1
|
Lipiec-Borowicz A, Pałasz A, Suszka-Świtek A, Filipczyk Ł, Della Vecchia A, Worthington JJ, Piwowarczyk-Nowak A. Neuropeptides in the rat claustrum - An immunohistochemical detection. Acta Histochem 2024; 126:152156. [PMID: 38518508 DOI: 10.1016/j.acthis.2024.152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Neuropeptides are involved in numerous brain activities and are responsible for a wide spectrum of higher mental functions. The main purpose of this outline structural qualitative study was to identify the possible immunoreactivity of classical neuropeptides, as well as novel ones such as nesfatin-1, phoenixin (PNX), spexin (SPX), neuromedin U (NMU) and respective receptors within the rat claustrum for the first time. The study shows the novel identification of peptidergic neurotransmission in the rat claustrum which potentially implicates a contribution of this neuropeptide to numerous central neurosecretory mechanisms.
Collapse
Affiliation(s)
- Anna Lipiec-Borowicz
- Department of Histology, School of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, Katowice 40-752, Poland.
| | - Artur Pałasz
- Department of Histology, School of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, Katowice 40-752, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, School of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, Katowice 40-752, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, Katowice 40-752, Poland
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 67, Via Roma, Pisa 56100, Italy
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, School of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, Katowice 40-752, Poland
| |
Collapse
|
2
|
Szalak R, Matysek M, Mozel S, Arciszewski MB. Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Is Co-Expressed with Parvalbumin, Neuropeptide Y and Somatostatin in the Claustrum of the Chinchilla. Animals (Basel) 2023; 13:2177. [PMID: 37443975 DOI: 10.3390/ani13132177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Although for many years, researchers have been working on understanding the function of the cocaine- and amphetamine-regulated transcript (CART) peptide at the central- and peripheral-nervous-system level, data describing the presence of CART in the claustrum are still missing. Therefore, the aim of the present study was to immunohistochemically investigate the CART expression in the claustrum neurons in chinchillas as well as the CART co-localization with somatostatin (SOM), parvalbumin (PV), and neuropeptide Y (NPY) using double-immunohistochemical staining. The claustrum is divided into two main parts: the dorsal segment (CL), which is located above the rhinal fissure, and the ventral segment (EN), located below the rhinal fissure. The presence of HU C/D-IR CART-IR-positive neurons was detected in both the insular claustrum (CL) and the endopiriform nucleus (EN). The vast majority of CART-IR neurons were predominantly small and medium in size and were evenly scattered throughout the claustrum. CART co-localization with selected neurotransmitters/neuromodulators (SOM, NPY, and PV) showed the presence of a CART-IR reaction only in the neurons, while the nerve fibers were, in all cases, devoid of the CART-IR response. Our research supplements missing knowledge about the distribution and co-localization pattern of CART with SOM, NPY, and PV in the chinchilla claustrum, and also provides a better understanding of the similarities and differences compared to other species of rodents and other mammals.
Collapse
Affiliation(s)
- Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| |
Collapse
|
3
|
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2023; 190:92-106. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoyo Kobayashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Haruhi Mizuma
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
4
|
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol 2021; 529:1607-1627. [PMID: 32975316 PMCID: PMC8048916 DOI: 10.1002/cne.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co-projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal-midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Collapse
Affiliation(s)
- Brian A. Marriott
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison D. Do
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Ryan Zahacy
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Jesse Jackson
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
5
|
Pirone A, Graïc J, Grisan E, Cozzi B. The claustrum of the sheep and its connections to the visual cortex. J Anat 2021; 238:1-12. [PMID: 32885430 PMCID: PMC7755083 DOI: 10.1111/joa.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
The present study analyses the organization and selected neurochemical features of the claustrum and visual cortex of the sheep, based on the patterns of calcium-binding proteins expression. Connections of the claustrum with the visual cortex have been studied by tractography. Parvalbumin-immunoreactive (PV-ir) and Calbindin-immunoreactive (CB-ir) cell bodies increased along the rostro-caudal axis of the nucleus. Calretinin (CR)-labeled somata were few and evenly distributed along the rostro-caudal axis. PV and CB distribution in the visual cortex was characterized by larger round and multipolar cells for PV, and more bitufted neurons for CB. The staining pattern for PV was the opposite of that of CR, which showed densely stained but rare cell bodies. Tractography shows the existence of connections with the caudal visual cortex. However, we detected no contralateral projection in the visuo-claustral interconnections. Since sheep and goats have laterally placed eyes and a limited binocular vision, the absence of contralateral projections could be of prime importance if confirmed by other studies, to rule out the role of the claustrum in stereopsis.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Jean‐Marie Graïc
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Enrico Grisan
- Department of Information EngineeringUniversity of PadovaVicenzaItaly,School of EngineeringLondon South Bank UniversityLondonUK
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| |
Collapse
|
6
|
Baizer JS, Webster CJ, Baker JF. The Claustrum in the Squirrel Monkey. Anat Rec (Hoboken) 2019; 303:1439-1454. [DOI: 10.1002/ar.24253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 06/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - Charles J. Webster
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - James F. Baker
- Department of PhysiologyNorthwestern University Medical School Chicago Illinois
| |
Collapse
|
7
|
Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol 2019; 527:2215-2232. [PMID: 30847931 DOI: 10.1002/cne.24673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
Abstract
Transgenic animals have become a widely used model to identify and study specific cell types in whole organs. Promotor-driven reporter gene labeling of the cells under investigation has promoted experimental efficacy to a large degree. However, rigorous assessment of transgene expression specificity in these animal models is highly recommended to validate cellular identity and to isolate potentially mislabeled cell populations. Here, we report on one such mislabeled neuron population in a widely used transgenic mouse line in which GABAergic somatostatin-expressing interneurons (SOMpos INs) are labeled by eGFP (so-called GIN mouse, FVB-Tg(GadGFP)45704Swn/J). These neurons represent a subpopulation of all SOMpos INs. However, we report here on GFP labeling of non-GABAergic neurons in the nucleus endopiriformis of this mouse line.
Collapse
Affiliation(s)
- Sophie Riedemann
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Bernd Sutor
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Therese Riedemann
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
White MG, Mathur BN. Claustrum circuit components for top-down input processing and cortical broadcast. Brain Struct Funct 2018; 223:3945-3958. [PMID: 30109490 PMCID: PMC6252134 DOI: 10.1007/s00429-018-1731-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/04/2018] [Indexed: 11/24/2022]
Abstract
Anterior cingulate cortex (ACC) input to the claustrum is required for top-down cognitive control of action. By virtue of its widespread cortical connectivity, the claustrum is anatomically situated to process and broadcast top-down signals from ACC to downstream cortices. To gain a deeper understanding of claustrum processing mechanisms, it is first critical to identify the projection neuron subtypes within claustrum, the intrinsic and extrinsic components regulating their firing, and the differential innervation of cortex by projection neuron subtypes. To this end, we used whole-cell patch-clamp electrophysiology in adult mouse brain slices to distinguish two spiny projection neuron subtypes in claustrum, referred to as type I and II neurons, and three aspiny interneuron subtypes, referred to as type III, IV, and V neurons. In response to optogenetic ACC afferent stimulation, type II neurons preferentially burst fire relative to type I neurons. This burst firing is calcium-dependent and is optimized by voltage-gated potassium channels. Finally, we find that visual cortices, parietal association cortex, and ACC receive input from type I and II neurons in differing proportions. These data reveal the diversity of claustrum neurons and mechanisms by which claustrum processes ACC command for spatiotemporal coordination of the cerebral cortex.
Collapse
Affiliation(s)
- Michael G White
- Department of Pharmacology, University of Maryland, School of Medicine, HSF III, RM 9179, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, HSF III, RM 9179, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Taylor SR, Smith CM, Keeley KL, McGuone D, Dodge CP, Duhaime AC, Costine BA. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain. Front Neurosci 2016; 10:387. [PMID: 27601978 PMCID: PMC4994423 DOI: 10.3389/fnins.2016.00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU(+) neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that were born prior to PND 5. This platform may be useful to continue to study potential complications of white matter injury and alterations of postnatal population of brain regions, which may contribute to the chronic effects of TBI in children.
Collapse
Affiliation(s)
- Sabrina R Taylor
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Charlestown, MA, USA
| | - Colin M Smith
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General Hospital Boston, MA, USA
| | - Kristen L Keeley
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General Hospital Boston, MA, USA
| | | | - Carter P Dodge
- Department of Anesthesiology, Dartmouth Medical School, Children's Hospital at Dartmouth Lebanon, PA, USA
| | - Ann-Christine Duhaime
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General HospitalBoston, MA, USA; Department of Neurosurgery, Harvard Medical SchoolBoston, MA, USA
| | - Beth A Costine
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General HospitalBoston, MA, USA; Department of Neurosurgery, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
10
|
Goll Y, Atlan G, Citri A. Attention: the claustrum. Trends Neurosci 2015; 38:486-95. [DOI: 10.1016/j.tins.2015.05.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
11
|
Cozzi B, Roncon G, Granato A, Giurisato M, Castagna M, Peruffo A, Panin M, Ballarin C, Montelli S, Pirone A. The claustrum of the bottlenose dolphin Tursiops truncatus (Montagu 1821). Front Syst Neurosci 2014; 8:42. [PMID: 24734007 PMCID: PMC3975097 DOI: 10.3389/fnsys.2014.00042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/10/2014] [Indexed: 02/04/2023] Open
Abstract
The mammalian claustrum is involved in processing sensory information from the environment. The claustrum is reciprocally connected to the visual cortex and these projections, at least in carnivores, display a clear retinotopic distribution. The visual cortex of dolphins occupies a position strikingly different from that of land mammals. Whether the reshaping of the functional areas of the cortex of cetaceans involves also modifications of the claustral projections remains hitherto unanswered. The present topographic and immunohistochemical study is based on the brains of eight bottlenose dolphins and a wide array of antisera against: calcium-binding proteins (CBPs) parvalbumin (PV), calretinin (CR), and calbindin (CB); somatostatin (SOM); neuropeptide Y (NPY); and the potential claustral marker Gng2. Our observations confirmed the general topography of the mammalian claustrum also in the bottlenose dolphin, although (a) the reduction of the piriform lobe modifies the ventral relationships of the claustrum with the cortex, and (b) the rotation of the telencephalon along the transverse axis, accompanied by the reduction of the antero-posterior length of the brain, apparently moves the claustrum more rostrally. We observed a strong presence of CR-immunoreactive (-ir) neurons and fibers, a diffuse but weak expression of CB-ir elements and virtually no PV immunostaining. This latter finding agrees with studies that report that PV-ir elements are rare in the visual cortex of the same species. NPY- and somatostatin-containing neurons were evident, while the potential claustral markers Gng2 was not identified in the sections, but no explanation for its absence is currently available. Although no data are available on the projections to and from the claustrum in cetaceans, our results suggest that its neurochemical organization is compatible with the presence of noteworthy cortical inputs and outputs and a persistent role in the general processing of the relative information.
Collapse
Affiliation(s)
- Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Giulia Roncon
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | | | - Maristella Giurisato
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Maura Castagna
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Mattia Panin
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Cristina Ballarin
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Stefano Montelli
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa Pisa, Italy
| |
Collapse
|
12
|
Smith JB, Alloway KD. Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 2010; 30:16832-44. [PMID: 21159954 PMCID: PMC3010244 DOI: 10.1523/jneurosci.4438-10.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/05/2010] [Accepted: 10/18/2010] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that the rat claustrum interconnects the motor cortical areas in both hemispheres. To elucidate the functional specificity of the interhemispheric connections between the claustrum and primary motor (MI) cortex, anterograde tracer injections in specific parts of MI were paired with retrograde tracer injections in homotopic sites of the opposite hemisphere. In addition to injecting the MI forepaw (Fp) region in both hemispheres, we injected the region associated with whisker retractions (Re) and the more caudal rhythmic whisking (RW) region. While the MI-Fp region has few connections with the claustrum of either hemisphere, both whisker regions project to the contralateral claustrum, with those from the MI-RW region being denser and more extensive than those originating from the MI-Re region. Retrograde tracer injections in the MI-RW region produced more labeled neurons in the ipsilateral claustrum than retrograde tracer injections in the MI-Re. Consistent with these patterns, the overlap of labeled terminals and soma in the claustrum was greatest when both tracers were injected into the MI-RW region. When retrograde tracers were injected into the claustrum, the highest density of labeled neurons in MI appeared in the contralateral RW region. Tracer injections in the claustrum also revealed hundreds of labeled neurons throughout its rostrocaudal extent, thereby establishing the presence of long-range intraclaustral connections. These results indicate that the intrinsic and extrinsic connections of the rat claustrum are structured for rapid, interhemispheric transmission of information needed for bilateral coordination of the MI regions that regulate whisker movements.
Collapse
Affiliation(s)
- Jared B. Smith
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255
| | - Kevin D. Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255
| |
Collapse
|
13
|
Cui J, Wang F, Wang K, Xiang H. GABAergic signaling increases through the postnatal development to provide the potent inhibitory capability for the maturing demands of the prefrontal cortex. Cell Mol Neurobiol 2010; 30:543-55. [PMID: 19921423 DOI: 10.1007/s10571-009-9478-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/02/2009] [Indexed: 12/18/2022]
Abstract
The developmental profile of the firing patterns and construction of synapse connection were studied in LTS interneurons of prefrontal cortex (PFC) in rats with age (from P7 to P30). We used whole cell patch-clamp recordings to characterize electrophysiological properties of LTS interneurons in PFC at different age stages, including the action potentials (APs), short-term plasticity (STP), evoked excitatory postsynaptic currents (eEPSCs), spontaneous excitatory postsynaptic currents (sEPSC), and spontaneous inhibitory postsynaptic current (sIPSC). The developmental profile of LTS interneurons in our research showed two phases changes. The early phase from P7-P11 to P16-P19 during which the development of individual LTS interneuron dominated and just some simple synaptic connections formed, the synaptic inputs from pyramidal cells play a promoting role for the maturation of LTS interneurons to some extent. This was based on the changes of APs, eEPSCs, and STP such as the curtailment of time course of APs, the increasing facilitation of STP before P16-P19 group. The late phase from P20-P23 to P > 27 during which the function of inhibitory cortex network enhanced and the characters of this inhibitory cortex network continually changed although in the oldest age group (P > 27) in our research. The frequency and amplitude of sIPSC showed continually changes, and at the same age group, the frequency ratios and amplitude ratios of sIPSC was higher than that of sEPSC. Our study showed a foundation to clarify mechanisms underlying the evolution in time of intrinsic neuronal membrane properties and their important roles in balancing the cortex network, providing an academic foundation for the pathological researching on some psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jihong Cui
- Department of Biological Science and Technology, School of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xingang Xi Road, Guangzhou, Guangdong Province, 510275, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Kowiański P, Dziewiatkowski J, Moryś JM, Majak K, Wójcik S, Edelstein LR, Lietzau G, Moryś J. Colocalization of neuropeptides with calcium-binding proteins in the claustral interneurons during postnatal development of the rat. Brain Res Bull 2009; 80:100-6. [PMID: 19576270 DOI: 10.1016/j.brainresbull.2009.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 01/06/2023]
Abstract
The claustrum is a relatively large telencephalic structure, situated close to the border of the neo- and allocortical regions. Its neuronal population consists of glutamatergic, projecting neurons and GABA-ergic interneurons, characterized by occurrence of numerous additional biochemical markers. The postnatal development of these latter neurons has not been extensively studied. Revealing the characteristic patterns of colocalizations between selected markers may shed some light on their function and origin. We investigated the colocalization patterns between three neuropeptides: neuropeptide Y, somatostatin, vasoactive intestinal polypeptide and three calcium-binding proteins: calbindin D28k, calretinin, parvalbumin in the interneurons of the rat claustrum during a four-month postnatal period (P0-P120; P: postnatal day). Our studies revealed the following types of colocalizations: neuropeptide Y with calbindin D28k, calretinin or parvalbumin; somatostatin with calbindin D28k; vasoactive intestinal polypeptide with calretinin. Only vasoactive intestinal polypeptide- and calretinin-containing, double-labeled neurons were present at the day of birth, whereas the other double-labeled neurons appeared at later stages of development. The ratios of colocalizing neurons to single-labeled neurons in each type of colocalization were differentiated and reached the highest value (51%) for vasoactive intestinal polypeptide- and calretinin-double-labeled neurons. In conclusion, the claustral interneurons represent differentiated population in respect to the occurrence of neuropeptides and calcium-binding proteins. The expression of studied substances is changing during the postnatal period.
Collapse
Affiliation(s)
- Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | | | | | | | | | | | | | | |
Collapse
|