1
|
Cerasuolo M, Di Meo I, Auriemma MC, Paolisso G, Papa M, Rizzo MR. Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer's Disease. Biomolecules 2024; 14:1362. [PMID: 39595539 PMCID: PMC11591903 DOI: 10.3390/biom14111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer's disease. Research shows that while the overall lipid profile in the human brain remains quite steady throughout adulthood, specific changes occur with age, especially after the age of 50. These changes include a slow decline in total lipid content and shifts in the composition of fatty acids, particularly in glycerophospholipids and cholesterol levels, which can vary depending on the brain region. Lipid rafts play a crucial role in maintaining membrane integrity and facilitating cellular signaling. In the context of Alzheimer's disease, changes in the composition of lipid rafts have been associated with the development of the disease. For example, alterations in lipid raft composition can lead to increased accumulation of amyloid β (Aβ) peptides, contributing to neurotoxic effects. Lipid droplets store neutral lipids and are key for cellular energy metabolism. As organisms age, the dynamics of lipid droplets in the brain change, with evidence suggesting a decline in metabolic activity over time. This reduced activity may lead to an imbalance in lipid synthesis and mobilization, contributing to neurodegenerative processes. In model organisms like Drosophila, studies have shown that lipid metabolism in the brain can be influenced by diet and insulin signaling pathways, crucial for maintaining metabolic balance. The interplay between lipid metabolism, oxidative stress, and inflammation is critical in the context of aging and Alzheimer's disease. Lipid peroxidation, a consequence of oxidative stress, can lead to the formation of reactive aldehydes that further damage neurons. Inflammatory processes can also disrupt lipid metabolism, contributing to the pathology of AD. Consequently, the accumulation of oxidized lipids can affect lipid raft integrity, influencing signaling pathways involved in neuronal survival and function.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| |
Collapse
|
2
|
Díaz M, Fabelo N, Martín MV, Santos G, Ferrer I. Evidence for alterations in lipid profiles and biophysical properties of lipid rafts from spinal cord in sporadic amyotrophic lateral sclerosis. J Mol Med (Berl) 2024; 102:391-402. [PMID: 38285093 PMCID: PMC10879240 DOI: 10.1007/s00109-024-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease affecting motor neurons in the spinal cord and brainstem whose etiopathogenesis remains unclear. Recent studies have linked major neurodegenerative diseases with altered function of multimolecular lipid-protein complexes named lipid rafts. In the present study, we have isolated lipid rafts from the anterior horn of the spinal cords of controls and ALS individuals and analysed their lipid composition. We found that ALS affects levels of different fatty acids, lipid classes and related ratios and indexes. The most significant changes affected the contents of n-9/n-7 monounsaturated fatty acids and arachidonic acid, the main n-6 long-chain polyunsaturated fatty acid (LCPUFA), which were higher in ALS lipid rafts. Paralleling these findings, ALS lipid rafts lower saturates-to-unsaturates ratio compared to controls. Further, levels of cholesteryl ester (SE) and anionic-to-zwitterionic phospholipids ratio were augmented in ALS lipid rafts, while sulfatide contents were reduced. Further, regression analyses revealed augmented SE esterification to (mono)unsaturated fatty acids in ALS, but to saturates in controls. Overall, these changes indicate that lipid rafts from ALS spinal cord undergo destabilization of the lipid structure, which might impact their biophysical properties, likely leading to more fluid membranes. Indeed, estimations of membrane microviscosity confirmed less viscous membranes in ALS, as well as more mobile yet smaller lipid rafts compared to surrounding membranes. Overall, these results demonstrate that the changes in ALS lipid rafts are unrelated to oxidative stress, but to anomalies in lipid metabolism and/or lipid raft membrane biogenesis in motor neurons. KEY MESSAGES: The lipid matrix of multimolecular membrane complexes named lipid rafts are altered in human spinal cord in sporadic amyotrophic lateral sclerosis (ALS). Lipid rafts from ALS spinal cord contain higher levels of n-6 LCPUFA (but not n-3 LCPUFA), n-7/n-9 monounsaturates and lower saturates-to-unsaturates ratio. ALS lipid rafts display increased contents of cholesteryl esters, anomalous anionic-to-zwitterionic phospholipids and phospholipid remodelling and reduced sulphated and total sphingolipid levels, compared to control lipid rafts. Destabilization of the lipid structure of lipid raft affects their biophysical properties and leads to more fluid, less viscous membrane microdomains. The changes in ALS lipid rafts are unlikely related to increased oxidative stress, but to anomalies in lipid metabolism and/or raft membrane biogenesis in motor neurons.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of Sciences, University of La Laguna, Tenerife, Spain.
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, Tenerife, Spain.
| | - Noemí Fabelo
- Laboratory of Membrane Physiology and Biophysics, School of Sciences, University of La Laguna, Tenerife, Spain
| | - M Virginia Martín
- Centro Oceanográfico de Canarias (COC-IEO), Consejo Superior de Investigaciones Científicas, 38180, Santa Cruz de Tenerife, Spain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics. School of Sciences, University of La Laguna, Tenerife, Spain
| | - Isidre Ferrer
- University of Barcelona, 08907, Hospitalet de LLobregatBarcelona, Spain
| |
Collapse
|
3
|
Bigi A, Napolitano L, Vadukul DM, Chiti F, Cecchi C, Aprile FA, Cascella R. A single-domain antibody detects and neutralises toxic Aβ 42 oligomers in the Alzheimer's disease CSF. Alzheimers Res Ther 2024; 16:13. [PMID: 38238842 PMCID: PMC10795411 DOI: 10.1186/s13195-023-01361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Amyloid-β42 (Aβ42) aggregation consists of a complex chain of nucleation events producing soluble oligomeric intermediates, which are considered the major neurotoxic agents in Alzheimer's disease (AD). Cerebral lesions in the brain of AD patients start to develop 20 years before symptom onset; however, no preventive strategies, effective treatments, or specific and sensitive diagnostic tests to identify people with early-stage AD are currently available. In addition, the isolation and characterisation of neurotoxic Aβ42 oligomers are particularly difficult because of their transient and heterogeneous nature. To overcome this challenge, a rationally designed method generated a single-domain antibody (sdAb), named DesAb-O, targeting Aβ42 oligomers. METHODS We investigated the ability of DesAb-O to selectively detect preformed Aβ42 oligomers both in vitro and in cultured neuronal cells, by using dot-blot, ELISA immunoassay and super-resolution STED microscopy, and to counteract the toxicity induced by the oligomers, monitoring their interaction with neuronal membrane and the resulting mitochondrial impairment. We then applied this approach to CSF samples (CSFs) from AD patients as compared to age-matched control subjects. RESULTS DesAb-O was found to selectively detect synthetic Aβ42 oligomers both in vitro and in cultured cells, and to neutralise their associated neuronal dysfunction. DesAb-O can also identify Aβ42 oligomers present in the CSFs of AD patients with respect to healthy individuals, and completely prevent cell dysfunction induced by the administration of CSFs to neuronal cells. CONCLUSIONS Taken together, our data indicate a promising method for the improvement of an early diagnosis of AD and for the generation of novel therapeutic approaches based on sdAbs for the treatment of AD and other devastating neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Liliana Napolitano
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Devkee M Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Francesco A Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Chiu HY, Chang HT, Chan PC, Chiu PY. Cholesterol Levels, Hormone Replacement Therapy, and Incident Dementia among Older Adult Women. Nutrients 2023; 15:4481. [PMID: 37892556 PMCID: PMC10610485 DOI: 10.3390/nu15204481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies revealed that hormone replacement therapy (HRT) probably has a protective effect for preventing dementia in post-menopausal women. However, the results were still controversial. The association between cholesterol levels and incident dementia in older women is not fully understood either. We conducted a retrospective analysis on a cohort of non-demented women aged older than 50 years, which was registered in the History-based Artificial Intelligence Clinical Dementia Diagnostic System database from September 2015 to August 2021. We followed this cohort longitudinally to examine the rates of conversion to dementia. Using a Cox regression model, we investigated the impact of the quartile of total cholesterol (TC) levels on incident dementia, adjusting for age, sex, education, neuropsychiatric symptoms, neuropsychological assessments, HRT, as well as various vascular risk factors and medications. We examined a cohort of 787 participants, comprising 539 (68.5%) individuals who did not develop dementia (non-converters). Among these non-converters, 68 individuals (12.6%) were treated with HRT. By contrast, there were 248 (31.5%) who did develop dementia (converters). Among the converters, 28 individuals (11.3%) were treated with HRT. The average follow-up durations were 2.9 ± 1.5 and 3.3 ± 1.6 years for non-converters and converters, respectively. Compared to the lowest quartile of TC levels (<153), the hazard ratios (HR) for converting to dementia were 0.61, 0.58, and 0.58 for the second (153-176), third (177-201), and highest (>201) quartiles, respectively (all p < 0.05). However, the low-density lipoprotein cholesterol (LDL-C) level and HRT did not alter the rate of conversion to dementia. In conclusion, the lowest quartile of TC increased incident dementia in post-menopausal women without dementia; however, HRT did not contribute to conversion to dementia. Some studies suggest that post-menopausal women who have reduced estrogen levels might have an increased risk of Alzheimer's disease if they also have high cholesterol. Nonetheless, the evidence is inconclusive, as not all studies support this finding. The "Lower LDL-C is better" strategy for preventing cardiac vascular disease should be re-examined for the possible serial adverse effects of new onset dementia due to very low cholesterol levels.
Collapse
Affiliation(s)
- Huei-Ying Chiu
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Hsin-Te Chang
- Department of Psychology, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan;
| | - Po-Chi Chan
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Applied Mathematics, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
5
|
Goshisht MK, Tripathi N, Patra GK, Chaskar M. Organelle-targeting ratiometric fluorescent probes: design principles, detection mechanisms, bio-applications, and challenges. Chem Sci 2023; 14:5842-5871. [PMID: 37293660 PMCID: PMC10246671 DOI: 10.1039/d3sc01036h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay 2420 Nicolet Drive Green Bay WI 54311-7001 USA
- Department of Chemistry, Government Naveen College Tokapal Bastar Chhattisgarh 494442 India
| | - Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Goutam Kumar Patra
- Department of Chemistry, Faculty of Physical Sciences Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Manohar Chaskar
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| |
Collapse
|
6
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Schneider JS. GM1 Ganglioside as a Disease-Modifying Therapeutic for Parkinson's Disease: A Multi-Functional Glycosphingolipid That Targets Multiple Parkinson's Disease-Relevant Pathogenic Mechanisms. Int J Mol Sci 2023; 24:9183. [PMID: 37298133 PMCID: PMC10252733 DOI: 10.3390/ijms24119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions of patients worldwide. Many therapeutics are available for treating PD symptoms but there is no disease-modifying therapeutic that has been unequivocally shown to slow or stop the progression of the disease. There are several factors contributing to the failure of many putative disease-modifying agents in clinical trials and these include the choice of patients and clinical trial designs for disease modification trials. Perhaps more important, however, is the choice of therapeutic, which for the most part, has not taken into account the multiple and complex pathogenic mechanisms and processes involved in PD. This paper discusses some of the factors contributing to the lack of success in PD disease-modification trials, which have mostly investigated therapeutics with a singular mechanism of action directed at one of the many PD pathogenic processes, and suggests that an alternative strategy for success may be to employ multi-functional therapeutics that target multiple PD-relevant pathogenic mechanisms. Evidence is presented that the multi-functional glycosphingolipid GM1 ganglioside may be just such a therapeutic.
Collapse
Affiliation(s)
- Jay S Schneider
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Lyubchenko YL. Protein Self-Assembly at the Liquid-Surface Interface. Surface-Mediated Aggregation Catalysis. J Phys Chem B 2023; 127:1880-1889. [PMID: 36812408 DOI: 10.1021/acs.jpcb.2c09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane-liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer's and other devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
9
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
10
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
12
|
Geda O, Tábi T, Lakatos PP, Szökő É. Differential Ganglioside and Cholesterol Depletion by Various Cyclodextrin Derivatives and Their Effect on Synaptosomal Glutamate Release. Int J Mol Sci 2022; 23:ijms23169460. [PMID: 36012724 PMCID: PMC9409351 DOI: 10.3390/ijms23169460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.
Collapse
|
13
|
Kreiser RP, Wright AK, Sasser LR, Rinauro DJ, Gabriel JM, Hsu CM, Hurtado JA, McKenzie TL, Errico S, Albright JA, Richardson L, Jaffett VA, Riegner DE, Nguyen LT, LeForte K, Zasloff M, Hollows JE, Chiti F, Vendruscolo M, Limbocker R. A Brain-Permeable Aminosterol Regulates Cell Membranes to Mitigate the Toxicity of Diverse Pore-Forming Agents. ACS Chem Neurosci 2022; 13:1219-1231. [PMID: 35404569 PMCID: PMC9026273 DOI: 10.1021/acschemneuro.1c00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
![]()
The molecular composition
of the plasma membrane plays a key role
in mediating the susceptibility of cells to perturbations induced
by toxic molecules. The pharmacological regulation of the properties
of the cell membrane has therefore the potential to enhance cellular
resilience to a wide variety of chemical and biological compounds.
In this study, we investigate the ability of claramine, a blood–brain
barrier permeable small molecule in the aminosterol class, to neutralize
the toxicity of acute biological threat agents, including melittin
from honeybee venom and α-hemolysin from Staphylococcus
aureus. Our results show that claramine neutralizes
the toxicity of these pore-forming agents by preventing their interactions
with cell membranes without perturbing their structures in a detectable
manner. We thus demonstrate that the exogenous administration of an
aminosterol can tune the properties of lipid membranes and protect
cells from diverse biotoxins, including not just misfolded protein
oligomers as previously shown but also biological protein-based toxins.
Our results indicate that the investigation of regulators of the physicochemical
properties of cell membranes offers novel opportunities to develop
countermeasures against an extensive set of cytotoxic effects associated
with cell membrane disruption.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Liam R. Sasser
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Dillon J. Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Justus M. Gabriel
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Claire M. Hsu
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Jorge A. Hurtado
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Tristan L. McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Silvia Errico
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - J. Alex Albright
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Lance Richardson
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Victor A. Jaffett
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Dawn E. Riegner
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Michael Zasloff
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, District of Columbia 20010, United States
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| |
Collapse
|
14
|
Mrdenovic D, Pieta IS, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Amyloid β interaction with model cell membranes - What are the toxicity-defining properties of amyloid β? Int J Biol Macromol 2022; 200:520-531. [PMID: 35074328 DOI: 10.1016/j.ijbiomac.2022.01.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/26/2023]
Abstract
Disruption of the neuronal membrane by toxic amyloid β oligomers is hypothesized to be the major event associated with Alzheimer's disease's neurotoxicity. Misfolding of amyloid β is followed by aggregation via different pathways in which structurally different amyloid β oligomers can be formed. The respective toxic actions of these structurally diverse oligomers can vary significantly. Linking a particular toxic action to a structurally unique kind of amyloid β oligomers and resolving their toxicity-determining feature remains challenging because of their transient stability and heterogeneity. Moreover, the lipids that make up the membrane affect amyloid β oligomers' behavior, thus adding to the problem's complexity. The present review compares and analyzes the latest results to improve understanding of amyloid β oligomers' interaction with lipid bilayers.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Izabela S Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
15
|
Wnętrzak A, Chachaj-Brekiesz A, Stępniak A, Kobierski J, Dynarowicz-Latka P. Different effects of oxysterols on a model lipid raft - Langmuir monolayer study complemented with theoretical calculations. Chem Phys Lipids 2022; 244:105182. [PMID: 35182569 DOI: 10.1016/j.chemphyslip.2022.105182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
Three oxysterols (7β-hydroxycholesterol; 7β-OH, 7-ketocholesterol; 7-K and 25-hydroxycholesterol, 25-OH) differing in the site of oxidation (ring system versus chain) and kind of polar group (hydroxyl versus carbonyl) were studied in lipid raft environment using the Langmuir monolayer technique complemented with theoretical calculations. Experiments were performed for the unmodified raft system, composed of sphingomyelin (SM) and cholesterol (Chol), and in the next step the raft was modified by the incorporation of oxysterol in different proportions. In the examined three-component system (Chol:SM:oxysterol), apart from interactions between the lipid raft components, the affinity of Chol to its oxidized derivatives also plays an important role. 25-OH was found to enhance interactions between SM and Chol and thus stabilize the raft, contrary to 7β-OH and 7-K, which exterted the fluidizing effect as well as the destabilization of the raft. Different action of oxysterols on model raft was observed. 7β-OH and 7-K, which are highly potent inducers of cell dath caused raft destabilization, while 25-OH, which is the least toxic of the investigated oxysterols, was found to stabilize the raft.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Alicja Stępniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | |
Collapse
|
16
|
Homans C, Yalcin EB, Tong M, Gallucci G, Bautista D, Moriel N, de la Monte S. Therapeutic Effects of Myriocin in Experimental Alcohol-Related Neurobehavioral Dysfunction and Frontal Lobe White Matter Biochemical Pathology. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2022; 12:23-42. [PMID: 36815096 PMCID: PMC9942847 DOI: 10.4236/jbbs.2022.122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background & Objective Chronic excessive alcohol consumption causes white matter degeneration with myelin loss and impaired neuronal conductivity. Subsequent rarefaction of myelin accounts for the sustained deficits in cognition, learning, and memory. Correspondingly, chronic heavy or repeated binge alcohol exposures in humans and experimental models alter myelin lipid composition leading to build-up of ceramides which can be neurotoxic and broadly inhibitory to brain functions. Methods This study examined the effects of chronic + binge alcohol exposures (8 weeks) and intervention with myriocin, a ceramide inhibitor, on neurobehavioral functions (Open Field, Novel Object Recognition, and Morris Water Maze tests) and frontal lobe white matter myelin lipid biochemical pathology in an adult Long-Evans rat model. Results The ethanol-exposed group had significant deficits in executive functions with increased indices of anxiety and impairments in spatial learning acquisition. Myriocin partially remediated these effects of ethanol while not impacting behavior in the control group. Ethanol-fed rats had significantly smaller brains with broadly reduced expression of sulfatides and reduced expression of two of the three sphingomyelins detected in frontal white matter. Myriocin partially resolved these effects corresponding with improvements in neurobehavioral function. Conclusion Therapeutic strategies that support cerebral white matter myelin expression of sulfatide and sphingomyelin may help remediate cognitive-behavioral dysfunction following chronic heavy alcohol consumption in humans.
Collapse
Affiliation(s)
- Camilla Homans
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Gina Gallucci
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - David Bautista
- Warren Alpert Medical School of Brown University, Providence, RI, USA,Brown University, Providence, RI, USA
| | - Natalia Moriel
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne de la Monte
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Warren Alpert Medical School of Brown University, Providence, RI, USA,Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Women and Infants Hospital of Rhode Island, Providence VA Medical Center, Providence, RI, USA,
| |
Collapse
|
17
|
Lauer AA, Griebsch LV, Pilz SM, Janitschke D, Theiss EL, Reichrath J, Herr C, Beisswenger C, Bals R, Valencak TG, Portius D, Grimm HS, Hartmann T, Grimm MOW. Impact of Vitamin D 3 Deficiency on Phosphatidylcholine-/Ethanolamine, Plasmalogen-, Lyso-Phosphatidylcholine-/Ethanolamine, Carnitine- and Triacyl Glyceride-Homeostasis in Neuroblastoma Cells and Murine Brain. Biomolecules 2021; 11:1699. [PMID: 34827697 PMCID: PMC8615687 DOI: 10.3390/biom11111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Jörg Reichrath
- Department of Dermatology, Saarland University Hospital, 66421 Homburg, Germany;
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Teresa Giovanna Valencak
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Germany;
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
18
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Yahi N, Di Scala C, Chahinian H, Fantini J. Innovative treatment targeting gangliosides aimed at blocking the formation of neurotoxic α-synuclein oligomers in Parkinson's disease. Glycoconj J 2021; 39:1-11. [PMID: 34328594 DOI: 10.1007/s10719-021-10012-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disorder which exhibits many of the characteristics of a pandemic. Current therapeutic strategies are centered on the dopaminergic system, with limited efficacy, so that a treatment that has a direct impact on the underlying disease pathogenesis is urgently needed. Although α-synuclein is a privileged target for such therapies, this protein has been in the past wrongly considered as exclusively intracellular, so that the impact of paracrine neurotoxicity mechanisms in PD have been largely ignored. In this article we review the data showing that lipid rafts act as plasma membrane machineries for the formation of α-synuclein pore-like oligomers which trigger an increase of intracellular Ca2+. This Ca2+ influx is responsible for a self-sustained cascade of neurotoxic events, including mitochondrial oxidative stress, tau phosphorylation, Ca2+ release from the endoplasmic reticulum, Lewy body formation, and extracellular release of α-synuclein in exosomes. The first step of this cascade is the binding of α-synuclein to lipid raft gangliosides, suggesting that PD should be considered as both a proteinopathy and a ganglioside membrane disorder lipidopathy. Accordingly, blocking α-synuclein-ganglioside interactions should annihilate the whole neurotoxic cascade and stop disease progression. A pipeline of anti-oligomer molecules is under development, among which an in-silico designed synthetic peptide AmyP53 which is the first drug targeting gangliosides and thus able to prevent the formation of α-synuclein oligomers and all downstream neurotoxicity. These new therapeutic avenues challenge the current symptomatic approaches by finally targeting the root cause of PD through a long-awaited paradigm shift.
Collapse
Affiliation(s)
- Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, 13015, Marseille, France.
| |
Collapse
|
20
|
Ooi KLM, Vacy K, Boon WC. Fatty acids and beyond: Age and Alzheimer's disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem Int 2021; 149:105143. [PMID: 34311029 DOI: 10.1016/j.neuint.2021.105143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Lipids are essential in maintaining brain function, and lipid profiles have been reported to be altered in aged and Alzheimer's disease (AD) brains as compared to healthy mature brains. Both age and AD share common metabolic hallmarks such as increased oxidative stress and perturbed metabolic function, and age remains the most strongly correlated risk factor for AD, a neurodegenerative disease. A major accompanying pathological symptom of these conditions is cognitive impairment, which is linked with changes in lipid metabolism. Thus, nutraceuticals that affect brain lipid metabolism or lipid levels as a whole have the potential to ameliorate cognitive decline. Lipid analyses and lipidomic studies reveal changes in specific lipid types with aging and AD, which can identify potential lipid-based nutraceuticals to restore the brain to a healthy lipid phenotype. The brain lipid profile can be influenced directly with dietary administration of lipids themselves, although because of synergistic effects of nutrients it may be more useful to consider a multi-component diet rather than single nutrient supplementation. Gut microbiota also serve as a source of beneficial lipids, and the value of treatments that manipulate the composition of gut microbiome should not be ignored. Lastly, instead of direct supplementation, compounds that affect pathways involved with lipid metabolism should also be considered as a way of manipulating lipid levels to improve cognition. In this review, we briefly discuss the role of lipids in the brain, the changing lipid profile in AD, current research on lipid-based nutraceuticals and their therapeutic potential to combat cognitive impairment.
Collapse
Affiliation(s)
- Kei-Lin Murata Ooi
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia; School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
21
|
Cascella R, Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22094914. [PMID: 34066371 PMCID: PMC8124842 DOI: 10.3390/ijms22094914] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment.
Collapse
|
22
|
Cariati I, Bonanni R, Marini M, Rinaldi AM, Zarrilli B, Tancredi V, Frank C, D’Arcangelo G, Diociaiuti M. Role of Electrostatic Interactions in Calcitonin Prefibrillar Oligomer-Induced Amyloid Neurotoxicity and Protective Effect of Neuraminidase. Int J Mol Sci 2021; 22:ijms22083947. [PMID: 33920464 PMCID: PMC8070249 DOI: 10.3390/ijms22083947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 01/06/2023] Open
Abstract
Salmon calcitonin is a good model for studying amyloid behavior and neurotoxicity. Its slow aggregation rate allows the purification of low molecular weight prefibrillar oligomers, which are the most toxic species. It has been proposed that these species may cause amyloid pore formation in neuronal membranes through contact with negatively charged sialic acid residues of the ganglioside GM1. In particular, it has been proposed that an electrostatic interaction may be responsible for the initial contact between prefibrillar oligomers and GM1 contained in lipid rafts. Based on this evidence, the aim of our work was to investigate whether the neurotoxic action induced by calcitonin prefibrillar oligomers could be counteracted by treatment with neuraminidase, an enzyme that removes sialic acid residues from gangliosides. Therefore, we studied cell viability in HT22 cell lines and evaluated the effects on synaptic transmission and long-term potentiation by in vitro extracellular recordings in mouse hippocampal slices. Our results showed that treatment with neuraminidase alters the surface charges of lipid rafts, preventing interaction between the calcitonin prefibrillar oligomers and GM1, and suggesting that the enzyme, depending on the concentration used, may have a partial or total protective action in terms of cell survival and modulation of synaptic transmission.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine (Phd), Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Mario Marini
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Anna Maria Rinaldi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Beatrice Zarrilli
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
23
|
Smith LK, Babcock IW, Minamide LS, Shaw AE, Bamburg JR, Kuhn TB. Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS One 2021; 16:e0248309. [PMID: 33705493 PMCID: PMC7951892 DOI: 10.1371/journal.pone.0248309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Nearly 50% of individuals with long-term HIV infection are affected by the onset of progressive HIV-associated neurocognitive disorders (HAND). HIV infiltrates the central nervous system (CNS) early during primary infection where it establishes persistent infection in microglia (resident macrophages) and astrocytes that in turn release inflammatory cytokines, small neurotoxic mediators, and viral proteins. While the molecular mechanisms underlying pathology in HAND remain poorly understood, synaptodendritic damage has emerged as a hallmark of HIV infection of the CNS. Here, we report that the HIV viral envelope glycoprotein gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclusions (rods) in cultured mouse hippocampal neurons via a signaling pathway common to other neurodegenerative stimuli including oligomeric, soluble amyloid-β and proinflammatory cytokines. Previous studies showed that synaptic function is impaired preferentially in the distal proximity of rods within dendrites. Our studies demonstrate gp120 binding to either chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation, and signaling through this pathway requires active NADPH oxidase presumably through the formation of superoxide (O2-) and the expression of cellular prion protein (PrPC). These findings link gp120-mediated oxidative stress to the generation of rods, which may underlie early synaptic dysfunction observed in HAND.
Collapse
Affiliation(s)
- Lisa K. Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Isaac W. Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas B. Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
24
|
Choi NE, Lee JY, Park EC, Lee JH, Lee J. Recent Advances in Organelle-Targeted Fluorescent Probes. Molecules 2021; 26:E217. [PMID: 33406634 PMCID: PMC7795030 DOI: 10.3390/molecules26010217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022] Open
Abstract
Recent advances in fluorescence imaging techniques and super-resolution microscopy have extended the applications of fluorescent probes in studying various cellular processes at the molecular level. Specifically, organelle-targeted probes have been commonly used to detect cellular metabolites and transient chemical messengers with high precision and have become invaluable tools to study biochemical pathways. Moreover, several recent studies reported various labeling strategies and novel chemical scaffolds to enhance target specificity and responsiveness. In this review, we will survey the most recent reports of organelle-targeted fluorescent probes and assess their general strategies and structural features on the basis of their target organelles. We will discuss the advantages of the currently used probes and the potential challenges in their application as well as future directions.
Collapse
Affiliation(s)
| | | | | | | | - Jiyoun Lee
- Department of Next-Generation Applied Science, and Global Medical Science, Sungshin University, Seoul 01133, Korea; (N.-E.C.); (J.-Y.L.); (E.-C.P.); (J.-H.L.)
| |
Collapse
|
25
|
Assessing the DOPC-cholesterol interactions and their influence on fullerene C60 partitioning in lipid bilayers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Ditiatkovski M, Mukhamedova N, Dragoljevic D, Hoang A, Low H, Pushkarsky T, Fu Y, Carmichael I, Hill AF, Murphy AJ, Bukrinsky M, Sviridov D. Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. J Biol Chem 2020; 295:13377-13392. [PMID: 32732283 DOI: 10.1074/jbc.ra120.014642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aβ42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.
Collapse
Affiliation(s)
| | | | | | - Anh Hoang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Department of Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, Louisiana Trobe Institute for Molecular Science, Louisiana Trobe University, Bundoora, Victoria, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
27
|
Messiha BAS, Ali MRA, Khattab MM, Abo-Youssef AM. Perindopril ameliorates experimental Alzheimer's disease progression: role of amyloid β degradation, central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacology 2020; 28:1343-1364. [PMID: 32488543 DOI: 10.1007/s10787-020-00724-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
Accumulating evidence indicates that over-stimulation of angiotensin-converting enzyme 1 (ACE1) activity is associated with β-amyloid (Aβ) and phosphorylated tau (p-tau)-induced apoptosis, oxido-nitrosative neuroinflammatory stress and neurodegeneration in Alzheimer's disease (AD). Alternatively, activation of the ACE2, the metalloprotease neprilysin (Neutral Endopeptidase; NEP) and the insulin-degrading enzyme (IDE) could oppose the effects of ACE1 activation. We aim to investigate the relationship between ACE1/ACE2/NEP/IDE and amyloidogenic/hyperlipidemic-lipid raft signaling in hyperlipidemic AD model. Induction of AD was performed in ovariectomized female rats with high-fat high fructose diet (HFFD) feeding after 4 weeks following D-galactose injection (150 mg/kg). The brain-penetrating ACE1 inhibitor perindopril (0.5 mg/kg/day, p.o.) was administered on a daily basis for 30 days. Perindopril significantly decreased hippocampal expression of ACE1 and increased expression of ACE2, NEP and IDE. Perindopril markedly decreased Aβ1-42, improved lipid profile and ameliorated the lipid raft protein markers caveolin1 (CAV1) and flotillin 1 (FLOT1). This was accompanied by decreased expression of p-tau and enhancement of cholinergic neurotransmission, coupled with decreased oxido-nitrosative neuroinflammatory stress, enhancement of blood-brain barrier (BBB) functioning and lower expression of the apoptotic markers glial fibrillary acidic protein (GFAP), Bax and β-tubulin. In addition, perindopril ameliorated histopathological damage and improved learning, cognitive and recognition impairment as well as depressive behavior in Morris water maze, Y maze, novel object recognition and forced swimming tests, respectively. Conclusively, perindopril could improve cognitive defects in AD rats, at least through activation of ACE2/NEP/IDE and inhibition of ACE1 and subsequent modulation of amyloidogenic/hyperlipidemic-lipid raft signaling and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohammed R A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
28
|
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041505. [PMID: 32098382 PMCID: PMC7073164 DOI: 10.3390/ijms21041505] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids, as the basic component of cell membranes, play an important role in human health as well as brain function. The brain is highly enriched in lipids, and disruption of lipid homeostasis is related to neurologic disorders as well as neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is associated with changes in lipid composition. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were found in the early stage of AD. Genetic and environmental factors such as apolipoprotein and lipid transporter carrying status and dietary lipid content are associated with AD. Insight into the connection between lipids and AD is crucial to unraveling the metabolic aspects of this puzzling disease. Recent advances in lipid analytical methodology have led us to gain an in-depth understanding on lipids. As a result, lipidomics have becoming a hot topic of investigation in AD, in order to find biomarkers for disease prediction, diagnosis, and prevention, with the ultimate goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
| | - Yuan-Kun Tu
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - I-Ming Jou
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-4254; Fax: +886-6-275-8781
| |
Collapse
|
29
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Baranger K, van Gijsel-Bonnello M, Stephan D, Carpentier W, Rivera S, Khrestchatisky M, Gharib B, De Reggi M, Benech P. Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model. Neurotherapeutics 2019; 16:1237-1254. [PMID: 31267473 PMCID: PMC6985318 DOI: 10.1007/s13311-019-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αβ deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αβ deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αβ processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aβ pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.
Collapse
Affiliation(s)
- Kevin Baranger
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Manuel van Gijsel-Bonnello
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
- Present Address: MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre and School of Life Science - Division of Cell Signalling and Immunology, Welcome Trust Building, University of Dundee, Dundee, DD1 5EH UK
| | - Delphine Stephan
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013 Paris, France
| | - Santiago Rivera
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | | | - Bouchra Gharib
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Max De Reggi
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Philippe Benech
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
31
|
Kever L, Cherezova A, Zenin V, Negulyaev Y, Komissarchik Y, Semenova S. Downregulation of TRPV6 channel activity by cholesterol depletion in Jurkat T cell line. Cell Biol Int 2019; 43:965-975. [DOI: 10.1002/cbin.11185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Lyudmila Kever
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Alena Cherezova
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
- Department of PhysiologyMedical College of Georgia, Augusta University1120 15th Street 30912 Augusta GA USA
| | - Valery Zenin
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Yuri Negulyaev
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Yan Komissarchik
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Svetlana Semenova
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| |
Collapse
|
32
|
Schneider JS, Aras R, Williams CK, Koprich JB, Brotchie JM, Singh V. GM1 Ganglioside Modifies α-Synuclein Toxicity and is Neuroprotective in a Rat α-Synuclein Model of Parkinson's Disease. Sci Rep 2019; 9:8362. [PMID: 31182727 PMCID: PMC6557812 DOI: 10.1038/s41598-019-42847-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 11/09/2022] Open
Abstract
While GM1 may interact with α-synuclein in vitro to inhibit aggregation, the ability of GM1 to protect against α-synuclein toxicity in vivo has not been investigated. We used targeted adeno-associated viral vector (AAV) overexpression of human mutant α-synuclein (A53T) in the rat substantia nigra (SN) to produce degeneration of SN dopamine neurons, loss of striatal dopamine levels, and behavioral impairment. Some animals received daily GM1 ganglioside administration for 6 weeks, beginning 24 hours after AAV-A53T administration or delayed start GM1 administration for 5 weeks beginning 3 weeks after AAV-A53T administration. Both types of GM1 administration protected against loss of SN dopamine neurons and striatal dopamine levels, reduced α-synuclein aggregation, and delayed start administration of GM1 reversed early appearing behavioral deficits. These results extend prior positive results in MPTP models, are consistent with the results of a small clinical study of GM1 in PD patients that showed slowing of symptom progression with chronic use, and argue for the continued refinement and development of GM1 as a potential disease modifying therapy for PD.
Collapse
Affiliation(s)
- Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Radha Aras
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Courtney K Williams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James B Koprich
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Jonathan M Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
33
|
Canerina-Amaro A, Pereda D, Diaz M, Rodriguez-Barreto D, Casañas-Sánchez V, Heffer M, Garcia-Esparcia P, Ferrer I, Puertas-Avendaño R, Marin R. Differential Aggregation and Phosphorylation of Alpha Synuclein in Membrane Compartments Associated With Parkinson Disease. Front Neurosci 2019; 13:382. [PMID: 31068782 PMCID: PMC6491821 DOI: 10.3389/fnins.2019.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson’s disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.
Collapse
Affiliation(s)
- Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Diaz
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Deiene Rodriguez-Barreto
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Casañas-Sánchez
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Marija Heffer
- Department of Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
34
|
Influence of 7α-hydroxycholesterol on sphingomyelin and sphingomyelin/phosphatidylcholine films - The Langmuir monolayer study complemented with theoretical calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:861-870. [DOI: 10.1016/j.bbamem.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/29/2022]
|
35
|
Methyl-β-Cyclodextrin Impairs the Phosphorylation of the β₂ Subunit of L-Type Calcium Channels and Cytosolic Calcium Homeostasis in Mature Cerebellar Granule Neurons. Int J Mol Sci 2018; 19:ijms19113667. [PMID: 30463327 PMCID: PMC6275079 DOI: 10.3390/ijms19113667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The activation of L-type calcium channels (LTCCs) prevents cerebellar granule neurons (CGNs) from entering low-K+-induced apoptosis. In previous works, we showed that LTCCs are largely associated with caveolin-1-rich lipid rafts in the CGN plasma membrane. In this work, we show that protein kinase A (PKA) and calmodulin-dependent protein kinase II (CaMK-II) are associated with caveolin-1-rich lipid rafts of mature CGNs, and we further show that treatment with the cholesterol-trapping and lipid raft-disrupting agent methyl-β-cyclodextrin decreases the phosphorylation level of the LTCC β2 subunit and the steady-state calcium concentration in neuronal somas ([Ca2+]i) to values close to those measured in 5 mM KCl proapoptotic conditions. These effects correlate with the effects produced by a short (15 min) treatment of CGNs with H-89 and KN-93—inhibitors of PKA and CaMK-II, respectively—in 25 mM KCl medium. Moreover, only a 15 min incubation of CGNs with H-89 produces about a 90% inhibition of the calcium entry that would normally occur through LTCCs to increase [Ca2+]i upon raising the extracellular K+ from 5 to 25 mM, i.e., from proapoptotic to survival conditions. In conclusion, the results of this work suggest that caveolin-1-rich lipid rafts play a major role in the control of the PKA- and CaMK-II-induced phosphorylation level of the LTCC β2 subunit, thus preventing CGNs from entering apoptosis.
Collapse
|
36
|
Kang SJ, Kim JS, Park SM. Ubiquitin C-terminal Hydrolase L1 Regulates Lipid Raft-dependent Endocytosis. Exp Neurobiol 2018; 27:377-386. [PMID: 30429647 PMCID: PMC6221840 DOI: 10.5607/en.2018.27.5.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons, and gathering evidence indicates that UCH-L1 may play pathogenic roles in many neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (PD). Additionally, lipid rafts have attracted interest in neurodegeneration as playing a common role in many neurodegenerative diseases. In the present study, we demonstrated that UCH-L1 associates with lipid rafts as with other PD-associated gene products. In addition, UCH-L1 regulates lipid raft-dependent endocytosis and it is not dependent on the expression and degradation of caveolin-1 or flotillin-1. Finally, UCH-L1 regulates cell-to-cell transmission of α-synuclein. This study provides evidence that many PD-associated gene products share common signaling pathways to explain the pathogenesis of PD.
Collapse
Affiliation(s)
- Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jin Soo Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
37
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
38
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
39
|
Cascella R, Evangelisti E, Bigi A, Becatti M, Fiorillo C, Stefani M, Chiti F, Cecchi C. Soluble Oligomers Require a Ganglioside to Trigger Neuronal Calcium Overload. J Alzheimers Dis 2018; 60:923-938. [PMID: 28922156 DOI: 10.3233/jad-170340] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An altered distribution of membrane gangliosides (GM), including GM1, has recently been reported in the brains of Alzheimer's disease (AD) patients. Moreover, amyloid-positive synaptosomes obtained from AD brains were found to contain high-density GM1 clusters, suggesting a pathological significance of GM1 increase at presynaptic neuritic terminals in AD. Here, we show that membrane GM1 specifically recruits small soluble oligomers of the 42-residue form of amyloid-β peptide (Aβ42), with intracellular flux of Ca2+ ions in primary rat hippocampal neurons and in human neuroblastoma cells. Specific membrane proteins appear to be involved in the early and transient influx of Ca2+ ions induced by Aβ42 oligomers with high solvent-exposed hydrophobicity (A+), but not in the sustained late influx of the same oligomers and in that induced by Aβ42 oligomers with low solvent-exposed hydrophobicity (A-) in GM1-enriched cells. In addition, A+ oligomers accumulate in proximity of membrane NMDA and AMPA receptors, inducing the early and transient Ca2+ influx, although FRET shows that the interaction is not direct. These results suggest that age-dependent clustering of GM1 within neuronal membranes could induce neurodegeneration in elderly people as a consequence of an increased ability of the lipid bilayers to recruit membrane-permeabilizing oligomers. We also show that both lipid and protein components of the plasma membrane can contribute to neuronal dysfunction, thus expanding the molecular targets for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Evangelisti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
40
|
Zhang Y, Peng X, Ren H, Chu H, Li Y, Li G. Cholesterol modulating the orientation of His17 in hepatitis C virus p7 (5a) viroporin – A molecular dynamic simulation study. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, Qiao M, Nie Y, He Y, Cheng J, Dai Y, Li Y. MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget 2018; 8:24314-24326. [PMID: 28186985 PMCID: PMC5421849 DOI: 10.18632/oncotarget.15149] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Hyperphosphorylation of Tau forming neurofibrillary tangles has been considered as a crucial event in the pathogenesis of Alzheimer's disease (AD). MiR-124-3p belongs to microRNA (miRNA) family and was markedly decreased in AD, however, the functions of miR-124-3p in the pathogenesis of AD remain unknown. We observed that the expression of miR-124-3p was significantly decreased in N2a/APP695swe cells; and transfection of miR-124-3p mimics not only attenuated cell apoptosis and abnormal hyperphosphorylation of Tau protein without any changes of total Tau protein, but also increased expression levels of Caveolin-1, phosphoinositide 3-kinase (PI3K), phospho-Akt (Akt-Ser473)/Akt, phospho-glycogen synthase kinase-3 beta (GSK-3β-Ser9)/GSK-3β in N2a/APP695swe cells. We further found that miR-12-3p directly targeted Caveolin-1; miR-124-3p inhibited abnormal hyperphosphorylation of Tau by regulating Caveolin-1-PI3K/Akt/GSK3β pathway in AD. This study reveals that miR-124-3p may play a neuroprotective role in AD, which may provide new ideas and therapeutic targets for AD.
Collapse
Affiliation(s)
- Qingmei Kang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Xiang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Li
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Liang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Xiong Zhang
- Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Fanlin Zhou
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Mengyuan Qiao
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Yingling Nie
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong He
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Jingyi Cheng
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| | - Yubing Dai
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yu Li
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Center for Molecular Medicine Testing, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
42
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
43
|
Fallah MA, Gerding HR, Scheibe C, Drescher M, Karreman C, Schildknecht S, Leist M, Hauser K. Simultaneous IR-Spectroscopic Observation of α-Synuclein, Lipids, and Solvent Reveals an Alternative Membrane-Induced Oligomerization Pathway. Chembiochem 2017; 18:2312-2316. [PMID: 28980756 DOI: 10.1002/cbic.201700355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/15/2022]
Abstract
The intrinsically disordered protein α-synuclein (αS), a known pathogenic factor for Parkinson's disease, can adopt defined secondary structures when interacting with membranes or during fibrillation. The αS-lipid interaction and the implications of this process for aggregation and damage to membranes are still poorly understood. Therefore, we established a label-free infrared (IR) spectroscopic approach to allow simultaneous monitoring of αS conformation and membrane integrity. IR showed its unique sensitivity for identifying distinct β-structured aggregates. A comparative study of wild-type αS and the naturally occurring splicing variant αS Δexon3 yielded new insights into the membrane's capability for altering aggregation pathways.
Collapse
Affiliation(s)
- Mohammad A Fallah
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Hanne R Gerding
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Christian Scheibe
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Christiaan Karreman
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Marcel Leist
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
44
|
Presence of Androgen Receptor Variant in Neuronal Lipid Rafts. eNeuro 2017; 4:eN-NWR-0109-17. [PMID: 28856243 PMCID: PMC5575139 DOI: 10.1523/eneuro.0109-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Fast, nongenomic androgen actions have been described in various cell types, including neurons. However, the receptor mediating this cell membrane–initiated rapid signaling remains unknown. This study found a putative androgen receptor splice variant in a dopaminergic N27 cell line and in several brain regions (substantia nigra pars compacta, entorhinal cortex, and hippocampus) from gonadally intact and gonadectomized (young and middle-aged) male rats. This putative splice variant protein has a molecular weight of 45 kDa and lacks an N-terminal domain, indicating it is homologous to the human AR45 splice variant. Interestingly, AR45 was highly expressed in all brain regions examined. In dopaminergic neurons, AR45 is localized to plasma membrane lipid rafts, a microdomain involved in cellular signaling. Further, AR45 protein interacts with membrane-associated G proteins Gαq and Gαo. Neither age nor hormone levels altered AR45 expression in dopaminergic neurons. These results provide the first evidence of AR45 protein expression in the brain, specifically plasma membrane lipid rafts. AR45 presence in lipid rafts indicates that it may function as a membrane androgen receptor to mediate fast, nongenomic androgen actions.
Collapse
|
45
|
Hein LK, Rozaklis T, Adams MK, Hopwood JJ, Karageorgos L. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen. Mol Genet Metab 2017; 121:259-270. [PMID: 28532689 DOI: 10.1016/j.ymgme.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/16/2023]
Abstract
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration.
Collapse
Affiliation(s)
- Leanne K Hein
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Tina Rozaklis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Melissa K Adams
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Litsa Karageorgos
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
46
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
47
|
El Gaamouch F, Jing P, Xia J, Cai D. Alzheimer's Disease Risk Genes and Lipid Regulators. J Alzheimers Dis 2017; 53:15-29. [PMID: 27128373 DOI: 10.3233/jad-160169] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain lipid homeostasis plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Aggregation of amyloid-β peptide is one of the major events in AD. The complex interplay between lipids and amyloid-β accumulation has been intensively investigated. The proportions of lipid components including phospholipids, sphingolipids, and cholesterol are roughly similar across different brain regions under physiological conditions. However, disruption of brain lipid homeostasis has been described in AD and implicated in disease pathogenesis. Moreover, studies suggest that analysis of lipid composition in plasma and cerebrospinal fluid could improve our understanding of the disease development and progression, which could potentially serve as disease biomarkers and prognostic indicators for AD therapies. Here, we summarize the functional roles of AD risk genes and lipid regulators that modulate brain lipid homeostasis including different lipid species, lipid complexes, and lipid transporters, particularly their effects on amyloid processing, clearance, and aggregation, as well as neuro-toxicities that contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Farida El Gaamouch
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Jing
- The Central Hospital of Wuhan, China
| | | | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Central Hospital of Wuhan, China
| |
Collapse
|
48
|
Thomaier M, Gremer L, Dammers C, Fabig J, Neudecker P, Willbold D. High-Affinity Binding of Monomeric but Not Oligomeric Amyloid-β to Ganglioside GM1 Containing Nanodiscs. Biochemistry 2016; 55:6662-6672. [DOI: 10.1021/acs.biochem.6b00829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maren Thomaier
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina Dammers
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Judith Fabig
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Philipp Neudecker
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Dieter Willbold
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
49
|
Morin JP, Díaz-Cintra S, Bermúdez-Rattoni F, Delint-Ramírez I. Decreased levels of NMDA but not AMPA receptors in the lipid-raft fraction of 3xTg-AD model of Alzheimer's disease: Relation to Arc/Arg3.1 protein expression. Neurochem Int 2016; 100:159-163. [PMID: 27650435 DOI: 10.1016/j.neuint.2016.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
It was recently suggested that alteration in lipid raft composition in Alzheimer's disease may lead to perturbations in neurons signalosome, which may help explain the deficits observed in synaptic plasticity mechanisms and long-term memory impairments in AD models. As a first effort to address this issue, we evaluated lipid-raft contents of distinct NMDA and AMPA receptor subunits in the hippocampus of the 3xTg-AD model of Alzheimer's disease. Our results show that compared to controls, 10 months-old 3xTg-AD mice have diminished levels of NMDA receptors in rafts but not in post-synaptic density or total fractions. Additionally, the levels of GluR1 were unaltered in all the analyzed fractions. Finally, we went on to show that the diminished levels of NMDA receptors in rafts correlated with diminished global levels of Arc/Arg3.1, a synaptic protein with a central role in long-term memory formation. This study adds to our current understanding of the signaling pathways disruptions observed in current Alzheimer's disease models.
Collapse
Affiliation(s)
- Jean-Pascal Morin
- Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Mexico; Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Mexico
| | - Sofía Díaz-Cintra
- Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico
| | - Ilse Delint-Ramírez
- Departamento de Farmacología y Toxocología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Mexico.
| |
Collapse
|
50
|
Evangelisti E, Cascella R, Becatti M, Marrazza G, Dobson CM, Chiti F, Stefani M, Cecchi C. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci Rep 2016; 6:32721. [PMID: 27619987 PMCID: PMC5020652 DOI: 10.1038/srep32721] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.
Collapse
Affiliation(s)
- Elisa Evangelisti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|