1
|
Ramyarangsi P, Bennett SJ, Siripornpanich V, Nanbancha A, Pokaisasawan A, Chatthong W, Ajjimaporn A. EEG differences in competitive female gymnastics, soccer, and esports athletes between resting states with eyes closed and open. Sci Rep 2024; 14:23317. [PMID: 39375439 PMCID: PMC11458600 DOI: 10.1038/s41598-024-74665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Athletes heavily rely on visual perception for performance. This study delves into electroencephalographic (EEG) brain activity among gymnastics, soccer, and esports athletes during resting states with eyes closed (REC) and open (REO) and compares differences in EEG alpha power from REC to REO (∆ EC-EO Alpha) across athlete groups. Forty-two female participants, including 14 from each athletic discipline, underwent two 5-minute EEG recordings, first during REC and then during REO conditions. Absolute EEG power was analyzed for delta (δ), theta (θ), alpha (α), and beta (β) frequency bands across various brain regions, and ∆ EC-EO Alpha values were computed. During REC, soccer players exhibited heightened α power at the midline frontopolar (Fpz) and β power at the midline occipital (Oz). Conversely, during REO, soccer players displayed increased δ power at Fpz and midline frontal (Fz) and reduced α power at the midline central (Cz) compared to gymnasts, along with elevated θ power at Fpz. Esports athletes demonstrated higher δ power and decreased α power at Fpz and Cz compared to gymnasts. Gymnasts exhibited distinct cortical activation patterns characterized by lower ∆ EC-EO Alpha at multiple electrode sites. These findings highlight sport-specific cortical activation patterns linked to visual attention among athletes. Understanding these neural adaptations could refine training methods and enhance performance outcomes in sports.
Collapse
Affiliation(s)
- Papatsorn Ramyarangsi
- College of Sports Science and Technology, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Simon J Bennett
- Research Institute for Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Vorasith Siripornpanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Ampika Nanbancha
- College of Sports Science and Technology, Mahidol University, Nakhonpathom, 73170, Thailand
| | | | - Winai Chatthong
- Division of Occupational Therapy, Faculty of Physical Therapy, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Amornpan Ajjimaporn
- College of Sports Science and Technology, Mahidol University, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
2
|
Voits T, DeLuca V, Hao J, Elin K, Abutalebi J, Duñabeitia JA, Berglund G, Gabrielsen A, Rook J, Thomsen H, Waagen P, Rothman J. Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan. Neurobiol Aging 2024; 140:70-80. [PMID: 38735176 DOI: 10.1016/j.neurobiolaging.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
Multilingualism has been demonstrated to lead to a more favorable trajectory of neurocognitive aging, yet our understanding of its effect on neurocognition across the lifespan remains limited. We collected resting state EEG recordings from a sample of multilingual individuals across a wide age range. Additionally, we obtained data on participant multilingual language use patterns alongside other known lifestyle enrichment factors. Language experience was operationalized via a modified multilingual diversity (MLD) score. Generalized additive modeling was employed to examine the effects and interactions of age and MLD on resting state oscillatory power and coherence. The data suggest an independent modulatory effect of individualized multilingual engagement on age-related differences in whole brain resting state power across alpha and theta bands, and an interaction between age and MLD on resting state coherence in alpha, theta, and low beta. These results provide evidence of multilingual engagement as an independent correlational factor related to differences in resting state EEG power, consistent with the claim that multilingualism can serve as a protective factor in neurocognitive aging.
Collapse
Affiliation(s)
- Toms Voits
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden; UiT the Arctic University of Norway, Tromsø, Norway.
| | | | - Jiuzhou Hao
- UiT the Arctic University of Norway, Tromsø, Norway
| | - Kirill Elin
- UiT the Arctic University of Norway, Tromsø, Norway
| | - Jubin Abutalebi
- UiT the Arctic University of Norway, Tromsø, Norway; Centre for Neurolinguistics and Psycholinguistics (CNPL), Vita-Salute San Raffaele University, Milan, Italy
| | - Jon Andoni Duñabeitia
- UiT the Arctic University of Norway, Tromsø, Norway; Universidad Nebrija Research Center in Cognition (CINC), Nebrija University, Madrid, Spain
| | | | | | - Janine Rook
- Department of Applied Linguistics, University of Groningen, Groningen, the Netherlands
| | - Hilde Thomsen
- UiT the Arctic University of Norway, Tromsø, Norway; Université Côte d'Azur, Nice, France
| | | | - Jason Rothman
- UiT the Arctic University of Norway, Tromsø, Norway; Universidad Nebrija Research Center in Cognition (CINC), Nebrija University, Madrid, Spain
| |
Collapse
|
3
|
Jiang H, Zhao S, Wu Q, Cao Y, Zhou W, Gong Y, Shao C, Chi A. Dragon boat exercise reshapes the temporal-spatial dynamics of the brain. PeerJ 2024; 12:e17623. [PMID: 38952974 PMCID: PMC11216202 DOI: 10.7717/peerj.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/02/2024] [Indexed: 07/03/2024] Open
Abstract
Although exercise training has been shown to enhance neurological function, there is a shortage of research on how exercise training affects the temporal-spatial synchronization properties of functional networks, which are crucial to the neurological system. This study recruited 23 professional and 24 amateur dragon boat racers to perform simulated paddling on ergometers while recording EEG. The spatiotemporal dynamics of the brain were analyzed using microstates and omega complexity. Temporal dynamics results showed that microstate D, which is associated with attentional networks, appeared significantly altered, with significantly higher duration, occurrence, and coverage in the professional group than in the amateur group. The transition probabilities of microstate D exhibited a similar pattern. The spatial dynamics results showed the professional group had lower brain complexity than the amateur group, with a significant decrease in omega complexity in the α (8-12 Hz) and β (13-30 Hz) bands. Dragon boat training may strengthen the attentive network and reduce the complexity of the brain. This study provides evidence that dragon boat exercise improves the efficiency of the cerebral functional networks on a spatiotemporal scale.
Collapse
Affiliation(s)
- Hongke Jiang
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Shanguang Zhao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Qianqian Wu
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Yingying Cao
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Wu Zhou
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Youwu Gong
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Changzhuan Shao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Aiping Chi
- School of Physical Education, Shaanxi Normal University, Xian, China
| |
Collapse
|
4
|
Morrone JM, Pedlar CR. Selective cortical adaptations associated with neural efficiency in visuospatial tasks - the comparison of electroencephalographic profiles of expert and novice artists. Neuropsychologia 2024; 198:108854. [PMID: 38493826 DOI: 10.1016/j.neuropsychologia.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Visuospatial cognition encapsulates an individual's ability to efficiently navigate and make sense of the multimodal cues from their surroundings, and therefore has been linked to expert performance across multiple domains, including sports, performing arts, and highly skilled tasks, such as drawing (Morrone and Minini, 2023). As neural efficiency posits a task-specific functional reorganization facilitated by long-term training, the present study employs a visuospatial construction task as a means of investigating the neurophysiological adaptations associated with expert visuospatial cognitive performance. Electroencephalogram (EEG) data acquisitions were used to evaluate the event-related changes (ER%) and statistical topographic maps of nine expert versus nine novice artists. The expert artists displayed overall higher global ER% compared to the novices within task-active intervals. Significant increases in relative ER% were found in the theta (t (10) = 3.528, p = 0.003, CI = [27.3,120.9]), lower-alpha (t (10) = 3.751, p = 0.002, CI = [28.2,110.5]), upper-alpha (t (10) = 3.829, p = 0.002, CI = [50.2,189.8]), and low beta (t (10) = 4.342, p < 0.001, CI = [37.0,114.9]) frequency bands, when comparing the experts to the novice participants. These results were particularly found in the frontal (t (14) = 2.014, p = 0.032, CI = [7.7,245.4]) and occipital (t (14) = 2.647, p = 0.010, CI = [45.0,429.7]) regions. Further, a significant decrease in alpha ER% from lower to upper activity (t (8) = 4.475, p = 0.001, CI = [21.0, 65.8]) was found across cortical regions in the novice group. Notably, greater deviation between lower and upper-alpha activity was found across scalp locations in the novice group, compared to the experts. Overall, the findings demonstrate potential local and global EEG-based indices of selective cortical adaptations within a task requiring a high degree of visuospatial cognition, although further work is needed to replicate these findings across other domains.
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
5
|
Morrone JM, Pedlar CR. EEG-based neurophysiological indices for expert psychomotor performance - a review. Brain Cogn 2024; 175:106132. [PMID: 38219415 DOI: 10.1016/j.bandc.2024.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A primary objective of current human neuropsychological performance research is to define the physiological correlates of adaptive knowledge utilization, in order to support the enhanced execution of both simple and complex tasks. Within the present article, electroencephalography-based neurophysiological indices characterizing expert psychomotor performance, will be explored. As a means of characterizing fundamental processes underlying efficient psychometric performance, the neural efficiency model will be evaluated in terms of alpha-wave-based selective cortical processes. Cognitive and motor domains will initially be explored independently, which will act to encapsulate the task-related neuronal adaptive requirements for enhanced psychomotor performance associating with the neural efficiency model. Moderating variables impacting the practical application of such neuropsychological model, will also be investigated. As a result, the aim of this review is to provide insight into detectable task-related modulation involved in developed neurocognitive strategies which support heightened psychomotor performance, for the implementation within practical settings requiring a high degree of expert performance (such as sports or military operational settings).
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK.
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
6
|
Chen Y, You W, Hu Y, Chu H, Chen X, Shi W, Gao X. EEG measurement for the effect of perceptual eye position and eye position training on comitant strabismus. Cereb Cortex 2023; 33:10194-10206. [PMID: 37522301 PMCID: PMC10502583 DOI: 10.1093/cercor/bhad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
One of the clinical features of comitant strabismus is that the deviation angles in the first and second eye positions are equal. However, there has been no report of consistency in the electroencephalography (EEG) signals between the 2 positions. In order to address this issue, we developed a new paradigm based on perceptual eye position. We collected steady-state visual evoked potentials (SSVEPs) signals and resting-state EEG data before and after the eye position training. We found that SSVEP signals could characterize the suppression effect and eye position effect of comitant strabismus, that is, the SSVEP response of the dominant eye was stronger than that of the strabismus eye in the first eye position but not in the second eye position. Perceptual eye position training could modulate the frequency band activities in the occipital and surrounding areas. The changes in the visual function of comitant strabismus after training could also be characterized by SSVEP. There was a correlation between intermodulation frequency, power of parietal electrodes, and perceptual eye position, indicating that EEG might be a potential indicator for evaluating strabismus visual function.
Collapse
Affiliation(s)
- Yuzhen Chen
- Shenzhen International Graduate School, Tsinghua University, Nanshan District, Shenzhen 518055, China
| | - Weicong You
- Shenzhen International Graduate School, Tsinghua University, Nanshan District, Shenzhen 518055, China
| | - Yijun Hu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Hang Chu
- The National Engineering Research Center for Healthcare Devices, Tianhe District, Guangzhou 510500, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai District, Tianjin 300192, China
| | - Wei Shi
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Xicheng District, Beijing 100045, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
7
|
Jin J, Wang X, Wang H, Li Y, Liu Z, Yin T. Train duration and inter-train interval determine the direction and intensity of high-frequency rTMS after-effects. Front Neurosci 2023; 17:1157080. [PMID: 37476832 PMCID: PMC10355321 DOI: 10.3389/fnins.2023.1157080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objective It has been proved that repetitive transcranial magnetic stimulation (rTMS) triggers the modulation of homeostatic metaplasticity, which causes the effect of rTMS to disappear or even reverse, and a certain length of interval between rTMS trains might break the modulation of homeostatic metaplasticity. However, it remains unknown whether the effects of high-frequency rTMS can be modulated by homeostatic metaplasticity by lengthening the train duration and whether homeostatic metaplasticity can be broken by prolonging the inter-train interval. Methods In this study, 15 subjects participated in two experiments including different rTMS protocols targeting the motor cortex. In the first experiment, high-frequency rTMS protocols with different train durations (2 s and 5 s) and an inter-train interval of 25 s were adopted. In the second experiment, high-frequency rTMS protocols with a train duration of 5 s and different inter-train intervals (50 s and 100 s) were adopted. A sham protocol was also included. Changes of motor evoked potential amplitude acquired from electromyography, power spectral density, and intra-region and inter-region functional connectivity acquired from electroencephalography in the resting state before and after each rTMS protocol were evaluated. Results High-frequency rTMS with 2 s train duration and 25 s inter-train interval increased cortex excitability and the power spectral density of bilateral central regions in the alpha frequency band and enhanced the functional connectivity between central regions and other brain regions. When the train duration was prolonged to 5 s, the after-effects of high-frequency rTMS disappeared. The after-effects of rTMS with 5 s train duration and 100 s inter-train interval were the same as those of rTMS with 2 s train duration and 25 s inter-train interval. Conclusion Our results indicated that train duration and inter-train interval could induce the homeostatic metaplasticiy and determine the direction of intensity of rTMS after-effects, and should certainly be taken into account when performing rTMS in both research and clinical practice.
Collapse
Affiliation(s)
- Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Wu Q, Jiang H, Shao C, Zhang Y, Zhou W, Cao Y, Song J, Shi B, Chi A, Wang C. Characteristics of changes in the functional status of the brain before and after 1,000 m all-out paddling for different levels of dragon boat athletes. Front Psychol 2023; 14:1109949. [PMID: 37287781 PMCID: PMC10243504 DOI: 10.3389/fpsyg.2023.1109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 06/09/2023] Open
Abstract
Purposes Dragon boat is a traditional sport in China, but the brain function characteristics of dragon boat athletes are still unclear. Our purpose is to explore the changing characteristics of brain function of dragon boat athletes at different levels before and after exercise by monitoring the changes of EEG power spectrum and microstate of athletes before and after rowing. Methods Twenty-four expert dragon boat athletes and 25 novice dragon boat athletes were selected as test subjects to perform the 1,000 m all-out paddling exercise on a dragon boat dynamometer. Their resting EEG data was collected pre- and post-exercise, and the EEG data was pre-processed and then analyzed using power spectrum and microstate based on Matlab software. Results Post-Exercise, the Heart Rate peak (HR peak), Percentage of Heart Rate max (HR max), Rating of Perceived Exertion (RPE), and Exercise duration of the novice group were significantly higher than expert group (p < 0.01). Pre-exercise, the power spectral density values in the δ, α1, α2, and β1 bands were significantly higher in the expert group compared to the novice group (p < 0.05). Post-exercise, the power spectral density values in the δ, θ, and α1 bands were significantly lower in the expert group compared to the novice group (p < 0.05), the power spectral density values of α2, β1, and β2 bands were significantly higher (p < 0.05). The results of microstate analysis showed that the duration and contribution of microstate class D were significantly higher in the pre-exercise expert group compared to the novice group (p < 0.05), the transition probabilities of A → D, C → D, and D → A were significantly higher (p < 0.05). Post-exercise, the duration, and contribution of microstate class C in the expert group decreased significantly compared to the novice group (p < 0.05), the occurrence of microstate classes A and D were significantly higher (p < 0.05), the transition probability of A → B was significantly higher (p < 0.05), and the transition probabilities of C → D and D → C were significantly lower (p < 0.05). Conclusion The functional brain state of dragon boat athletes was characterized by expert athletes with closer synaptic connections of brain neurons and higher activation of the dorsal attention network in the resting state pre-exercise. There still had higher activation of cortical neurons after paddling exercise. Expert athletes can better adapt to acute full-speed oar training.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Hongke Jiang
- Physical Education Department, Shanghai Maritime University, Shanghai, China
| | - Changzhuan Shao
- Physical Education Department, Shanghai Maritime University, Shanghai, China
| | - Yan Zhang
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Wu Zhou
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Yingying Cao
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Jing Song
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Bing Shi
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Aiping Chi
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Chao Wang
- School of Sports, Shaanxi Normal University, Xi’ an, China
| |
Collapse
|
9
|
Wang K, Tian F, Xu M, Zhang S, Xu L, Ming D. Resting-State EEG in Alpha Rhythm May Be Indicative of the Performance of Motor Imagery-Based Brain-Computer Interface. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1556. [PMID: 36359646 PMCID: PMC9689965 DOI: 10.3390/e24111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Motor imagery-based brain-computer interfaces (MI-BCIs) have great application prospects in motor enhancement and rehabilitation. However, the capacity to control a MI-BCI varies among persons. Predicting the MI ability of a user remains challenging in BCI studies. We first calculated the relative power level (RPL), power spectral entropy (PSE) and Lempel-Ziv complexity (LZC) of the resting-state open and closed-eye EEG of different frequency bands and investigated their correlations with the upper and lower limbs MI performance (left hand, right hand, both hands and feet MI tasks) on as many as 105 subjects. Then, the most significant related features were used to construct a classifier to separate the high MI performance group from the low MI performance group. The results showed that the features of open-eye resting alpha-band EEG had the strongest significant correlations with MI performance. The PSE performed the best among all features for the screening of the MI performance, with the classification accuracy of 85.24%. These findings demonstrated that the alpha bands might offer information related to the user's MI ability, which could be used to explore more effective and general neural markers to screen subjects and design individual MI training strategies.
Collapse
Affiliation(s)
- Kun Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Feifan Tian
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Minpeng Xu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shanshan Zhang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Lichao Xu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Research on Top Archer’s EEG Microstates and Source Analysis in Different States. Brain Sci 2022; 12:brainsci12081017. [PMID: 36009079 PMCID: PMC9405655 DOI: 10.3390/brainsci12081017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The electroencephalograph (EEG) microstate is a method used to describe the characteristics of the EEG signal through the brain scalp electrode potential’s spatial distribution; as such, it reflects the changes in the brain’s functional state. The EEGs of 13 elite archers from China’s national archery team and 13 expert archers from China’s provincial archery team were recorded under the alpha rhythm during the resting state (with closed eyes) and during archery aiming. By analyzing the differences between the EEG microstate parameters and the correlation between these parameters with archery performance, as well as by combining our findings through standardized low-resolution brain electromagnetic tomography source analysis (sLORETA), we explored the changes in the neural activity of professional archers of different levels, under different states. The results of the resting state study demonstrated that the duration, occurrence, and coverage in microstate D of elite archers were significantly higher than those of expert archers and that their other microstates had the greatest probability of transferring to microstate D. During the archery aiming state, the average transition probability of the other microstates transferring to microstate in the left temporal region was the highest observed in the two groups of archers. Moreover, there was a significant negative correlation between the duration and coverage of microstates in the frontal region of elite archers and their archery performance. Our findings indicate that elite archers are more active in the dorsal attention system and demonstrate a higher neural efficiency during the resting state. When aiming, professional archers experience an activation of brain regions associated with archery by suppressing brain regions unrelated to archery tasks. These findings provide a novel theoretical basis for the study of EEG microstate dynamics in archery and related cognitive motor tasks, particularly from the perspective of the subject’s mental state.
Collapse
|
11
|
Alterations in spontaneous electrical brain activity after an extreme mountain ultramarathon. Biol Psychol 2022; 171:108348. [DOI: 10.1016/j.biopsycho.2022.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
12
|
Taylor PN, Papasavvas CA, Owen TW, Schroeder GM, Hutchings FE, Chowdhury FA, Diehl B, Duncan JS, McEvoy AW, Miserocchi A, de Tisi J, Vos SB, Walker MC, Wang Y. Normative brain mapping of interictal intracranial EEG to localize epileptogenic tissue. Brain 2022; 145:939-949. [PMID: 35075485 PMCID: PMC9050535 DOI: 10.1093/brain/awab380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localizing epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 participants (21 598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We proposed that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures postoperatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions that were spared by surgery were more abnormal than those resected only in patients with persistent postoperative seizures (t = -3.6, P = 0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (area under curve 0.75 P = 0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyond.
Collapse
Affiliation(s)
- Peter N Taylor
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Christoforos A Papasavvas
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Thomas W Owen
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Gabrielle M Schroeder
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Frances E Hutchings
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Beate Diehl
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - John S Duncan
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Sjoerd B Vos
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| |
Collapse
|
13
|
Pereira Soares SM, Kubota M, Rossi E, Rothman J. Determinants of bilingualism predict dynamic changes in resting state EEG oscillations. BRAIN AND LANGUAGE 2021; 223:105030. [PMID: 34634607 DOI: 10.1016/j.bandl.2021.105030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This study uses resting state EEG data from 103 bilinguals to understand how determinants of bilingualism may reshape the mind/brain. Participants completed the LSBQ, which quantifies language use and crucially the division of labor of dual-language use in diverse activities and settings over the lifespan. We hypothesized correlations between the degree of active bilingualism with power of neural oscillations in specific frequency bands. Moreover, we anticipated levels of mean coherence (connectivity between brain regions) to vary by degree of bilingual language experience. Results demonstrated effects of Age of L2/2L1 onset on high beta and gamma powers. Higher usage of the non-societal language at home and society modulated indices of functional connectivity in theta, alpha and gamma frequencies. Results add to the emerging literature on the neuromodulatory effects of bilingualism for rs-EEG, and are in line with claims that bilingualism effects are modulated by degree of engagement with dual-language experiential factors.
Collapse
Affiliation(s)
| | - Maki Kubota
- Department of Language and Culture, UiT The Arctic University of Norway, Norway
| | | | - Jason Rothman
- Department of Language and Culture, UiT The Arctic University of Norway, Norway; Centro de Ciencia Cognitiva, Universidad Antonio De Nebrija, Spain.
| |
Collapse
|
14
|
Sugino H, Ushiyama J. Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts. Front Sports Act Living 2021; 3:757308. [PMID: 34805979 PMCID: PMC8600039 DOI: 10.3389/fspor.2021.757308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Previous psychological studies using questionnaires have consistently reported that athletes have superior motor imagery ability, both for sports-specific and for sports-non-specific movements. However, regarding motor imagery of sports-non-specific movements, no physiological studies have demonstrated differences in neural activity between athletes and non-athletes. The purpose of this study was to examine the differences in sensorimotor rhythms during kinesthetic motor imagery (KMI) of sports-non-specific movements between gymnasts and non-gymnasts. We selected gymnasts as an example population because they are likely to have particularly superior motor imagery ability due to frequent usage of motor imagery, including KMI as part of daily practice. Healthy young participants (16 gymnasts and 16 non-gymnasts) performed repeated motor execution and KMI of sports-non-specific movements (wrist dorsiflexion and shoulder abduction of the dominant hand). Scalp electroencephalogram (EEG) was recorded over the contralateral sensorimotor cortex. During motor execution and KMI, sensorimotor EEG power is known to decrease in the α- (8–15 Hz) and β-bands (16–35 Hz), referred to as event-related desynchronization (ERD). We calculated the maximal peak of ERD both in the α- (αERDmax) and β-bands (βERDmax) as a measure of changes in corticospinal excitability. αERDmax was significantly greater in gymnasts, who subjectively evaluated their KMI as being more vivid in the psychological questionnaire. On the other hand, βERDmax was greater in gymnasts only for shoulder abduction KMI. These findings suggest gymnasts' signature of flexibly modulating sensorimotor rhythms with no movements, which may be the basis of their superior ability of KMI for sports-non-specific movements.
Collapse
Affiliation(s)
- Hirotaka Sugino
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Budnik-Przybylska D, Kastrau A, Jasik P, Kaźmierczak M, Doliński Ł, Syty P, Łabuda M, Przybylski J, di Fronso S, Bertollo M. Neural Oscillation During Mental Imagery in Sport: An Olympic Sailor Case Study. Front Hum Neurosci 2021; 15:669422. [PMID: 34140884 PMCID: PMC8205149 DOI: 10.3389/fnhum.2021.669422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of the current study was to examine the cortical correlates of imagery depending on instructional modality (guided vs. self-produced) using various sports-related scripts. According to the expert-performance approach, we took an idiosyncratic perspective analyzing the mental imagery of an experienced two-time Olympic athlete to verify whether different instructional modalities of imagery (i.e., guided vs. self-produced) and different scripts (e.g., training or competition environment) could differently involve brain activity. The subject listened to each previously recorded script taken from two existing questionnaires concerning imagery ability in sport and then was asked to imagine the scene for a minute. During the task, brain waves were monitored using EEG (32-channel g. Nautilus). Our findings indicate that guided imagery might induce higher high alpha and SMR (usually associated with selective attention), whereas self-produced imagery might facilitate higher low alpha (associated with global resting state and relaxation). Results are discussed in light of the neural efficiency hypothesis as a marker of optimal performance and transient hypofrontality as a marker of flow state. Practical mental training recommendations are presented.
Collapse
Affiliation(s)
- Dagmara Budnik-Przybylska
- Department of Sport Psychology, Institute of Psychology, Faculty of Social Science, University of Gdańsk, Gdańsk, Poland
| | - Adrian Kastrau
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Patryk Jasik
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Maria Kaźmierczak
- Department of Family Studies and Quality of Life, Institute of Psychology, Faculty of Social Sciences, University of Gdańsk, Gdańsk, Poland
| | - Łukasz Doliński
- Department of Mechatronics and High Voltage Engineering, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk, Poland.,BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Paweł Syty
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Marta Łabuda
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland.,BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Przybylski
- Department of Sport Psychology, Institute of Psychology, Faculty of Social Science, University of Gdańsk, Gdańsk, Poland
| | - Selenia di Fronso
- Department of Medicine and Aging Sciences, Behavioral Imaging and Neural Dynamics (BIND) Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maurizio Bertollo
- Department of Medicine and Aging Sciences, Behavioral Imaging and Neural Dynamics (BIND) Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Borhani S, Zhao X, Kelly MR, Gottschalk KE, Yuan F, Jicha GA, Jiang Y. Gauging Working Memory Capacity From Differential Resting Brain Oscillations in Older Individuals With A Wearable Device. Front Aging Neurosci 2021; 13:625006. [PMID: 33716711 PMCID: PMC7944100 DOI: 10.3389/fnagi.2021.625006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Working memory is a core cognitive function and its deficits is one of the most common cognitive impairments. Reduced working memory capacity manifests as reduced accuracy in memory recall and prolonged speed of memory retrieval in older adults. Currently, the relationship between healthy older individuals’ age-related changes in resting brain oscillations and their working memory capacity is not clear. Eyes-closed resting electroencephalogram (rEEG) is gaining momentum as a potential neuromarker of mild cognitive impairments. Wearable and wireless EEG headset measuring key electrophysiological brain signals during rest and a working memory task was utilized. This research’s central hypothesis is that rEEG (e.g., eyes closed for 90 s) frequency and network features are surrogate markers for working memory capacity in healthy older adults. Forty-three older adults’ memory performance (accuracy and reaction times), brain oscillations during rest, and inter-channel magnitude-squared coherence during rest were analyzed. We report that individuals with a lower memory retrieval accuracy showed significantly increased alpha and beta oscillations over the right parietal site. Yet, faster working memory retrieval was significantly correlated with increased delta and theta band powers over the left parietal sites. In addition, significantly increased coherence between the left parietal site and the right frontal area is correlated with the faster speed in memory retrieval. The frontal and parietal dynamics of resting EEG is associated with the “accuracy and speed trade-off” during working memory in healthy older adults. Our results suggest that rEEG brain oscillations at local and distant neural circuits are surrogates of working memory retrieval’s accuracy and processing speed. Our current findings further indicate that rEEG frequency and coherence features recorded by wearable headsets and a brief resting and task protocol are potential biomarkers for working memory capacity. Additionally, wearable headsets are useful for fast screening of cognitive impairment risk.
Collapse
Affiliation(s)
- Soheil Borhani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xiaopeng Zhao
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Margaret R Kelly
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Karah E Gottschalk
- Center on Gerontology, School of Public Health, University of Kentucky, Lexington, KY, United States.,Department of Audiology, Nova Southeastern University, Florida, FL, United States
| | - Fengpei Yuan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yang Jiang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
García-Monge A, Rodríguez-Navarro H, González-Calvo G, Bores-García D. Brain Activity during Different Throwing Games: EEG Exploratory Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6796. [PMID: 32957731 PMCID: PMC7559334 DOI: 10.3390/ijerph17186796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/16/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study is to explore the differences in brain activity in various types of throwing games by making encephalographic records. Three conditions of throwing games were compared looking for significant differences (simple throwing, throwing to a goal, and simultaneous throwing with another player). After signal processing, power spectral densities were compared through variance analysis (p ≤ 0.001). Significant differences were found especially in high-beta oscillations (22-30 Hz). "Goal" and "Simultaneous" throwing conditions show significantly higher values than those shown for throws without opponent. This can be explained by the higher demand for motor control and the higher arousal in competition situations. On the other hand, the high-beta records of the "Goal" condition are significantly higher than those of the "Simultaneous" throwing, which could be understood from the association of the beta waves with decision-making processes. These results support the difference in brain activity during similar games. This has several implications: opening up a path to study the effects of each specific game on brain activity and calling into question the transfer of research findings on animal play to all types of human play.
Collapse
Affiliation(s)
- Alfonso García-Monge
- Department of Didactics of Musical, Artistic and Body Expression, Faculty of Education of Valladolid, University of Valladolid, 47011 Valladolid, Spain;
| | - Henar Rodríguez-Navarro
- Department of Pedagogy, Faculty of Education of Valladolid, University of Valladolid, 47011 Valladolid, Spain;
| | - Gustavo González-Calvo
- Department of Didactics of Musical, Artistic and Body Expression, Faculty of Education of Palencia, University of Valladolid, 34004 Palencia, Spain;
| | - Daniel Bores-García
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
18
|
Mirifar A, Cross-Villasana F, Beckmann J, Ehrlenspiel F. Effects of the unilateral dynamic handgrip on resting cortical activity levels: A replication and extension. Int J Psychophysiol 2020; 156:40-48. [PMID: 32702385 DOI: 10.1016/j.ijpsycho.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have linked unilateral hand contractions to subsequent changes in hemispheric asymmetric activity, as reflected in the electroencephalographic alpha (8-12 Hz) range in each hemisphere. However, debate continues regarding the state of asymmetry induced by unilateral contractions. We have previously found a bilateral enhancement of alpha amplitude that occurs after contractions, reflecting cortical downregulation instead of changes in asymmetric activity. To corroborate our observations, we examined the effects of 45 s of unilateral dynamic handgrip contractions on subsequent resting alpha activity. Twenty-two right-handed participants were recruited (M = 25 years, 17 female). The study used a within-subjects design consisting of a pre- and post-test (2 min resting; eyes open) for the intervention (dynamic handgrip; at a self-determined pace of approximately twice a second for 45 s for each hand). Following the handgrip task, an increase in alpha amplitude above the baseline was observed over the entire cortex, which was greater after left-hand squeezing. This observation confirms our previous findings and we have extended them by adding more electrodes to gain further insights into the handgrip exercise as an external brain stimulator. Moreover, we grouped electrodes according to scalp regions to facilitate the visualization of the effects on the frequency spectrum. Our findings can be used to develop targeted interventions aimed at modifying behavioral outcomes affected by alpha activity.
Collapse
Affiliation(s)
- Arash Mirifar
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Germany.
| | - Fernando Cross-Villasana
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Germany
| | - Jürgen Beckmann
- School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Felix Ehrlenspiel
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Germany
| |
Collapse
|
19
|
Bice K, Yamasaki BL, Prat CS. Bilingual Language Experience Shapes Resting-State Brain Rhythms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:288-318. [PMID: 37215228 PMCID: PMC10158654 DOI: 10.1162/nol_a_00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/27/2020] [Indexed: 05/24/2023]
Abstract
An increasing body of research has investigated how bilingual language experience changes brain structure and function, including changes to task-free, or "resting-state" brain connectivity. Such findings provide important evidence about how the brain continues to be shaped by different language experiences throughout the lifespan. The neural effects of bilingual language experience can provide evidence about the additional processing demands placed on the linguistic and/or executive systems by dual-language use. While considerable research has used MRI to examine where these changes occur, such methods cannot reveal the temporal dynamics of functioning brain networks at rest. The current study used data from task-free EEGS to disentangle how the linguistic and cognitive demands of bilingual language use impact brain functioning. Data analyzed from 106 bilinguals and 91 monolinguals revealed that bilinguals had greater alpha power, and significantly greater and broader coherence in the alpha and beta frequency ranges than monolinguals. Follow-up analyses showed that higher alpha was related to language control: more second-language use, higher native-language proficiency, and earlier age of second-language acquisition. Bilateral beta power was related to native-language proficiency, whereas theta was related to native-language proficiency only in left-hemisphere electrodes. The results contribute to our understanding of how the linguistic and cognitive requirements of dual-language use shape intrinsic brain activity, and what the broader implications for information processing may be.
Collapse
Affiliation(s)
| | - Brianna L. Yamasaki
- Institute for Learning and Brain Sciences and Department of Psychology, University of Washington
- Department of Psychology and Human Development, Vanderbilt University
| | - Chantel S. Prat
- Institute for Learning and Brain Sciences and Department of Psychology, University of Washington
| |
Collapse
|
20
|
Gong A, Nan W, Yin E, Jiang C, Fu Y. Efficacy, Trainability, and Neuroplasticity of SMR vs. Alpha Rhythm Shooting Performance Neurofeedback Training. Front Hum Neurosci 2020; 14:94. [PMID: 32265676 PMCID: PMC7098988 DOI: 10.3389/fnhum.2020.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Previous literature on shooting performance neurofeedback training (SP-NFT) to enhance performance usually focused on changes in behavioral indicators, but research on the physiological features of SP-NFT is lacking. To explore the effects of SP-NFT on trainability and neuroplasticity, we conducted a study in which 45 healthy participants were randomly divided into three groups: based on sensory-motor rhythm of C3, Cz and C4 (SMR group), based on alpha rhythm of T3 and T4 (Alpha group), and no NFT (control group). The training was performed for six sessions for 3 weeks. Before and after the SP-NFT, we evaluated changes in shooting performance and resting electroencephalography (EEG) frequency power, participant's subjective task appraisal, neurofeedback trainability score, and EEG feature. Statistical analysis showed that the shooting performance of the participants in the SMR group improved significantly, the participants in the Alpha group decreased, and that of participants in the control group have no change. Meanwhile, the resting EEG power features of the two NFT groups changed specifically after training. The training process data showed that the training difficulty was significantly lower in the SMR group than in the Alpha group. Both NFT groups could improve the neurofeedback trainability scores and change the feedback features by means of their mind strategy. These results may provide evidence of trainability and neuroplasticity for SP-NFT, suggesting that the SP-NFT is effective in brain regulation and thus provide a potential method to improve shooting performance.
Collapse
Affiliation(s)
- Anmin Gong
- School of Information Engineering, Engineering University of Armed Police Force, Xi'an, China
| | - Wenya Nan
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai, China
| | - Erwei Yin
- Tianjin Artificial Intelligence Innovation Center (TAIIC), National Institute of Defense Technology Innovation, Academy of Military Sciences China, Beijing, China
| | - Changhao Jiang
- Key Laboratory of Sports Performance Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing, China
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
21
|
Christie S, Bertollo M, Werthner P. The Effect of an Integrated Neurofeedback and Biofeedback Training Intervention on Ice Hockey Shooting Performance. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2020; 42:34-47. [PMID: 32005005 DOI: 10.1123/jsep.2018-0278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to investigate the effectiveness of a sensorimotor rhythm (SMR) neurofeedback training (NFT) and biofeedback training (BFT) intervention on ice hockey shooting performance. Specifically, the purpose was to examine (a) whether an NFT/BFT program could improve ice hockey shooting performance, (b) whether the implementation of an SMR-NFT intervention leads to neurological adaptations during performance, and (c) whether such neurological changes account for improvement in shooting performance. Using a longitudinal stratified random control design, results demonstrated that while both SMR-NFT/BFT and control groups improved performance, the rate of improvement for the SMR-NFT/BFT group was significantly higher than the control. Participants in the SMR-NFT/BFT group demonstrated the ability to significantly increase SMR power from pre- to postintervention in the lab. However, no significant changes in SMR power were found during shooting performance. This result may be suggestive of differing cortical activity present during motor-skill preparation.
Collapse
Affiliation(s)
| | - Maurizio Bertollo
- G. d'Annunzio University of Chieti-Pescara and University of Suffolk
| | | |
Collapse
|
22
|
Seidel O, Carius D, Roediger J, Rumpf S, Ragert P. Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls. Exp Brain Res 2019; 237:2957-2972. [PMID: 31506708 PMCID: PMC6794243 DOI: 10.1007/s00221-019-05646-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023]
Abstract
It is well known that endurance exercise modulates the cardiovascular, pulmonary, and musculoskeletal system. However, knowledge about its effects on brain function and structure is rather sparse. Hence, the present study aimed to investigate exercise-dependent adaptations in neurovascular coupling to different intensity levels in motor-related brain regions. Moreover, expertise effects between trained endurance athletes (EA) and active control participants (ACP) during a cycling test were investigated using multi-distance functional near-infrared spectroscopy (fNIRS). Initially, participants performed an incremental cycling test (ICT) to assess peak values of power output (PPO) and cardiorespiratory parameters such as oxygen consumption volume (VO2max) and heart rate (HRmax). In a second session, participants cycled individual intensity levels of 20, 40, and 60% of PPO while measuring cardiorespiratory responses and neurovascular coupling. Our results revealed exercise-induced decreases of deoxygenated hemoglobin (HHb), indicating an increased activation in motor-related brain areas such as primary motor cortex (M1) and premotor cortex (PMC). However, we could not find any differential effects in brain activation between EA and ACP. Future studies should extend this approach using whole-brain configurations and systemic physiological augmented fNIRS measurements, which seems to be of pivotal interest in studies aiming to assess neural activation in a sports-related context.
Collapse
Affiliation(s)
- Oliver Seidel
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany.
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Julia Roediger
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Sebastian Rumpf
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
23
|
Wolff A, de la Salle S, Sorgini A, Lynn E, Blier P, Knott V, Northoff G. Atypical Temporal Dynamics of Resting State Shapes Stimulus-Evoked Activity in Depression-An EEG Study on Rest-Stimulus Interaction. Front Psychiatry 2019; 10:719. [PMID: 31681034 PMCID: PMC6803442 DOI: 10.3389/fpsyt.2019.00719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a complex psychiatric disorder characterized by changes in both resting state and stimulus-evoked activity. Whether resting state changes are carried over to stimulus-evoked activity, however, is unclear. We conducted a combined rest (3 min) and task (three-stimulus auditory oddball paradigm) EEG study in n=28 acute depressed MDD patients, comparing them with n=25 healthy participants. Our focus was on the temporal dynamics of both resting state and stimulus-evoked activity for which reason we measured peak frequency (PF), coefficient of variation (CV), Lempel-Ziv complexity (LZC), and trial-to-trial variability (TTV). Our main findings are: i) atypical temporal dynamics in resting state, specifically in the alpha and theta bands as measured by peak frequency (PF), coefficient of variation (CV) and power; ii) decreased reactivity to external deviant stimuli as measured by decreased changes in stimulus-evoked variance and complexity-TTV, LZC, and power and frequency sliding (FS and PS); iii) correlation of stimulus related measures (TTV, LZC, PS, and FS) with resting state measures. Together, our findings show that resting state dynamics alone are atypical in MDD and, even more important, strongly shapes the dynamics of subsequent stimulus-evoked activity. We thus conclude that MDD can be characterized by an atypical temporal dynamic of its rest-stimulus interaction; that, in turn, makes it difficult for depressed patients to react to relevant stimuli such as the deviant tone in our paradigm.
Collapse
Affiliation(s)
- Annemnarie Wolff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara de la Salle
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Alana Sorgini
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Emma Lynn
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Jin JN, Wang X, Li Y, Wang H, Liu ZP, Yin T. rTMS combined with motor training changed the inter-hemispheric lateralization. Exp Brain Res 2019; 237:2735-2746. [PMID: 31435692 DOI: 10.1007/s00221-019-05621-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023]
Abstract
Repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) can be an effective method for enhancing motor function. However, the effects of rTMS-MT on inter-hemispheric lateralization remain unclear. Nineteen healthy volunteers were recruited. The volunteers were randomized to receive 2 weeks of rTMS-MT or MT to improve the motor function of the nondominant hand. Hand dexterity was tested by the Nine-Hole Peg Test. Resting motor threshold (RMT), motor evoked potentials (MEP) and electroencephalography (EEG) in the resting state with eyes closed were recorded, to calculate inter-hemispheric lateralization before and after rTMS-MT or MT. rTMS-MT and MT improved the dexterity and MEP amplitude of the nondominant hand. Furthermore, there were significant changes in the lateralization of not only power spectral density, but also information transmission efficiency between regions following rTMS-MT, especially between the central cortices of both hemispheres. However, although the lateralization change of the power spectral density between the central cortices was observed following MT, there was no such change for information transmission efficiency between any cortices. These results suggested that rTMS-MT could modulate inter-hemispheric lateralization. Changes in inter-hemispheric lateralization might be an important neural mechanism by which rTMS-MT improves motor function. These results could be helpful for understanding the brain mechanism of rTMS-MT.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
25
|
Peculiarities of Functional Connectivity—including Cross-Modal Patterns—in Professional Karate Athletes: Correlations with Cognitive and Motor Performances. Neural Plast 2019. [DOI: 10.1155/2019/6807978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Professional karate is a sport activity requiring both physical and psychological skills that have been associated with a better “global neural efficacy.” By means of resting state functional magnetic resonance imaging (rs-fMRI), we investigated the neural correlates of cognitive and kinematic abilities in a group of 14 professional karateka and 14 heathy matched controls. All subjects underwent an extensive cognitive test battery for the identification of individual multidimensional cognitive profile and rs-fMRI scans investigating functional connectivity (FC). Moreover, kinematic performances in athletes were quantified by the Ergo-Mak, an integrated system developed for measuring motor reactivity, strength, and power of athletic gestures. Karateka performed significantly better than controls in the visual search task, an ability linked with increased positive correlations in FC between the right superior parietal lobe and bilateral occipital poles. Kinematic performances of athletic feats were sustained by increased positive correlations between subcortical (cerebellum and left thalamus) and cortical (inferior frontal cortex, superior parietal cortex, superior temporal cortex) regions. An unexpected FC increase between auditory and motor-related areas emerged in karateka, possibly reflecting a cross-modal coupling due to the continuous exposure to either internal or external auditory cues, positing this sensory channel as a possible target for novel training strategies. Results represent a further step in defining brain correlates of “neural efficiency” in these athletes, whose brain can be considered a model of continuous plastic train-related adaptation.
Collapse
|
26
|
Gong A, Liu J, Lu L, Wu G, Jiang C, Fu Y. Characteristic differences between the brain networks of high-level shooting athletes and non-athletes calculated using the phase-locking value algorithm. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Del Percio C, Franzetti M, De Matti AJ, Noce G, Lizio R, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Rizzo M, Triggiani AI, Stocchi F, Limatola C, Babiloni C. Football Players Do Not Show "Neural Efficiency" in Cortical Activity Related to Visuospatial Information Processing During Football Scenes: An EEG Mapping Study. Front Psychol 2019; 10:890. [PMID: 31080423 PMCID: PMC6497783 DOI: 10.3389/fpsyg.2019.00890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
This study tested the hypothesis of cortical neural efficiency (i.e., reduced brain activation in experts) in the visuospatial information processing related to football (soccer) scenes in football players. Electroencephalographic data were recorded from 56 scalp electrodes in 13 football players and eight matched non-players during the observation of 70 videos with football actions lasting 2.5 s each. During these videos, the central fixation target changed color from red to blue or vice versa. The videos were watched two times. One time, the subjects were asked to estimate the distance between players during each action (FOOTBALL condition, visuospatial). Another time, they had to estimate if the fixation target was colored for a longer time in red or blue color (CONTROL condition, non-visuospatial). The order of the two conditions was pseudo-randomized across the subjects. Cortical activity was estimated as the percent reduction in power of scalp alpha rhythms (about 8-12 Hz) during the videos compared with a pre-video baseline (event-related desynchronization, ERD). In the FOOTBALL condition, a prominent and bilateral parietal alpha ERD (i.e., cortical activation) was greater in the football players than non-players (p < 0.05) in contrast with the neural efficiency hypothesis. In the CONTROL condition, no significant alpha ERD difference was observed. No difference in behavioral response time and accuracy was found between the two groups in any condition. In conclusion, a prominent parietal cortical activity related to visuospatial processes during football scenes was greater in the football players over controls in contrast with the neural efficiency hypothesis.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Mauro Franzetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Adelaide Josy De Matti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | | | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | | | - Marco Rizzo
- Oasi Research Institute – IRCCS, Troina, Italy
| | | | | | - Cristina Limatola
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| |
Collapse
|
28
|
Formaggio E, Storti SF, Pastena L, Melucci M, Ricciardi L, Faralli F, Gagliardi R, Menegaz G. How Expertise Changes Cortical Sources of EEG Rhythms and Functional Connectivity in Divers Under Simulated Deep-Sea Conditions. IEEE Trans Neural Syst Rehabil Eng 2019; 27:450-456. [PMID: 30676971 DOI: 10.1109/tnsre.2019.2894848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although the recent years have witnessed a growing interest in functional connectivity (FC) through brain sources, the FC in extreme situations has not been completely elucidated. This paper is aimed at investigating whether the expertise acquired during the deep-sea diving is reflected in FC in a group of professional divers (PDs) compared to a group of new divers (NDs), and how it could affect the concentration and stress levels. The sources of brain frequency rhythms, derived by the electroencephalography acquisition in a hyperbaric chamber, were extracted in different frequency bands and the corresponding FC was estimated in order to compare the two groups. The results highlighted a significant decrease of the alpha source in PDs during air breathing and a significant increase of the upper beta source over central areas at the beginning of post-oxygen air, as well as an increase of beta FC between fronto-temporal regions in the last minutes of oxygen breathing and in the early minutes of post-oxygen air. This provides evidence in support of the hypothesis that experience and expertise differences would modulate brain networks. These experiments provided the unique opportunity of investigating the impact of the neurophysiological activity in simulated critical scenarios in view of the investigation in real sea-water experiments.
Collapse
|
29
|
Rifle Shooting Performance Correlates with Electroencephalogram Beta Rhythm Network Activity during Aiming. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:4097561. [PMID: 30534150 PMCID: PMC6252210 DOI: 10.1155/2018/4097561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
To study the relationship between brain network and shooting performance during shooting aiming, we collected electroencephalogram (EEG) signals from 40 skilled shooters during rifle shooting and calculated the EEG functional coupling, functional brain network topology, and correlation coefficients between these EEG characteristics and shooting performance. Our result shows a significant negative correlation between shooting performance and functional coupling between the prefrontal, frontal, and temporal regions of the right brain in the Beta1 and Beta2 frequency bands. Global and local brain network topology characteristics were also significantly correlated with shooting performance. These findings indicate that under these experimental conditions, shooters with higher shooting performances exhibit lower functional coupling, higher global, and lower local information integration efficiency during shooting. These conclusions may provide a theoretical basis of the EEG brain network for studying the mental status of shooters while shooting.
Collapse
|
30
|
Faiman I, Pizzamiglio S, Turner DL. Resting-state functional connectivity predicts the ability to adapt arm reaching in a robot-mediated force field. Neuroimage 2018; 174:494-503. [DOI: 10.1016/j.neuroimage.2018.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
|
31
|
Jin JN, Wang X, Li Y, Jin F, Liu ZP, Yin T. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band. Front Behav Neurosci 2017; 11:234. [PMID: 29238296 PMCID: PMC5712595 DOI: 10.3389/fnbeh.2017.00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8–13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Guay S, De Beaumont L, Drisdelle BL, Lina JM, Jolicoeur P. Electrophysiological impact of multiple concussions in asymptomatic athletes: A re-analysis based on alpha activity during a visual-spatial attention task. Neuropsychologia 2017; 108:42-49. [PMID: 29162458 DOI: 10.1016/j.neuropsychologia.2017.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 01/02/2023]
Abstract
Most EEG studies used event-related potentials to assess long-term and cumulative effects of sport-related concussions on brain activity. Time-frequency methods provide another approach that allows the detection of subtle shifts in types and patterns of brain oscillations. We sought to discover whether event-related alpha activity would be significantly affected in asymptomatic multi-concussed athletes. We measured the amplitude of alpha activity (8-12Hz) from the EEG recorded during a visual-spatial attention task to compare event-related alpha perturbations in 13 multi-concussed athletes and 14 age-equivalent, non-concussed teammates. Relative to non-concussed athletes, multi-concussed athletes showed significantly less event-related perturbations time-locked to stimulus presentation. Alpha activity alterations were closely related to the number of concussions sustained. Event-related alpha activity differed in asymptomatic multi-concussed athletes when compared to controls. Our study suggests that low-level neurophysiological underpinnings of the deployment of visual-spatial attention are affected in multi-concussed athletes even though their last concussion occurred on average 30 months prior to testing.
Collapse
Affiliation(s)
- Samuel Guay
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Centre de recherche de l'Hôpital du Sacré-Coeur de Montréal, Montreal QC, Canada
| | - Louis De Beaumont
- Centre de recherche de l'Hôpital du Sacré-Coeur de Montréal, Montreal QC, Canada; Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Brandi Lee Drisdelle
- Department of Psychology, Université de Montréal, Montreal, QC, Canada; Centre de recherche en neuropsychologie et cognition (CERNEC), Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Lina
- Centre de recherche de l'Hôpital du Sacré-Coeur de Montréal, Montreal QC, Canada; Montréal Polytechnique, Montreal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de Montréal, Montreal, QC, Canada; Centre de recherche en neuropsychologie et cognition (CERNEC), Université de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montreal, Montreal, QC, Canada.
| |
Collapse
|
33
|
Costa LC, Andrade A, Lial L, Moreira R, Lima AC, Magvinier A, Lira R, Aragão A, Ulisses PH, Crespo E, Orsini M, Teixeira S, Bastos VH. Investigation of alpha band of the electroencephalogram before and after a task of proprioceptive neuromuscular facilitation. J Exerc Rehabil 2017; 13:418-424. [PMID: 29114507 PMCID: PMC5667619 DOI: 10.12965/jer.1734990.495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/10/2017] [Indexed: 11/22/2022] Open
Abstract
The proprioceptive neuromuscular facilitation (PNF) sets up a feature of treatment developed with the objective to facilitate and improve the motor performance. The aim of this study was to investigate in healthy female individuals the effects of electrophysiological of a diagonal of the PNF upper limb. The sample consisted of 30 female participants aged between 18 to 28 years, randomly divided into 3 groups (G1, G2, and G3). The three groups had 2 moments of electroencephalographic signal detection, before and after the task. The statistical neurophysiological design allowed the analysis of the relative power of alpha band in three leads (Fz, F7, and F8). Thus, a three-way mixed factorial analysis of variance (ANOVA) was performed to investigate the factor inter subjects (groups) and intrasubjects (areas and moments), a two-way ANOVA to investigate the interactions between the three factors, and a one-way ANOVA to analyze separately the factors time and area. A P≤0.05 was considered as significance level. The results showed significant increase of alpha band in the three groups analyzed, being more evident to the G2 group. Therefore, the PNF can be considered favorable also in relation to the cortical behavior, reinforcing its use in rehabilitation processes, especially in the clinical practice of physiotherapy.
Collapse
Affiliation(s)
- Luan Correia Costa
- Biomedical Sciences Program, PPGCBM, Federal University of Piauí, Parnaíba, Brazil.,Brain Mapping and Functionality Laboratory (LAMCEF/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | - Alzira Andrade
- Biomedical Sciences Program, PPGCBM, Federal University of Piauí, Parnaíba, Brazil.,Brain Mapping and Functionality Laboratory (LAMCEF/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | - Lysnara Lial
- Biomedical Sciences Program, PPGCBM, Federal University of Piauí, Parnaíba, Brazil.,Brain Mapping and Functionality Laboratory (LAMCEF/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | - Rayele Moreira
- Biomedical Sciences Program, PPGCBM, Federal University of Piauí, Parnaíba, Brazil.,Brain Mapping and Functionality Laboratory (LAMCEF/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | - Ane Caroline Lima
- Brain Mapping and Functionality Laboratory (LAMCEF/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | | | | | | | | | - Eric Crespo
- Brain Mapping and Plasticity Laboratory (LAMPLACE/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | - Marco Orsini
- Program Professional Master in Applied Science in Health/UNISUAM, Bonsucesso, Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory (LAMPLACE/UFPI), Federal University of Piauí, Parnaíba, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory (LAMCEF/UFPI), Federal University of Piauí, Parnaíba, Brazil
| |
Collapse
|
34
|
Gong A, Liu J, Li F, Liu F, Jiang C, Fu Y. Correlation Between Resting-state Electroencephalographic Characteristics and Shooting Performance. Neuroscience 2017; 366:172-183. [PMID: 29079062 DOI: 10.1016/j.neuroscience.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022]
Abstract
According to the theories of neural plasticity and neural efficiency, professional skill training improves performance by strengthening the underlying neural mechanisms. Therefore, subjects trained professionally may exhibit changes in resting-state neurophysiological characteristics closely related to performance. To test this notion, the resting-state electroencephalogram (EEG) was measured from 35 rifle shooters after the same training regimen, and resting-state EEG characteristics were analyzed for correlations with shooting performance. The results showed a significant linear correlation between shooting performance and the coherence of electrode channels C3 and T3 in the beta1 band (r = 0.74, P < 4.2 × 10-6). There was also a significant linear correlation between the characteristic path length of the resting-state theta band brain network and shooting performance (r = 0.56, P < 0.0005). This study identifies potential neural mechanisms underlying successful shooting and a new method for predicting and evaluating performance based on EEG characteristics.
Collapse
Affiliation(s)
- Anmin Gong
- School of Science, Engineering University of Chinese People's Armed Police Force, China.
| | - Jianping Liu
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Fangbo Li
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Fangyi Liu
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Changhao Jiang
- Key Laboratory of Sports Performance Evaluation and Technical Analysis, Capital Institute of Physical Education, China
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, China
| |
Collapse
|
35
|
Christie S, di Fronso S, Bertollo M, Werthner P. Individual Alpha Peak Frequency in Ice Hockey Shooting Performance. Front Psychol 2017; 8:762. [PMID: 28559868 PMCID: PMC5433296 DOI: 10.3389/fpsyg.2017.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
There are several important inter- and intra-individual variations in individual alpha peak frequency (IAPF) in the cognitive domain. The rationale for the present study was to extend the research on IAPF in the cognitive domain to IAPF in the sport domain. Specifically, the purpose of the present study was twofold: (a) to explore whether baseline IAPF is related to performance in an ice hockey shooting task and (b) to explore whether a shooting task has an effect on IAPF variability. The present investigation is one of the first studies to examine links between IAPF and sport performance. Study results did not show significant changes in IAPF when comparing baseline IAPF and pre- to post-task IAPF across three performance levels. The findings support previous literature in the cognitive domain suggesting that IAPF is a stable neurophysiological marker. Future research should consider the following methodological suggestions: (a) measuring IAPF during sport performance instead of at a resting state, (b) changing the pre-performance resting baseline instructions to take into account sport-specific mental preparation,
Collapse
Affiliation(s)
- Sommer Christie
- Faculty of Kinesiology, University of Calgary, CalgaryAB, Canada
| | - Selenia di Fronso
- Behavioral Imaging and Neural Dynamics Center, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-PescaraChieti, Italy
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-PescaraChieti, Italy
| | - Penny Werthner
- Faculty of Kinesiology, University of Calgary, CalgaryAB, Canada
| |
Collapse
|
36
|
Guo Z, Li A, Yu L. "Neural Efficiency" of Athletes' Brain during Visuo-Spatial Task: An fMRI Study on Table Tennis Players. Front Behav Neurosci 2017; 11:72. [PMID: 28491026 PMCID: PMC5405064 DOI: 10.3389/fnbeh.2017.00072] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/07/2017] [Indexed: 11/28/2022] Open
Abstract
Long-term training leads experts to develop a focused and efficient organization of task-related neural networks. “Neural efficiency” hypothesis posits that neural activity is reduced in experts. Here we tested the following working hypotheses: compared to non-athletes, athletes showed lower cortical activation in task-sensitive brain areas during the processing of sports related and sports unrelated visuo-spatial tasks. To address this issue, cortical activation was examined with fMRI in 14 table tennis athletes and 14 non-athletes while performing the visuo-spatial tasks. Behavioral results showed that athletes reacted faster than non-athletes during both types of the tasks, and no accuracy difference was found between athletes and non-athletes. fMRI data showed that, athletes exhibited less brain activation than non-athletes in the bilateral middle frontal gyrus, right middle orbitofrontal area, right supplementary motor area, right paracentral lobule, right precuneus, left supramarginal gyrus, right angular gyrus, left inferior temporal gyrus, left middle temporal gyrus, bilateral lingual gyrus and left cerebellum crus. No region was significantly more activated in the athletes than in the non-athletes. These findings possibly suggest that long-standing training prompt athletes develop a focused and efficient organization of task-related neural networks, as a possible index of “neural efficiency” in athletes engaged in visuo-spatial tasks, and this functional reorganization is possibly task-specific.
Collapse
Affiliation(s)
- Zhiping Guo
- School of Kinesiology, Shanghai University of SportShanghai, China
| | - Anmin Li
- School of Kinesiology, Shanghai University of SportShanghai, China
| | - Lin Yu
- Neurocognition and Action-Biomechanics Research Group Center of Excellence-Cognitive Interaction Technology (CITEC), Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
37
|
Costanzo ME, VanMeter JW, Janelle CM, Braun A, Miller MW, Oldham J, Russell BAH, Hatfield BD. Neural Efficiency in Expert Cognitive-Motor Performers During Affective Challenge. J Mot Behav 2016; 48:573-588. [PMID: 27715496 DOI: 10.1080/00222895.2016.1161591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skilled individuals demonstrate a spatially localized or relatively lower response in brain activity characterized as neural efficiency when performing within their domain of expertise. Elite athletes are experts in their chosen sport and thus must be not only adept in the motor domain but must be resilient to performing under the stress of high-level competition. Such stability of performance suggests this population processes emotion and mental stress in an adaptive and efficient manner. This study sought to determine if athletes with a history of successful performance under circumstances of mental stress demonstrate neural efficiency during affective challenges compared to age-matched controls. Using functional magnetic resonance imaging, the blood-oxygen level-dependent response was recorded during emotional challenge induced by sport-specific and general unpleasant images. The athletes demonstrated neural efficiency in brain regions critical to emotion regulation (prefrontal cortex) and affect (insula) independently of their domain of expertise, suggesting adaptive processing of negative events and less emotional reactivity to unpleasant stimuli.
Collapse
Affiliation(s)
- Michelle E Costanzo
- a Department of Kinesiology, School of Public Health , University of Maryland at College Park , College Park , Maryland.,b Neuroscience and Cognitive Sciences Program , University of Maryland at College Park , College Park , Maryland
| | - John W VanMeter
- c Center for Functional and Molecular Imaging , Georgetown University Medical Center , Washington , DC
| | - Christopher M Janelle
- d Department of Applied Physiology and Kinesiology , University of Florida , Gainesville , Florida
| | - Allen Braun
- e Language Section , National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda , Maryland
| | - Matthew W Miller
- a Department of Kinesiology, School of Public Health , University of Maryland at College Park , College Park , Maryland.,b Neuroscience and Cognitive Sciences Program , University of Maryland at College Park , College Park , Maryland
| | - Jessica Oldham
- b Neuroscience and Cognitive Sciences Program , University of Maryland at College Park , College Park , Maryland
| | - Bartlett A H Russell
- a Department of Kinesiology, School of Public Health , University of Maryland at College Park , College Park , Maryland.,b Neuroscience and Cognitive Sciences Program , University of Maryland at College Park , College Park , Maryland.,f Center for Advanced Study of Language , University of Maryland at College Park , College Park , Maryland
| | - Bradley D Hatfield
- a Department of Kinesiology, School of Public Health , University of Maryland at College Park , College Park , Maryland.,b Neuroscience and Cognitive Sciences Program , University of Maryland at College Park , College Park , Maryland.,f Center for Advanced Study of Language , University of Maryland at College Park , College Park , Maryland
| |
Collapse
|
38
|
Call BJ, Goodridge W, Villanueva I, Wan N, Jordan K. Utilizing Electroencephalography Measurements for Comparison of Task-Specific Neural Efficiencies: Spatial Intelligence Tasks. J Vis Exp 2016. [PMID: 27584838 DOI: 10.3791/53327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Spatial intelligence is often linked to success in engineering education and engineering professions. The use of electroencephalography enables comparative calculation of individuals' neural efficiency as they perform successive tasks requiring spatial ability to derive solutions. Neural efficiency here is defined as having less beta activation, and therefore expending fewer neural resources, to perform a task in comparison to other groups or other tasks. For inter-task comparisons of tasks with similar durations, these measurements may enable a comparison of task type difficulty. For intra-participant and inter-participant comparisons, these measurements provide potential insight into the participant's level of spatial ability and different engineering problem solving tasks. Performance on the selected tasks can be analyzed and correlated with beta activities. This work presents a detailed research protocol studying the neural efficiency of students engaged in the solving of typical spatial ability and Statics problems. Students completed problems specific to the Mental Cutting Test (MCT), Purdue Spatial Visualization test of Rotations (PSVT:R), and Statics. While engaged in solving these problems, participants' brain waves were measured with EEG allowing data to be collected regarding alpha and beta brain wave activation and use. The work looks to correlate functional performance on pure spatial tasks with spatially intensive engineering tasks to identify the pathways to successful performance in engineering and the resulting improvements in engineering education that may follow.
Collapse
Affiliation(s)
| | - Wade Goodridge
- Department of Engineering Education, Utah State University;
| | | | | | | |
Collapse
|
39
|
Schulkin J. Evolutionary Basis of Human Running and Its Impact on Neural Function. Front Syst Neurosci 2016; 10:59. [PMID: 27462208 PMCID: PMC4939291 DOI: 10.3389/fnsys.2016.00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
Running is not unique to humans, but it is seemingly a basic human capacity. This article addresses the evolutionary origins of humans running long distances, the basic physical capability of running, and the neurogenesis of aerobic fitness. This article more specifically speaks to the conditions that set the stage for the act of running, and then looks at brain expression, and longer-term consequences of running within a context of specific morphological features and diverse information molecules that participate in our capacity for running and sport. While causal factors are not known, we do know that physiological factors are involved in running and underlie neural function. Multiple themes about running are discussed in this article, including neurogenesis, neural plasticity, and memory enhancement. Aerobic exercise increases anterior hippocampus size. This expansion is linked to the improvement of memory, which reflects the improvement of learning as a function of running activity in animal studies. Higher fitness is associated with greater expansion, not only of the hippocampus, but of several other brain regions.
Collapse
Affiliation(s)
- Jay Schulkin
- Department of Neuroscience, Georgetown UniversityWashington, DC, USA
| |
Collapse
|
40
|
Bertollo M, di Fronso S, Filho E, Conforto S, Schmid M, Bortoli L, Comani S, Robazza C. Proficient brain for optimal performance: the MAP model perspective. PeerJ 2016; 4:e2082. [PMID: 27257557 PMCID: PMC4888308 DOI: 10.7717/peerj.2082] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/28/2016] [Indexed: 11/20/2022] Open
Abstract
Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.
Collapse
Affiliation(s)
- Maurizio Bertollo
- BIND-Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Selenia di Fronso
- BIND-Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Edson Filho
- BIND-Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; School of Psychology, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Silvia Conforto
- Department of Engineering, Roma Tre University , Rome , Italy
| | - Maurizio Schmid
- Department of Engineering, Roma Tre University , Rome , Italy
| | - Laura Bortoli
- BIND-Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Silvia Comani
- BIND-Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Claudio Robazza
- BIND-Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
41
|
Sanchez-Lopez J, Silva-Pereyra J, Fernandez T. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources. PeerJ 2016; 4:e1614. [PMID: 26855865 PMCID: PMC4741076 DOI: 10.7717/peerj.1614] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/31/2015] [Indexed: 11/20/2022] Open
Abstract
Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes. Discussion. These results are supported by previous findings regarding activation of neural structures that underlie sustained attention. Our findings may indicate a better-controlled attention in skilled athletes, which suggests that expertise can improve effectiveness in allocation of attentional resources during the first stages of cognitive processing during combat.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico , Juriquilla, Queretaro , Mexico
| | - Juan Silva-Pereyra
- Unidad de Investigacion Interdisciplinaria en Ciencias de la Salud y la Educacion, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico , Tlalnepantla, Estado de Mexico , Mexico
| | - Thalia Fernandez
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico , Juriquilla, Queretaro , Mexico
| |
Collapse
|
42
|
The Athlete's Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise. Neural Plast 2015; 2016:4583674. [PMID: 26819767 PMCID: PMC4706966 DOI: 10.1155/2016/4583674] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022] Open
Abstract
The “neural efficiency” hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n = 14; 55.6 ± 2.8 mL/min/kg) and lower (LOW; n = 15; 46.4 ± 4.1 mL/min/kg) maximal oxygen consumption (VO2MAX). Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F = 12.04; p = 0.002), as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p ≤ 0.018) and the exercise condition (p ≤ 0.025). The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes.
Collapse
|
43
|
Stokić M, Milovanović D, Ljubisavljević MR, Nenadović V, Čukić M. Memory load effect in auditory-verbal short-term memory task: EEG fractal and spectral analysis. Exp Brain Res 2015; 233:3023-38. [PMID: 26169106 DOI: 10.1007/s00221-015-4372-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
The objective of this preliminary study was to quantify changes in complexity of EEG using fractal dimension (FD) alongside linear methods of spectral power, event-related spectral perturbations, coherence, and source localization of EEG generators for theta (4-7 Hz), alpha (8-12 Hz), and beta (13-23 Hz) frequency bands due to a memory load effect in an auditory-verbal short-term memory (AVSTM) task for words. We examined 20 healthy individuals using the Sternberg's paradigm with increasing memory load (three, five, and seven words). The stimuli were four-letter words. Artifact-free 5-s EEG segments during retention period were analyzed. The most significant finding was the increase in FD with the increase in memory load in temporal regions T3 and T4, and in parietal region Pz, while decrease in FD with increase in memory load was registered in frontal midline region Fz. Results point to increase in frontal midline (Fz) theta spectral power, decrease in alpha spectral power in parietal region-Pz, and increase in beta spectral power in T3 and T4 region with increase in memory load. Decrease in theta coherence within right hemisphere due to memory load was obtained. Alpha coherence increased in posterior regions with anterior decrease. Beta coherence increased in fronto-temporal regions. Source localization delineated theta activity increase in frontal midline region, alpha decrease in superior parietal region, and beta increase in superior temporal gyrus with increase in memory load. In conclusion, FD as a nonlinear measure may serve as a sensitive index for quantifying dynamical changes in EEG signals during AVSTM tasks.
Collapse
Affiliation(s)
- Miodrag Stokić
- Life Activities Advancement Center, Gospodar Jovanova 35, 11 000, Belgrade, Serbia. .,Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia.
| | - Dragan Milovanović
- School of Electrical Engineering, University of Belgrade, Kralja Aleksandra 73, Belgrade, Serbia.
| | - Miloš R Ljubisavljević
- College of Medicine and Health Sciences, UAE University, P. O. Box 17666, Al Ain, United Arab Emirates.
| | - Vanja Nenadović
- Life Activities Advancement Center, Gospodar Jovanova 35, 11 000, Belgrade, Serbia. .,Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia.
| | - Milena Čukić
- Biomedical Center, Torlak Institute, Vojvode Stepe 458, 11 000, Belgrade, Serbia.
| |
Collapse
|
44
|
Ludyga S, Gronwald T, Hottenrott K. Effects of high vs. low cadence training on cyclists' brain cortical activity during exercise. J Sci Med Sport 2015; 19:342-7. [PMID: 25912908 DOI: 10.1016/j.jsams.2015.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES As brain cortical activity depends on cadence, exercise at different pedaling frequencies could provide efficient stimuli for functional adaptations of the brain. Therefore, the purpose of the study was to investigate the effects of cadence-specific training on brain cortical activity as well as endurance performance. DESIGN Randomized, controlled experimental trial in a repeated measure design. METHODS Male (n=24) and female (n=12) cyclists were randomly assigned to either a high cadence group (HCT), a low cadence group (LCT) or a control group (CON) for a 4 week intervention period. All groups performed 4h of basic endurance training per week. Additionally, HCT and LCT completed four cadence-specific 60min sessions weekly. At baseline and after 4 weeks subjects performed an incremental test with spirometry as well as an interval session (constant load; varying cadences) with continuous recording of electroencephalographic (EEG) rhythms. RESULTS In contrast to CON, HCT and LCT elicited similar improvements of maximal oxygen uptake and power at the individual anaerobic threshold. Additionally, there was a reduction of alpha-, beta- and overall-power spectral density in HCT, which was more pronounced at high cadences. Improvements of endurance performance were correlated with reductions of EEG spectral power at 90 and 120rpm. CONCLUSIONS Whereas high and low cadence training elicit similar improvements in endurance performance, brain cortical activity is especially sensitive to high cadence training. Its reduction can be interpreted in the sense of the neural efficiency hypothesis and might as well influence the sensation of central fatigue positively.
Collapse
Affiliation(s)
- Sebastian Ludyga
- Department of Sport, Exercise and Health, University of Basel, Switzerland; Institute of Performance Diagnostics and Health Promotion, Martin-Luther-Universität Halle-Wittenberg, Germany.
| | - Thomas Gronwald
- Institute of Performance Diagnostics and Health Promotion, Martin-Luther-Universität Halle-Wittenberg, Germany; Department of Sport Sciences, Martin-Luther University Halle-Wittenberg, Germany.
| | - Kuno Hottenrott
- Institute of Performance Diagnostics and Health Promotion, Martin-Luther-Universität Halle-Wittenberg, Germany; Department of Sport Sciences, Martin-Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
45
|
Making the case for mobile cognition: EEG and sports performance. Neurosci Biobehav Rev 2015; 52:117-30. [PMID: 25735956 DOI: 10.1016/j.neubiorev.2015.02.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 01/01/2023]
Abstract
In the high stakes world of International sport even the smallest change in performance can make the difference between success and failure, leading sports professionals to become increasingly interested in the potential benefits of neuroimaging. Here we describe evidence from EEG studies that either identify neural signals associated with expertise in sport, or employ neurofeedback to improve performance. Evidence for the validity of neurofeedback as a technique for enhancing sports performance remains limited. By contrast, progress in characterizing the neural correlates of sporting behavior is clear: frequency domain studies link expert performance to changes in alpha rhythms, whilst time-domain studies link expertise in response evaluation and motor output with modulations of P300 effects and readiness potentials. Despite early promise, however, findings have had relatively little impact for sports professionals, at least in part because there has been a mismatch between lab tasks and real sporting activity. After selectively reviewing existing findings and outlining limitations, we highlight developments in mobile EEG technology that offer new opportunities for sports neuroscience.
Collapse
|
46
|
Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study. PLoS One 2014; 9:e91112. [PMID: 24621480 PMCID: PMC3951282 DOI: 10.1371/journal.pone.0091112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/03/2014] [Indexed: 12/03/2022] Open
Abstract
Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task.
Collapse
|
47
|
Effect of Pilates training on alpha rhythm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:295986. [PMID: 23861723 PMCID: PMC3703805 DOI: 10.1155/2013/295986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/26/2013] [Indexed: 11/18/2022]
Abstract
In this study, the effect of Pilates training on the brain function was investigated through five case studies. Alpha rhythm changes during the Pilates training over the different regions and the whole brain were mainly analyzed, including power spectral density and global synchronization index (GSI). It was found that the neural network of the brain was more active, and the synchronization strength reduced in the frontal and temporal regions due to the Pilates training. These results supported that the Pilates training is very beneficial for improving brain function or intelligence. These findings maybe give us some line evidence to suggest that the Pilates training is very helpful for the intervention of brain degenerative diseases and cogitative dysfunction rehabilitation.
Collapse
|
48
|
Abstract
In recent years, there has been an increasing line of research dedicated to the investigation of the default mode network (DMN) of the brain and resting state networks. However, the mental activity of the DMN has not been rigorously assessed to date. The specific aims of the current study were 2-fold: First, we sought to determine whether the current source density (CSD) levels in the DMN would correspond to other neuroimaging techniques. Second, we sought to understand the subjective mental activity of the DMN during baseline recordings. This study was conducted with 63 nonclinical participants, 34 female and 29 males with a mean age of 19.2 years (standard deviation = 2.0). The participants were recorded in 8 conditions. First, 4-minute eyes-closed baseline (ECB) and eyes-opened baseline (EOB) were obtained. The participants then completed 3 assessment instruments and 3 image conditions while the electroencephalography (EEG) was continuously recorded. Participants completed subjective reports for baselines and image conditions. These were rated by 3 independent raters and compared for reliability using a random effects model with an absolute agreement definition. The mean CSD between all conditions differed significantly, in many but not all regions of interest in the DMN. Interestingly, as suggested by other studies, the DMN appears preferential to self-relevant, self-specific, or self-perceptive processes. The reliability analyses show α for interrater agreement for ECB at .95 and EOB at .96. The subjective reports obtained from the participants regarding the mental activities employed during baseline recordings correspond to attentional and self-regulatory processes, which may also implicate the resting state or DMN as playing a direct role in the maintenance of a complex behavior (eg, being still, attending, and self-regulating). Thus, attention and self-regulation constitute the phenomenology of the resting state (DMN) in this study. The results also demonstrate that EEG CSD is a useful method to examine the DMN during concept-specific tasks to elucidate the neural activity associated with these concepts. Standardized low-resolution electromagnetic tomography (sLORETA) can localize to 5 mm(3), which is comparable to the findings in functional magnetic resonance imaging (fMRI). However, sLORETA can provide data about the difference in activity between groups, individuals, or populations which in many cases fMRI cannot provide.
Collapse
Affiliation(s)
- Rex L Cannon
- Department of Psychology, Clinical Neuroscience, Self-regulation and Biological Psychology Laboratory, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
49
|
Cannon R, Kerson C, Hampshire A. sLORETA and fMRI Detection of Medial Prefrontal Default Network Anomalies in Adult ADHD. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/10874208.2011.623093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
Babiloni C, Marzano N, Lizio R, Valenzano A, Triggiani AI, Petito A, Bellomo A, Lecce B, Mundi C, Soricelli A, Limatola C, Cibelli G, Del Percio C. Resting state cortical electroencephalographic rhythms in subjects with normal and abnormal body weight. Neuroimage 2011; 58:698-707. [PMID: 21704716 DOI: 10.1016/j.neuroimage.2011.05.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
It is well known that resting state regional cerebral blood flow is abnormal in obese when compared to normal-weight subjects but the underlying neurophysiological mechanisms are poorly known. To address this issue, we tested the hypothesis that amplitude of resting state cortical electroencephalographic (EEG) rhythms differ among underweight, normal-weight, and overweight/obese subjects as a reflection of the relationship between cortical neural synchronization and regulation of body weight. Eyes-closed resting state EEG data were recorded in 16 underweight subjects, 25 normal-weight subjects, and 18 overweight/obese subjects. All subjects were psychophysically healthy (no eating disorders or major psychopathologies). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), beta 2 (20-30Hz), and gamma (30-40Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that parietal and temporal alpha 1 sources fitted the pattern underweight>normal-weight>overweight/obese (p<0.004), whereas occipital alpha 1 sources fitted the pattern normal-weight>underweight>overweight/obese (p<0.00003). Furthermore, amplitude of the parietal, occipital, and temporal alpha 2 sources was stronger in the normal-weight subjects than in the underweight and overweight/obese subjects (p<0.0007). These results suggest that abnormal weight in healthy overweight/obese subjects is related to abnormal cortical neural synchronization at the basis of resting state alpha rhythms and fluctuation of global brain arousal.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, Bioagromed, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|