1
|
Cayir S, Zhornitsky S, Barzegary A, Sotomayor-Carreño E, Sarfo-Ansah W, Funaro MC, Matuskey D, Angarita G. A review of the kappa opioid receptor system in opioid use. Neurosci Biobehav Rev 2024; 162:105713. [PMID: 38733895 DOI: 10.1016/j.neubiorev.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The kappa opioid receptor (KOR) system is implicated in dysphoria and as an "anti-reward system" during withdrawal from opioids. However, no clear consensus has been made in the field, as mixed findings have been reported regarding the relationship between the KOR system and opioid use. This review summarizes the studies to date on the KOR system and opioids. A systematic scoping review was reported following PRISMA guidelines and conducted based on the published protocol. Comprehensive searches of several databases were done in the following databases: MEDLINE, Embase, PsycINFO, Web of Science, Scopus, and Cochrane. We included preclinical and clinical studies that tested the administration of KOR agonists/antagonists or dynorphin and/or measured dynorphin levels or KOR expression during opioid intoxication or withdrawal from opioids. One hundred studies were included in the final analysis. Preclinical administration of KOR agonists decreased drug-seeking/taking behaviors and opioid withdrawal symptoms. KOR antagonists showed mixed findings, depending on the agent and/or type of withdrawal symptom. Administration of dynorphins attenuated opioid withdrawal symptoms both in preclinical and clinical studies. In the limited number of available studies, dynorphin levels were found to increase in cerebrospinal fluid (CSF) and peripheral blood lymphocytes (PBL) of opioid use disorder subjects (OUD). In animals, dynorphin levels and/or KOR expression showed mixed findings during opioid use. The KOR/dynorphin system appears to have a multifaceted and complex nature rather than simply functioning as an anti-reward system. Future research in well-controlled study settings is necessary to better understand the clinical role of the KOR system in opioid use.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA
| | - Simon Zhornitsky
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, USA
| | - Alireza Barzegary
- Islamic Azad University Tehran Medical Sciences School of Medicine, Iran
| | | | | | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT 06510, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Gustavo Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA.
| |
Collapse
|
2
|
Rau J, Hemphill A, Araguz K, Cunningham R, Stefanov A, Weise L, Hook MA. Adverse Effects of Repeated, Intravenous Morphine on Recovery after Spinal Cord Injury in Young, Male Rats Are Blocked by a Kappa Opioid Receptor Antagonist. J Neurotrauma 2022; 39:1741-1755. [PMID: 35996351 PMCID: PMC10039279 DOI: 10.1089/neu.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immediately following spinal cord injury (SCI) patients experience pain associated with injury to the spinal cord and nerves as well as with accompanying peripheral injuries. This pain is usually treated with opioids, and most commonly with morphine. However, in a rodent model we have shown that, irrespective of the route of administration, morphine administered in the acute phase of SCI undermines long-term locomotor recovery. Our previous data suggest that activation of kappa opioid receptors (KORs) mediates these negative effects. Blocking KORs with norbinaltorphimine (norBNI), prior to a single dose of epidural morphine, prevented the morphine-induced attenuation of locomotor recovery. Because numerous cellular changes occur with chronic opioid administration compared with a single dose, the current study tested whether norBNI was also effective in a more clinically relevant paradigm of repeated, intravenous morphine administration after SCI. We hypothesized that blocking KOR activation during repeated, intravenous morphine administration would also protect recovery. Supporting this hypothesis, we found that blocking KOR activation in young, male rats prevented the negative effects of morphine on locomotor recovery, although neither norBNI nor morphine had an effect on long-term pain at the doses used. We also found that norBNI treatment blocked the adverse effects of morphine on lesion size. These data suggest that a KOR antagonist given in conjunction with morphine may provide a clinical strategy for effective analgesia without compromising locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| |
Collapse
|
3
|
Noha S, Schmidhammer H, Spetea M. Molecular Docking, Molecular Dynamics, and Structure-Activity Relationship Explorations of 14-Oxygenated N-Methylmorphinan-6-ones as Potent μ-Opioid Receptor Agonists. ACS Chem Neurosci 2017; 8:1327-1337. [PMID: 28125215 PMCID: PMC5481819 DOI: 10.1021/acschemneuro.6b00460] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3-7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.
Collapse
Affiliation(s)
- Stefan
M. Noha
- Computer-Aided
Molecular Design (CAMD) Group, Department of Pharmaceutical Chemistry,
Institute of Pharmacy and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Opioid
Research Group, Department of Pharmaceutical Chemistry, Institute
of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Opioid
Research Group, Department of Pharmaceutical Chemistry, Institute
of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Expression levels of OPRM1 and PDYN in human SH-SY5Y cells treated with morphine and methadone. Life Sci 2016; 150:39-41. [DOI: 10.1016/j.lfs.2016.02.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 11/23/2022]
|
5
|
Tapocik JD, Ceniccola K, Mayo CL, Schwandt ML, Solomon M, Wang BD, Luu TV, Olender J, Harrigan T, Maynard TM, Elmer GI, Lee NH. MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1. Front Mol Neurosci 2016; 9:20. [PMID: 27047334 PMCID: PMC4805586 DOI: 10.3389/fnmol.2016.00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miR's 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphine's consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3'-untranslated region by miR27a. Interestingly miR27a was found to positively regulate Serpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine.
Collapse
Affiliation(s)
- Jenica D. Tapocik
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Cheryl L. Mayo
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Melanie L. Schwandt
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Matthew Solomon
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Truong V. Luu
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Thomas Harrigan
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Thomas M. Maynard
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Greg I. Elmer
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| |
Collapse
|
6
|
Kiraly K, Caputi FF, Hanuska A, Kató E, Balogh M, Köles L, Palmisano M, Riba P, Hosztafi S, Romualdi P, Candeletti S, Ferdinandy P, Fürst S, Al-Khrasani M. A new potent analgesic agent with reduced liability to produce morphine tolerance. Brain Res Bull 2015; 117:32-8. [DOI: 10.1016/j.brainresbull.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/11/2023]
|
7
|
Effects of an oxycodone conjugate vaccine on oxycodone self-administration and oxycodone-induced brain gene expression in rats. PLoS One 2014; 9:e101807. [PMID: 25025380 PMCID: PMC4099132 DOI: 10.1371/journal.pone.0101807] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/11/2014] [Indexed: 01/25/2023] Open
Abstract
Prescription opioid abuse is an increasing public health concern in the USA. A vaccine comprising a hapten (OXY) conjugated to the carrier protein keyhole limpet hemocyanin (OXY-KLH) has been shown to attenuate the antinociceptive effects of oxycodone. Here, the vaccine's ability to prevent acquisition of intravenous (i.v.) oxycodone self-administration was studied in rats. Effects of vaccination on oxycodone-induced changes in the expression of several genes within the mesolimbic system, which are regulated by chronic opiate use, were also examined. Vaccination with OXY-KLH reduced the proportion of rats acquiring i.v. self-administration of oxycodone under a fixed ratio (FR) 3 schedule of reinforcement compared to control rats immunized with the unconjugated KLH carrier protein. Vaccination significantly reduced the mean number of infusions at FR3, total number of infusions, and total oxycodone intake during the entire protocol. Compared to oxycodone self-administering control rats immunized with the carrier alone, rats vaccinated with the OXY-KLH immunogen showed increased levels of adenylate cyclase 5 (Adcy5) and decreased levels of early growth response protein 2 (Egr2) and the early immediate gene c-Fos in the striatum. These data suggest that vaccination with OXY-KLH can attenuate the reinforcing effects of oxycodone at a clinically-relevant exposure level. Analysis of mRNA expression identified some addiction-relevant markers that may be of interest in understanding oxycodone effects or the protection provided by vaccination.
Collapse
|
8
|
Thibault K, Calvino B, Rivals I, Marchand F, Dubacq S, McMahon SB, Pezet S. Molecular mechanisms underlying the enhanced analgesic effect of oxycodone compared to morphine in chemotherapy-induced neuropathic pain. PLoS One 2014; 9:e91297. [PMID: 24618941 PMCID: PMC3949760 DOI: 10.1371/journal.pone.0091297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/07/2014] [Indexed: 11/30/2022] Open
Abstract
Oxycodone is a μ-opioid receptor agonist, used for the treatment of a large variety of painful disorders. Several studies have reported that oxycodone is a more potent pain reliever than morphine, and that it improves the quality of life of patients. However, the neurobiological mechanisms underlying the therapeutic action of these two opioids are only partially understood. The aim of this study was to define the molecular changes underlying the long-lasting analgesic effects of oxycodone and morphine in an animal model of peripheral neuropathy induced by a chemotherapic agent, vincristine. Using a behavioural approach, we show that oxycodone maintains an optimal analgesic effect after chronic treatment, whereas the effect of morphine dies down. In addition, using DNA microarray technology on dorsal root ganglia, we provide evidence that the long-term analgesic effect of oxycodone is due to an up-regulation in GABAB receptor expression in sensory neurons. These receptors are transported to their central terminals within the dorsal horn, and subsequently reinforce a presynaptic inhibition, since only the long-lasting (and not acute) anti-hyperalgesic effect of oxycodone was abolished by intrathecal administration of a GABAB receptor antagonist; in contrast, the morphine effect was unaffected. Our study demonstrates that the GABAB receptor is functionally required for the alleviating effect of oxycodone in neuropathic pain condition, thus providing new insight into the molecular mechanisms underlying the sustained analgesic action of oxycodone.
Collapse
Affiliation(s)
- Karine Thibault
- Brain Plasticity Unit, ESPCI-ParisTech, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, Paris, France
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
- * E-mail:
| | - Bernard Calvino
- Brain Plasticity Unit, ESPCI-ParisTech, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI-ParisTech, Paris, France
| | - Fabien Marchand
- Institut National de la Santé et de la Recherche Médicale, Unité 1107, NEURO-DOL, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Sophie Dubacq
- Brain Plasticity Unit, ESPCI-ParisTech, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, Paris, France
| | - Stephen B. McMahon
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Sophie Pezet
- Brain Plasticity Unit, ESPCI-ParisTech, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, Paris, France
| |
Collapse
|
9
|
Development of 5-Substituted N-Methylmorphinan-6-ones as Potent Opioid Analgesics with Improved Side-Effect Profile. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2012; 2012:208039. [PMID: 25954525 PMCID: PMC4412049 DOI: 10.1155/2012/208039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/04/2012] [Indexed: 02/08/2023]
Abstract
One of the most important functions of the opioid system is the control of pain. Among the three main opioid receptor classes (μ, δ, κ), the μ (MOR) is the main type targeted for pharmacotherapy of pain. Opioid analgesics such as morphine, oxycodone and fentanyl are agonists at the MOR and are the mainstay for the treatment of moderate-to-severe pain. However, adverse effects related to opioid use are severe and often lead to early discontinuation and inadequate analgesia. The development of more effective and safer medications for the management of pain still remains a major direction in pharmaceutical research. Chemical approaches towards the identification of novel MOR analgesics with reduced side effects include structural modifications of 14-alkoxy-N-methylmorphinan-6-ones in key positions that are important for binding, selectivity, potency, and efficacy at opioid receptors. This paper describes a representative strategy to improve the therapeutic usefulness of opioid analgesics from the morphinan class of drugs by targeting position 5. The focus is on chemical and biological studies and structure-activity relationships of this series of ligands. We report on 14-alkoxymorphinan-6-ones having a methyl and benzyl group at position 5 as strong opioid antinociceptive agents with reduced propensity to cause undesired effects compared to morphine although interacting selectively with MORs.
Collapse
|
10
|
Spetea M, Bohotin CR, Asim MF, Stübegger K, Schmidhammer H. In vitro and in vivo pharmacological profile of the 5-benzyl analogue of 14-methoxymetopon, a novel mu opioid analgesic with reduced propensity to alter motor function. Eur J Pharm Sci 2010; 41:125-35. [PMID: 20600882 PMCID: PMC2954314 DOI: 10.1016/j.ejps.2010.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/19/2010] [Accepted: 05/31/2010] [Indexed: 02/03/2023]
Abstract
Opioids are the most effective analgesics for pain management, and efficient pain control is a therapeutic priority. Herein, we describe the synthesis and pharmacological activities of the 5-benzyl analogue of the μ opioid analgesic 14-methoxymetopon (14-MM). The result of the replacement of the 5-methyl in 14-MM with a benzyl group on in vitro opioid receptor binding and functional profiles, and in vivo behavioural properties, i.e. nociception and motor activity, was investigated. In rodent brain membranes, the 5-benzyl derivative showed high affinity at the μ opioid receptor and decreased interaction with δ and κ receptors, hence displaying a similar binding profile as 14-MM. It displayed potent agonist activity in vitro and in vivo. In in vitro guanosine-5′-O-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding assay, it activated G-proteins in rat brain membranes through a μ opioid receptor-mediated mechanism having significantly enhanced potency compared to DAMGO (d-Ala2,Me-Phe4,Gly-ol5]enkephalin), and to the μ opioid agonist morphinans 14-MM, 14-O-methyloxymorphone (14-OMO) and morphine. In vivo, the 5-benzyl analogue of 14-MM elicited dose-dependent and naloxone-sensitive antinociceptive effects in hot-plate and tail-flick tests in mice after subcutaneous (s.c.) administration. Its analgesic potency was comparable to 14-MM, and was 50-fold higher than that of morphine. Contrary to morphine, 14-MM and 14-OMO, no motor dysfunction was produced by the new opioid in the mouse rotarod test at any of the tested doses. In summary, the 5-benzyl analogue of 14-MM emerged as a novel potent μ opioid antinociceptive agent with reduced propensity to cause unwanted motor impairment.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 52 a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
11
|
Riba P, Friedmann T, Király KP, Al-Khrasani M, Sobor M, Asim MF, Spetea M, Schmidhammer H, Furst S. Novel approach to demonstrate high efficacy of mu opioids in the rat vas deferens: a simple model of predictive value. Brain Res Bull 2010; 81:178-84. [PMID: 19800397 DOI: 10.1016/j.brainresbull.2009.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 02/06/2023]
Abstract
14-O-Methyloxymorphone and 14-methoxymetopon were reported as highly selective and potent micro opioid receptor agonists. The aim of this study was to demonstrate the opioid activity of these compounds in vitro and in vivo in comparison to oxymorphone, morphine and DAMGO. The micro opioid receptor efficacy, full or partial agonist nature of opioids was analyzed in the rat vas deferens (RVD) bioassay. Compared to oxymorphone, 14-O-methyloxymorphone and 14-methoxymetopon showed greater affinities to the rodent brain micro opioid receptors in receptor binding assays. In isolated organs 14-O-methyloxymorphone and 14-methoxymetopon were 3-10-fold more potent than the micro agonist opioid peptide, DAMGO. All tested compounds reached at least 70% maximum inhibition in mouse vas deferens (MVD) except morphine and oxymorphone. In the RVD, morphine could not exceed 50% inhibition of the twitches while 14-O-methyloxymorphone and 14-methoxymetopon showed inhibitory effects more than 70%. Oxymorphone reached only 4% maximal agonist effect and antagonized the inhibitory effect of DAMGO. The investigated morphinans produced dose-dependent antinociceptive activities in mice and rats. Both, 14-O-methyloxymorphone and 14-methoxymetopon are highly efficacious micro opioid receptor agonists in the RVD exhibiting full micro agonist properties. The RVD tissue contains mu receptors indicated by the comparable K(e) values of the micro antagonist naltrexone against DAMGO in the MVD. RVD may be a good alternative to assess the mu receptor efficacy of opioid agonists providing a more physiological environment for the ligand-receptor interaction than other efficacy measuring methods such as the [(35)S]GTPgammaS binding assay.
Collapse
Affiliation(s)
- Pál Riba
- Department of Pharmacology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Synthesis of 14-alkoxymorphinan derivatives and their pharmacological actions. Top Curr Chem (Cham) 2010; 299:63-91. [PMID: 21630508 DOI: 10.1007/128_2010_77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among opioids, morphinans play an important role as therapeutically valuable drugs. They include pain relieving agents such as naturally occurring alkaloids (e.g. morphine, codeine), semisynthetic derivatives (e.g. oxycodone, oxymorphone, buprenorphine), and synthetic analogs (e.g. levorphanol). Currently used opioid analgesics also share a number of severe side effects, limiting their clinical usefulness. The antagonist morphinans, naloxone and naltrexone are used to treat opioid overdose, opioid dependence, and alcoholism. All these opioid drugs produce their biological actions through three receptor types, mu, delta, and kappa, belonging to the G-protein-coupled receptor family. Considerable effort has been put forward to understand the appropriate use of opioid analgesics, while medicinal chemistry and opioid pharmacology have been continuously engaged in the search for safer, more efficacious and nonaddicting opioid compounds, with the final goal to reduce complications and to improve patient compliance. Toward this goal, recent advances in chemistry, ligand-based structure activity relationships and pharmacology of 14-alkoxymorphinans are reviewed in this chapter. Current developments of different structural patterns of 14-alkoxymorphinans as research tools and their potential therapeutic opportunities are also summarized.
Collapse
|
13
|
Torres-Reveron A, Khalid S, Williams TJ, Waters EM, Jacome L, Luine VN, Drake CT, McEwen BS, Milner TA. Hippocampal dynorphin immunoreactivity increases in response to gonadal steroids and is positioned for direct modulation by ovarian steroid receptors. Neuroscience 2008; 159:204-16. [PMID: 19150393 DOI: 10.1016/j.neuroscience.2008.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/09/2008] [Accepted: 12/16/2008] [Indexed: 11/17/2022]
Abstract
The hippocampal formation (HF) is involved in modulating learning related to drug abuse. While HF-dependent learning is regulated by both endogenous opioids and estrogen, the interaction between these two systems is not well understood. The mossy fiber (MF) pathway formed by dentate gyrus (DG) granule cell axons is involved in some aspects of learning and contains abundant amounts of the endogenous opioid peptide dynorphin (DYN). To examine the influence of ovarian steroids on DYN expression, we used quantitative light microscopic immunocytochemistry to measure DYN levels in normal cycling rats as well as in two established models of hormone-treated ovariectomized (OVX) rats. Rats in estrus had increased levels of DYN-immunoreactivity (ir) in the DG and certain CA3 lamina compared with rats in proestrus or diestrus. OVX rats exposed to estradiol for 24 h showed increased DYN-ir in the DG and CA3, while those with 72 h estradiol exposure showed increases only in the DG. Six hours of estradiol exposure produced no change in DYN-ir. OVX rats chronically implanted with medroxyprogesterone also showed increased DYN-ir in the DG and CA3. Next, dual-labeling electron microscopy (EM) was used to evaluate the subcellular relationships of estrogen receptor (ER) alpha-, ERbeta and progestin receptor (PR) with DYN-labeled MFs. ERbeta-ir was in some DYN-labeled MF terminals and smaller terminals, and had a subcellular association with the plasmalemma and small synaptic vesicles. In contrast, ERalpha-ir was not in DYN-labeled terminals, although some DYN-labeled small terminals synapsed on ERalpha-labeled dendritic spines. PR labeling was mostly in CA3 axons, some of which were continuous with DYN-labeled terminals. These studies indicate that ovarian hormones can modulate DYN in the MF pathway in a time-dependent manner, and suggest that hormonal effects on the DYN-containing MF pathway may be directly mediated by ERbeta and/or PR activation.
Collapse
Affiliation(s)
- A Torres-Reveron
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 411 East 69th Street, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lalley PM. Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol 2008; 164:160-7. [PMID: 18394974 PMCID: PMC2642894 DOI: 10.1016/j.resp.2008.02.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 11/24/2022]
Abstract
Opioids, dopamine and their receptors are present in many regions of the bulbar respiratory network. The physiological importance of endogenous opioids to respiratory control has not been explicitly demonstrated. Nonetheless, studies of opioidergic respiratory mechanisms are important because synthetic opiate drugs have respiratory side effects that in some situations pose health risks and limit their therapeutic usefulness. They can depress breathing depth and rate, blunt respiratory responsiveness to CO2 and hypoxia, increase upper airway resistance and reduce pulmonary compliance. The opiate respiratory disturbances are mainly due to agonist activation of mu- and delta-subtypes of receptor and involve specific types of respiratory-related neurons in the ventrolateral medulla and the dorsolateral pons. Endogenous dopaminergic modulation in the CNS and carotid bodies enhances CO2-dependent respiratory drive and depresses hypoxic drive. In the CNS, synthetic agonists with selectivity for D1-and D4-types of receptor slow respiratory rhythm, whereas D2-selective agonists modulate acute and chronic responses to hypoxia. D1-receptor agonists also act centrally to increase respiratory responsiveness to CO2, and counteract opiate blunting of CO2-dependent respiratory drive and depression of breathing. Cellular targets and intracellular mechanisms responsible for opioidergic and dopaminergic respiratory effects for the most part remain to be determined.
Collapse
Affiliation(s)
- Peter M Lalley
- Department of Physiology, The University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|