Molecular Biology and Genetics, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Neurodegeneration & Biologics, Ottiliavej, DK-2500, Copenhagen, Denmark.
| | - Poul H Jensen
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| |
Collapse
|
16
|
Deregulation of α-synuclein in Parkinson's disease: Insight from epigenetic structure and transcriptional regulation of SNCA. Prog Neurobiol 2017; 154:21-36. [PMID: 28445713 DOI: 10.1016/j.pneurobio.2017.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/19/2023]
Abstract
Understanding regulation of α-synuclein has long been a central focus for Parkinson's disease (PD) researchers. Accumulation of this protein in the Lewy body or neurites, mutations in the coding region of the gene and strong association of α-synuclein encoding gene multiplication (duplication/triplication) with familial form of PD have indicated the importance of this molecule in pathogenesis of the disease. Several years of research identified many potential faulty pathways associated with accumulation of α-synuclein inside dopaminergic neurons and its transmission to neighboring ones. Concurrently, an appreciable body of research is growing to understand the epigenetic and genetic deregulation of α-synuclein that might contribute to the disease pathology. Completion of the ENCODE (Encyclopedia of DNA Elements) project and recent advancement made in the epigenetic and trans factor mediated regulation of each gene, has tremendously accelerated the need to carefully understand the epigenetic structure of the gene (SNCA) encoding α-synuclein protein in order to decipher the regulation and contribution of α-synuclein to the pathogenesis of PD. We have also analyzed the detailed epigenetic structure of this gene with knowledge from ENCODE database, which may open new avenues in α-synuclein research. Interestingly, we have found that the gene contains several transcriptionally activate histone modifications and associated potential transcription factor binding sites in the non-coding areas that strongly suggest alternative regulatory pathways. Altogether this review will provide interesting insight of α-synuclein gene regulation from epigenetic, genetic and post-transcriptional perspectives and their potential implication in the PD pathogenesis.
Collapse
|
17
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
18
|
Transcriptional regulation of the α-synuclein gene in human brain tissue. Neurosci Lett 2015; 599:140-5. [PMID: 26002080 DOI: 10.1016/j.neulet.2015.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/15/2022]
Abstract
The transcriptional regulation of the gene encoding α-synuclein (SNCA) is thought to play a critical role in the pathogenesis of Parkinson's disease (PD), as common genetic variability in this gene is associated with an elevated risk of developing PD. However, the relevant mechanisms are still poorly understood. So far, only few proteins have been identified as transcription factors (TFs) of SNCA in cellular models. Here we show that two of these TFs bind to the DNA in human brain tissue: the zinc finger protein ZSCAN21 occupies a region within SNCA intron 1, as described before, while GATA2 occupies a specific region within intron 2, where we have identified a new binding site within the complex structure of the 5'-promoter region of SNCA. Electrophoretic mobility shift assays confirmed these binding sites. Genetic investigations revealed no polymorphisms or mutations within these sites. A better understanding of TF-DNA interactions within SNCA may allow to develop novel therapies designed to reduce α-synuclein levels.
Collapse
|
19
|
Haider SA, Faisal M. Human aging in the post-GWAS era: further insights reveal potential regulatory variants. Biogerontology 2015; 16:529-41. [PMID: 25895066 DOI: 10.1007/s10522-015-9575-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Human aging involves a gradual decrease in cellular integrity that contributes to multiple complex disorders such as neurodegenerative disorders, cancer, diabetes, and cardiovascular diseases. Genome-wide association studies (GWAS) play a key role in discovering genetic variations that may contribute towards disease vulnerability. However, mostly disease-associated SNPs lie within non-coding part of the genome; majority of the variants are also present in linkage disequilibrium (LD) with the genome-wide significant SNPs (GWAS lead SNPs). Overall 600 SNPs were analyzed, out of which 291 returned RegulomeDB scores of 1-6. It was observed that just 4 out of those 291 SNPs show strong evidence of regulatory effects (RegulomeDB score <3), while none of them includes any GWAS lead SNP. Nevertheless, this study demonstrates that by combining ENCODE project data along with GWAS reported information will provide important insights on the impact of a genetic variant-moving from GWAS towards understanding disease pathways. It is noteworthy that both genome-wide significant SNPs as well as the SNPs in LD must be considered for future studies; this may prove to be crucial in deciphering the potential regulatory elements involved in complex disorders and aging in particular.
Collapse
Affiliation(s)
- Syed Aleem Haider
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
20
|
Dopamine Cytotoxicity Involves Both Oxidative and Nonoxidative Pathways in SH-SY5Y Cells: Potential Role of Alpha-Synuclein Overexpression and Proteasomal Inhibition in the Etiopathogenesis of Parkinson's Disease. PARKINSONS DISEASE 2014; 2014:878935. [PMID: 24804146 PMCID: PMC3996320 DOI: 10.1155/2014/878935] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Abstract
Background. The cytotoxic effects of dopamine (DA) on several catecholaminergic cell lines involve DA oxidation products like reactive oxygen species (ROS) and toxic quinones and have implications in the pathogenesis of sporadic Parkinson's disease (PD). However, many molecular details are yet to be elucidated, and the possible nonoxidative mechanism of dopamine cytotoxicity has not been studied in great detail. Results. Cultured SH-SY5Y cells treated with DA (up to 400 μM) or lactacystin (5 μM) or DA (400 μM) plus N-acetylcysteine (NAC, 2.5 mM) for 24 h are processed accordingly to observe the cell viability, mitochondrial dysfunctions, oxidative stress parameters, proteasomal activity, expression of alpha-synuclein gene, and intracellular accumulation of the protein. DA causes mitochondrial dysfunction and extensive loss of cell viability partially inhibited by NAC, potent inhibition of proteasomal activity marginally prevented by NAC, and overexpression with accumulation of intracellular alpha-synuclein partially preventable by NAC. Under similar conditions of incubation, NAC completely prevents enhanced production of ROS and increased formation of quinoprotein adducts in DA-treated SH-SY5Y cells. Separately, proteasomal inhibitor lactacystin causes accumulation of alpha-synuclein as well as mitochondrial dysfunction and cell death. Conclusions. DA cytotoxicity includes both oxidative and nonoxidative modes and may involve overexpression and accumulation of alpha-synuclein as well as proteasomal inhibition.
Collapse
|
21
|
Ouazia D, Levros LC, Rassart E, Desrosiers RR. Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience 2014; 267:263-76. [PMID: 24631677 DOI: 10.1016/j.neuroscience.2014.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurological disorder that is characterized by the loss of dopaminergic neurons in the substantia nigra. Dopamine, via the oxidative stress that it generates in the cytosol, could contribute to the selective loss of neurons observed in PD. Protein L-isoaspartyl methyltransferase (PIMT) is an enzyme that repairs L-isoaspartyl-containing proteins and possesses anti-apoptotic properties. PIMT expression has been shown to decrease with age. Together, these observations prompted us to investigate whether dopamine can regulate PIMT expression in SH-SY5Y neuroblastoma cells. Here, we report that dopamine down-regulated PIMT at both gene and protein levels. The same inhibition of PIMT protein level was caused by the electron transport chain inhibitor, rotenone, which was accompanied, in both cases, by an increase in cell death and reactive oxygen species (ROS) production. In fact, pre-treatment with the antioxidant N-acetyl cysteine blocked PIMT dopamine-associated down-regulation. PCMT1 promoter mapping experiments allowed the identification of two regions that showed different sensitivity to DA action. A first region localized between 61 and 94bp upstream of transcription start site was very sensitive to dopamine inhibition while a second region between 41 and 61bp appeared more resistant to dopamine inhibitory effect. The inhibition of PCMT1 promoter activity was mediated by dopamine-induced ROS since it was prevented by the hydroxyl radical scavenger N,N'-dimethylthiourea. Conversely, H2O2 inhibited in a dose-dependent manner the transcriptional activity of PCMT1 promoter. Therefore, our findings identified new molecular mechanisms, cytosolic dopamine and its resulting ROS, as inhibitors of PIMT expression. This suggests that ROS generated from cytosolic dopamine could reduce both the PCMT1 gene promoter activity and the PIMT protein level thus decreasing its capacity to repair proteins involved in apoptosis and could contribute to neuronal cell death observed in PD.
Collapse
Affiliation(s)
- D Ouazia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - L-C Levros
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - E Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - R R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
22
|
White-Gilbertson S, Hua Y, Liu B. The role of endoplasmic reticulum stress in maintaining and targeting multiple myeloma: a double-edged sword of adaptation and apoptosis. Front Genet 2013; 4:109. [PMID: 23781234 PMCID: PMC3678081 DOI: 10.3389/fgene.2013.00109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/27/2013] [Indexed: 11/13/2022] Open
Abstract
Increased cellular protein production places stress on the endoplasmic reticulum (ER), because many of the nascent proteins pass through the ER for folding and trafficking. Accumulation of misfolded proteins in the ER triggers the activation of three well-known pathways including IRE1 (inositol requiring kinase 1), ATF6 (activating transcription factor 6), and PERK (double stranded RNA-activated protein kinase-like ER kinase). The activity of each sensor modulates the overall ER strategy for managing protein quality control as cellular needs change due to growth, differentiation, infection, transformation, and host of other possible physiological states. Here we review the role of ER stress in multiple myeloma (MM), an incurable plasma cell neoplasm. MM is closely linked to dysregulated unfolded protein response in the ER due to the heightened production of immunoglobulin and the metabolic demands of malignant uncontrolled proliferation. Together, these forces may mean that myeloma cells have an “Achilles heel” which can be exploited as a treatment target: their ER stress response must be constitutively active at a remarkably high level to survive their unique metabolic needs. Therefore, inhibition of the ER stress response is likely to injure the cells, as is any further demand on an already over-worked system. Evidence for this vulnerability is summarized here, along with an overview of how each of the three ER stress sensors has been implicated in myeloma pathogenesis and treatment.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina Charleston, SC, USA
| | | | | |
Collapse
|
23
|
Ham A, Kim DW, Kim KH, Lee SJ, Oh KB, Shin J, Mar W. Reynosin protects against neuronal toxicity in dopamine-induced SH-SY5Y cells and 6-hydroxydopamine-lesioned rats as models of Parkinson's disease: Reciprocal up-regulation of E6-AP and down-regulation of α-synuclein. Brain Res 2013; 1524:54-61. [PMID: 23751361 DOI: 10.1016/j.brainres.2013.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/02/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022]
Abstract
Aggregation of α-synuclein (ASYN) is considered a major determinant of neuronal loss in Parkinson's disease (PD). E6-associated protein (E6-AP), an E3 ubiquitin protein ligase, has been known to promote the degradation of α-synuclein. The aim of this study was to assess the effects of the sesquiterpene lactone reynosin on dopamine (DA)-induced neuronal toxicity and regulation of E6-associated protein and α-synuclein proteins in both in vitro and in vivo models of Parkinson's disease. Usi"ng flow cytometry and western blot analysis, we determined that reynosin significantly protected both against cell death from dopamine-induced toxicity in human neuroblastoma SH-SY5Y cells and against the loss of tyrosine hydroxylase (TH)-positive cells in 6-hydroxydopamine (6-OHDA)-lesioned rats (a rodent Parkinson's disease model system). In addition, reynosin made up-regulation of E6-associated protein expression and down-regulation of the over-expression of α-synuclein protein in both dopamine-treated SH-SY5Y cells and 6-hydroxydopamine-lesioned rats. These results suggest that the protective effect of reynosin against dopamine-induced neuronal cell death may be due to the reciprocal up-regulation of E6-associated protein and down-regulation of α-synuclein protein expression.
Collapse
Affiliation(s)
- Ahrom Ham
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Cabeza-Arvelaiz Y, Schiestl RH. Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One 2012; 7:e44700. [PMID: 22970289 PMCID: PMC3436760 DOI: 10.1371/journal.pone.0044700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/09/2012] [Indexed: 12/21/2022] Open
Abstract
The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs.
Collapse
Affiliation(s)
- Yofre Cabeza-Arvelaiz
- Department of Pathology and Environmental Health Sciences, David Geffen School of Medicine and School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America.
| | | |
Collapse
|
25
|
Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS, Muzyczka N, Gorbatyuk OS. Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 2012; 20:1327-37. [PMID: 22434142 DOI: 10.1038/mt.2012.28] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulation of human wild-type (wt) α-synuclein (α-syn) induces neurodegeneration in humans and in experimental rodent models of Parkinson disease (PD). It also leads to endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). We overexpressed glucose regulated protein 78, also known as BiP (GRP78/BiP), to test the hypothesis that this ER chaperone modulates the UPR, blocks apoptosis, and promotes the survival of nigral dopamine (DA) neurons in a rat model of PD induced by elevated level of human α-syn. We determined that α-syn activates ER stress mediators associated with pancreatic ER kinase-like ER kinase (PERK) and activating transcription factor-6 (ATF6) signaling pathways as well as proaoptotic CCAAT/-enhancer-binding protein homologous protein (CHOP) in nigral DA neurons. At the same time, overexpression of GRP78/BiP diminished α-syn neurotoxicity by down regulating ER stress mediators and the level of apoptosis, promoted survival of nigral tyrosine hydroxylase (TH) positive cells and resulted in higher levels of striatal DA, while eliminating amphetamine induced behavioral asymmetry. We also detected a complex between GRP78/BiP and α-syn that may contribute to prevention of the neurotoxicity caused by α-syn. Our data suggest that the molecular chaperone GRP78/BiP plays a neuroprotective role in α-syn-induced Parkinson-like neurodegeneration.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Proteomics in Parkinson's disease: An unbiased approach towards peripheral biomarkers and new therapies. J Biotechnol 2011; 156:325-37. [DOI: 10.1016/j.jbiotec.2011.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/24/2011] [Accepted: 08/08/2011] [Indexed: 12/27/2022]
|
27
|
Elcoroaristizabal Martín X, Gómez Busto F, González Fernández MC, de Pancorbo MM. [Role of genetics in the etiology of synucleinopathies]. Rev Esp Geriatr Gerontol 2011; 46 Suppl 1:3-11. [PMID: 22152908 DOI: 10.1016/j.regg.2011.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protein family known as synucleins is composed of α-, β- and γ-synuclein. The most widely studied is the α-synuclein protein due to its participation in essential processes of the central nervous system. Neurotoxicity of this protein is related to the presence of multiplications (duplications and triplications) and point mutations in the gene sequence of the α-synuclein gene (SNCA), differential expression of its isoforms and variations in post-transductional modifications. Neurotoxicity is also related to cytoplasmic inclusions known as Lewy bodies (LBs) and Lewy neurites (LNs), which are also present in α-synucleinopathies. In general, the β-synuclein protein, codified by the SNCB gene, acts as a regulator of processes triggered by α-synuclein and its function is altered by variations in the gene sequence, while γ-synuclein, codified by the SNCG gene, seems to play a major role in certain tumoral processes.
Collapse
Affiliation(s)
- Xabier Elcoroaristizabal Martín
- Grupo de Investigación BIOMICS, Departamento de Biología Celular A, Centro de Investigación y Estudios Avanzados Lucio Lascaray, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, España
| | | | | | | |
Collapse
|
28
|
Alberio T, Bossi AM, Milli A, Parma E, Gariboldi MB, Tosi G, Lopiano L, Fasano M. Proteomic analysis of dopamine and α-synuclein interplay in a cellular model of Parkinson’s disease pathogenesis. FEBS J 2010; 277:4909-19. [DOI: 10.1111/j.1742-4658.2010.07896.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 2010; 15:6332-48. [PMID: 20877225 PMCID: PMC6257698 DOI: 10.3390/molecules15096332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 01/27/2023] Open
Abstract
The induction of phase II enzymes and phase III transporters contributes to the metabolism, detoxification of xenobiotics, antioxidant capacity, redox homeostasis and cell viability. Transactivation of the genes that encode for phase II enzymes and phase III transporters is coordinatively regulated by activating transcription factors in response to external stimuli. Comprehensive studies indicate that antioxidant phytochemicals promote the induction of phase II enzymes and/or phase III transporters through various signaling pathways, including phosphoinositide 3-kinase, protein kinase C, and mitogen-activated protein kinases. This paper focuses on the molecular mechanisms and signaling pathways responsible for the transactivation of genes encoding for these proteins, as orchestrated by a series of transcription factors and related signaling components.
Collapse
|
30
|
Unni VK, Weissman TA, Rockenstein E, Masliah E, McLean PJ, Hyman BT. In vivo imaging of alpha-synuclein in mouse cortex demonstrates stable expression and differential subcellular compartment mobility. PLoS One 2010; 5:e10589. [PMID: 20485674 PMCID: PMC2868057 DOI: 10.1371/journal.pone.0010589] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Regulation of alpha-synuclein levels within cells is thought to play a critical role in Parkinson's Disease (PD) pathogenesis and in other related synucleinopathies. These processes have been studied primarily in reduced preparations, including cell culture. We now develop methods to measure alpha-synuclein levels in the living mammalian brain to study in vivo protein mobility, turnover and degradation with subcellular specificity. METHODOLOGY/PRINCIPAL FINDINGS We have developed a system using enhanced Green Fluorescent Protein (GFP)-tagged human alpha-synuclein (Syn-GFP) transgenic mice and in vivo multiphoton imaging to measure alpha-synuclein levels with subcellular resolution. This new experimental paradigm allows individual Syn-GFP-expressing neurons and presynaptic terminals to be imaged in the living mouse brain over a period of months. We find that Syn-GFP is stably expressed by neurons and presynaptic terminals over this time frame and further find that different presynaptic terminals can express widely differing levels of Syn-GFP. Using the fluorescence recovery after photobleaching (FRAP) technique in vivo we provide evidence that at least two pools of Syn-GFP exist in terminals with lower levels of mobility than measured previously. These results demonstrate that multiphoton imaging in Syn-GFP mice is an excellent new strategy for exploring the biology of alpha-synuclein and related mechanisms of neurodegeneration. CONCLUSIONS/SIGNIFICANCE In vivo multiphoton imaging in Syn-GFP transgenic mice demonstrates stable alpha-synuclein expression and differential subcellular compartment mobility within cortical neurons. This opens new avenues for studying alpha-synuclein biology in the living brain and testing new therapeutics for PD and related disorders.
Collapse
Affiliation(s)
- Vivek K. Unni
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, MGH Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Tamily A. Weissman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Pamela J. McLean
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, MGH Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Bradley T. Hyman
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, MGH Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kfoury N, Kapatos G. Identification of neuronal target genes for CCAAT/enhancer binding proteins. Mol Cell Neurosci 2008; 40:313-27. [PMID: 19103292 DOI: 10.1016/j.mcn.2008.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023] Open
Abstract
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in the development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPbeta target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPbeta binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPbeta to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPalpha, beta and delta. Analysis of the hippocampal transcriptome of C/EBPbeta knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain.
Collapse
Affiliation(s)
- Najla Kfoury
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
32
|
Ries V, Silva RM, Oo TF, Cheng HC, Rzhetskaya M, Kholodilov N, Flavell RA, Kuan CY, Rakic P, Burke RE. JNK2 and JNK3 combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are not required for axon degeneration. J Neurochem 2008; 107:1578-88. [PMID: 19014392 DOI: 10.1111/j.1471-4159.2008.05713.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of c-jun N-terminal kinase (JNK) by the mitogen-activated protein kinase cascade has been shown to play an important role in the death of dopamine neurons of the substantia nigra, one of the principal neuronal populations affected in Parkinson's disease. However, it has remained unknown whether the JNK2 and JNK3 isoforms, either singly or in combination, are essential for apoptotic death, and, if so, the mechanisms involved. In addition, it has been unclear whether they play a role in axonal degeneration of these neurons in disease models. To address these issues we have examined the effect of single and double jnk2 and jnk3 null mutations on apoptosis in a highly destructive neurotoxin model, that induced by intrastriatal 6-hydroxydopamine. We find that homozygous jnk2/3 double null mutations result in a complete abrogation of apoptosis and a prolonged survival of the entire population of dopamine neurons. In spite of this complete protection at the cell soma level, there was no protection of axons. These studies provide a striking demonstration of the distinctiveness of the mechanisms that mediate cell soma and axon degeneration, and they illustrate the need to identify and target pathways of axon degeneration in the development of neuroprotective therapeutics.
Collapse
Affiliation(s)
- Vincent Ries
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
c-Jun N-terminal kinase mediates lactacystin-induced dopamine neuron degeneration. J Neuropathol Exp Neurol 2008; 67:933-44. [PMID: 18800014 DOI: 10.1097/nen.0b013e318186de64] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parkinson disease is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. It has been proposed that dysfunction of the ubiquitin proteasome system plays an important role in the pathogenesis of Parkinson disease, but the mechanisms underlying ubiquitin proteasome system-related neuron degeneration are unknown. Here, we demonstrate that the proteasome inhibitor lactacystin induces phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun, the release of cytochrome c, activation of both caspase-9 and caspase-3, and sequential apoptosis of dopaminergic neurons in vitro. Most of these effects can be attenuated by the JNK inhibitor SP600125. Furthermore, infusion of lactacystin in rats in vivo also leads to phosphorylation of JNK before nigral neuron loss; chronic administration of SP600125 also blocks this loss. These results indicate that JNK is involved in proteasome inhibition-induced dopaminergic neuron degeneration through caspase-3-mediated apoptotic pathways, suggesting that this kinase may be a therapeutic target for the prevention of substantia nigra pars compacta degeneration in Parkinson disease patients.
Collapse
|
34
|
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.
Collapse
Affiliation(s)
- Changyoun Kim
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | | |
Collapse
|
35
|
Dukes AA, Van Laar VS, Cascio M, Hastings TG. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J Neurochem 2008; 106:333-46. [PMID: 18384645 DOI: 10.1111/j.1471-4159.2008.05392.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson's disease, oxidative stress is implicated in protein misfolding and aggregation, which may activate the unfolded protein response by the endoplasmic reticulum (ER). Dopamine (DA) can initiate oxidative stress via H(2)O(2) formation by DA metabolism and by oxidation into DA quinone. We have previously shown that DA quinone induces oxidative protein modification, mitochondrial dysfunction in vitro, and dopaminergic cell toxicity in vivo and in vitro. In this study, we used cysteine- and lysine-reactive fluorescent dyes with 2D difference in-gel electrophoresis, mass spectrometry, and peptide mass fingerprint analysis to identify proteins in PC12 cell mitochondrial-enriched fractions that were altered in abundance following DA exposure (150 muM, 16 h). Quantitative changes in proteins labeled with fluorescent dyes indicated increases in a subset of proteins after DA exposure: calreticulin, ERp29, ERp99, Grp58, Grp78, Grp94 and Orp150 (149-260%), and decreased levels of aldolase A (39-42%). Changes in levels of several proteins detected by 2D difference in-gel electrophoresis were confirmed by western blot. Using this unbiased proteomics approach, our findings demonstrated that in PC12 cells, DA exposure leads to a cellular response indicative of ER stress prior to the onset of cell death, providing a potential link between DA and the unfolded protein response in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- April A Dukes
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Cytotoxic concentrations of dopamine (100-500 microM DA) induce expression of tumour necrosis factor receptor-1 (TNF-R1) and tumour necrosis factor-alpha (TNFalpha) in SH-SY5Y human neuroblastoma cells. TNFalpha expression is dose-dependent and can also be detected after 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium iodide (MPP) treatment. The expression of TNF-R1 is also dose-dependent, but was not observed in 6-OHDA or MPP-treatment. Cells not expressing TNF-R1 were insensitive to TNFalpha, whereas those treated with DA showed a further decrease in viability when subsequently treated with TNFalpha. Thus, DA treatment confers sensitivity to TNFalpha. The decrease of cell viability caused by DA was in part prevented by neutralizing TNFalpha with anti-TNFalpha. As TNF-R1 is increased in substantia nigra of Parkinsonian brains, we suggest that nonvesiculated DA might also play a role in inducing TNF-R1 expression and predispose the neuron to the action of cytokines released in a microglia-mediated inflammatory response.
Collapse
|
37
|
Chapter 6 Molecular and Cellular Biology of Synucleins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:225-317. [DOI: 10.1016/s1937-6448(08)01406-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Cui Q, Tashiro SI, Onodera S, Minami M, Ikejima T. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol Pharm Bull 2007; 30:859-64. [PMID: 17473426 DOI: 10.1248/bpb.30.859] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have shown that MCF-7 cells undergo autophagy under some conditions, such as tamoxifen treatment and starvation. In this study, we investigated autophagy in MCF-7 cells under oridonin treatment and further examined the relationship between autophagy and apoptosis. After 3-MA (the specific inhibitor of autophagy) pre-culture, MCF-7 cells were exposed to oridonin, and the growth inhibitory ratio, morphologic changes, DNA fragmentation, proteins expression, autophagic ratio and apoptotic ratio were evaluated. Oridonin inhibited the proliferation of MCF-7 cells and induced autophagy in vitro. MDC (a specific dye for autophagosome) recruitment and typical apoptotic features, including apoptotic bodies, membrane blebbing as well as nuclear condensation, were induced by oridonin. Oridonin downregulated the phosphorylation of ERK, whereas those of JNK and P38 kinase were upregulated. In the condition of oridonin treatment, 3-MA significantly reduced the autophagic level, and the apoptotic cell ratio was also declined. Furthermore, combined treatment with oridonin and 3-MA upregulated ERK phosphorylation and downregulated JNK and P38 kinases phosphorylation compared with oridonin alone treatment groups, indicating that autophagy facilitated apoptosis in oridonin-induced MCF-7 cells. In addition, 3-MA application downregulated DNA ladder and Bax expression but upregulated Bcl-2 expression, compared with oridonin alone treatment. Taken together, oridonin simultaneously induced MCF-7 cells both apoptosis and autophagy, and in this settings, inhibition of autophagy induced lowered apoptotic level, therefore, autophagy participated in upregulation of apoptosis.
Collapse
Affiliation(s)
- Qiao Cui
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, PR China
| | | | | | | | | |
Collapse
|
39
|
Gómez-Santos C, Giménez-Xavier P, Ferrer I, Ambrosio S. Intranigral Dopamine Toxicity and α-Synuclein Response in Rats. Neurochem Res 2006; 31:861-8. [PMID: 16804759 DOI: 10.1007/s11064-006-9090-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
There is increasing evidence that, in addition to its function as the main neurotransmitter in the nigrostriatal pathway, dopamine (DA) may be neurotoxic in certain conditions. In this study, the toxicity of DA was assessed by direct injection into the substantia nigra of anaesthetised rats, and its effects were compared with those of 6-hydroxydopamine. Brains were removed 1, 2 and 3 weeks after the lesion for histological or neurochemical analysis. DA caused a significant loss of 35% of tyrosine hydroxylase-positive neurons in the pars compacta of substantia nigra and a 40% reduction of striatal DA content. Cells with signs compatible with both apoptosis and autophagy were observed. GADD153, a parameter of endoplasmic reticulum stress, was strongly induced by 6-hydroxydopamine but not by DA. DA increased the alpha-synuclein content 1 week after the lesion (but not at the later times analyzed) in tyrosine hydroxylase-positive and in non-dopaminergic fibers of pars reticulata. The alpha-synuclein increase may be a physiological temporal response to DA accumulation and/or to cell damage, but the simultaneous presence of alpha-synuclein and DA in the cell cytoplasm at concentration higher than normal is not exempt from risk. In fact, their incubation in a free cell system gives a stable dimerized form of alpha-synuclein that has been described as the critical rate-limiting step for its abnormal fibrillation.
Collapse
Affiliation(s)
- Cristina Gómez-Santos
- Centro Nacional de Investigación de Enfermedades Neurológicas-Bellvitge, Barcelona, Spain
| | | | | | | |
Collapse
|
40
|
Giménez-Xavier P, Gómez-Santos C, Castaño E, Francisco R, Boada J, Unzeta M, Sanz E, Ambrosio S. The decrease of NAD(P)H has a prominent role in dopamine toxicity. Biochim Biophys Acta Mol Basis Dis 2006; 1762:564-74. [PMID: 16574383 DOI: 10.1016/j.bbadis.2006.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/19/2022]
Abstract
We characterized dopamine toxicity in human neuroblastoma SH-SY5Y cells as a direct effect of dopamine on cell reductive power, measured as NADH and NADPH cell content. In cell incubations with 100 or 500 microM dopamine, the accumulation of dopamine inside the cell reached a maximum after 6 h. The decrease in cell viability was 40% and 75%, respectively, after 24 h, and was not altered by MAO inhibition with tranylcypromine. Dopamine was metabolized to DOPAC by mitochondrial MAO and, at 500 microM concentration, significantly reduced mitochondrial potential and oxygen consumption. This DA concentration caused only a slight increase in cell peroxidation in the absence of Fe(III), but a dramatic decrease in NADH and NADPH cell content and a concomitant decrease in total cell NAD(P)H/NAD(P)+ and GSH/GSSG and in mitochondrial NADH/NAD+ ratios. Dopaminechrome, a product of dopamine oxidation, was found to be a MAO-A inhibitor and a strong oxidizer of NADH and NADPH in a cell-free system. We conclude that dopamine may affect NADH and NADPH oxidation directly. When the intracellular concentrations of NAD(P)H and oxidized dopamine are similar, NAD(P)H triggers a redox cycle with dopamine that leads to its own consumption. The time-course of NADH and NADPH oxidation by dopamine was assessed in cell-free assays: NAD(P)H concentration decreased at the same time as dopamine oxidation advanced. The break in cell redox equilibrium, not excluding the involvement of free oxygen radicals, could be sufficient to explain the toxicity of dopamine in dopaminergic neurons.
Collapse
Affiliation(s)
- P Giménez-Xavier
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, c/Feixa Llarga s/n, E-08907-L'Hospitalet del Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J Pathol 2006; 208:319-26. [PMID: 16261658 DOI: 10.1002/path.1885] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various death triggers including DNA damage, oxidative stress, and growth factor deprivation promote the loss of mitochondrial membrane potential, leading to the production of reactive oxidative species (ROS) or enhanced permeability of the mitochondrial membrane, otherwise known as mitochondrial membrane permeabilization, by insertion of Bax/Bak into the outer membrane where it interacts with voltage-dependent anion channel (VDAC)/adenine nucleotide transporter (ANT). MMP leads to the release of small pro-apoptotic molecules, which induce caspase-dependent and -independent apoptotic cell death. The production of ROS due to the loss of mitochondrial membrane potential enhances the permeability of lysosomal membranes, resulting in the release of lysosomal proteases, which contribute to mitochondrial membrane permeabilization and the lysosomal degradation mechanism of autophagic cell death. Although defects in apoptotic and non-apoptotic cell death pathways can be carcinogenic, these pathways are more or less preserved within cancer cells and can therefore influence cell death and mediate resistance to cancer treatment. This paper discusses recent advances in determining the molecular mechanisms behind regulation of apoptotic and non-apoptotic cell death, as well as the interplay between these two processes, which may lead to the development of new strategies by which to enhance the therapeutic effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- R Kim
- International Radiation Information Centre, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|