1
|
Park S, Kim M, Lee DI, Lee JH, Kim S, Lee SY, Bae JW, Hwang KK, Kim DW, Cho MC, Bae DH. Successful extracorporeal membrane oxygenation treatment of catecholamine-induced cardiomyopathy-associated pheochromocytoma: a case report. Acute Crit Care 2024; 39:194-198. [PMID: 35545235 PMCID: PMC11002611 DOI: 10.4266/acc.2021.01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
The main mechanism of Takotsubo cardiomyopathy (TCM) is catecholamine-induced acute myocardial stunning. Pheochromocytoma, a catecholamine-secreting tumor, can cause several cardiovascular complications, including hypertensive crisis, myocardial infarction, toxic myocarditis, and TCM. A 29-year-old woman presented to our hospital with general weakness, vomiting, dyspnea, and chest pain. The patient was nullipara, 28 weeks' gestation, and had a cachexic morphology. Her cardiac enzyme levels were elevated and bedside echocardiography showed apical akinesia, suggesting TCM. The next day, she could not feel the fetal movement, and an emergency cesarean section was performed. After delivery, the patient experienced cardiac arrest and was transferred to the intensive care unit for cardiopulmonary resuscitation (CPR). Spontaneous circulation returned after 28 minutes of CPR, but cardiogenic shock continued, and extracorporeal membrane oxygenation (ECMO) was initiated. On the third day of ECMO maintenance, left ventricular ejection fraction improved and blood pressure stabilized. On the eighth day after ECMO insertion, it was removed. However, complications of the left leg vessels occurred, and several surgeries and interventions were performed. A left adrenal gland mass was found on computed tomography and was removed while repairing the leg vessels. Pheochromocytoma was diagnosed and left adrenalectomy was performed.
Collapse
Affiliation(s)
- Sangshin Park
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Min Kim
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Dae In Lee
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Ju-Hee Lee
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sangmin Kim
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Yeub Lee
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jang-Whan Bae
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyung-Kuk Hwang
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Dong-Woon Kim
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Myeong-Chan Cho
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Dae-Hwan Bae
- Regional Cardiovascular Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
2
|
Chen X, Wang S, Li Y, Lin C, Liu X. Assessment of the anesthetic effect of modified pentothal sodium solution on Sprague-Dawley rats. Open Life Sci 2022; 17:483-487. [PMID: 35647301 PMCID: PMC9102301 DOI: 10.1515/biol-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Clinically, pentothal sodium has been widely used for primary and general anesthesia induction. Also, it has been used to effectively inhibit convulsion. Pentothal sodium has a strong inhibitory effect on the respiratory center, excessive drug administration, and rapid dose rate that cause death of experimental animals on the respiratory depression. This study used a modified pentothal sodium solution to investigate its anesthetic effect. The pentothal sodium solution was modified based on pentothal sodium upon additions of magnesium sulfate, propylene glycol, and pure ethanol. The anesthetic effect of the modified pentothal sodium on Sprague–Dawley (SD) rats was investigated by comparing traditional pentothal sodium and ketamine; 60 SD rats were randomly divided into three groups. Each group was treated with traditional pentothal sodium, modified pentothal sodium, or ketamine, respectively, via intraperitoneal injection. The symptoms of experimental rats were observed, and onset time and anesthetic time were both recorded. The data were analyzed using statistical software. There were no significant differences in onset time and anesthetic time between the three groups. The variation of onset time and anesthetic time of the group treated with modified pentothal sodium was shorter than that of the other two groups. Furthermore, the number of anesthetic rats after the first injection was significantly higher than that of the other two groups. The modified pentothal sodium is capable of providing a stable anesthetic effect. The function and effect are much better than traditional pentothal sodium and ketamine.
Collapse
Affiliation(s)
- Xianzhen Chen
- Department of Anesthesia, Women and Children’s Hospital Affiliated to Xiamen University , 10 Zhenhai Road, Siming , Xiamen , 361001 , People’s Republic of China
| | - Shiqing Wang
- Department of Anesthesia, Women and Children’s Hospital Affiliated to Xiamen University , 10 Zhenhai Road, Siming , Xiamen , 361001 , People’s Republic of China
| | - Youjiong Li
- Department of Anesthesia, Women and Children’s Hospital Affiliated to Xiamen University , 10 Zhenhai Road, Siming , Xiamen , 361001 , People’s Republic of China
| | - Chunjin Lin
- Department of Anesthesia, Women and Children’s Hospital Affiliated to Xiamen University , 10 Zhenhai Road, Siming , Xiamen , 361001 , People’s Republic of China
| | - Xiaofang Liu
- Department of Anesthesia, Women and Children’s Hospital Affiliated to Xiamen University , 10 Zhenhai Road, Siming , Xiamen , 361001 , People’s Republic of China
| |
Collapse
|
3
|
Zhang Y, Su T, Li R, Yan Q, Zhang W, Xu G. Effect of multimodal analgesia on perioperative insulin resistance in patients with colon cancer. Indian J Cancer 2021; 58:349-354. [PMID: 34380842 DOI: 10.4103/ijc.ijc_197_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background High risk of post-surgery complications have always been related with uncontrolled blood glucose, while the relationship between blood glucose and analgesia has not been compared on radical resection of colon cancer. The aim of this study is to investigate the effects of multimodal analgesia on perioperative insulin resistance in patients undergoing radical resection of colon cancer. Methods Sixty patients with colon cancer scheduled for radical resection surgery were equally divided into two groups randomly, the control group (TAP group) received general anesthesia and the transversus abdominis plane block analgesia, and the experimental group (GEA group) received extra epidural anesthesia. The analgesic efficacy was evaluated with visual analog scale (VAS). Insulin resistance indicators like fasting plasma glucose (FPG), resistin (RESIS), fasting insulin (FINS), homeostasis model assessment (HOMA) levels, and inflammation indicator interleukin-6 (IL-6) were evaluated during the surgery. Results IL-6 increase was significant in the TAP group than that in GEA group (P < 0.01). The insulin resistance increased significantly in TAP group than that in GEA group including HOMA (P < 0.05) and FPG (P < 0.05). There was no significant difference in RESIS levels and VAS scores in the two groups. Conclusion Epidural anesthesia leads to less inflammation in radical resection of colon cancer and the insulin level and insulin resistance increased after the surgeries based on FINS and HOMA..
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Tao Su
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ruixuan Li
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qiang Yan
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Wen Zhang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Guiping Xu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
4
|
Mucke HAM. Drug Repurposing Patent Applications July-September 2020. Assay Drug Dev Technol 2021; 19:204-208. [PMID: 33606552 DOI: 10.1089/adt.2020.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
Grant AH, Terminel MA, Ramos J, Alatorre LF, Castañeda E. Electrical Stimulation Evokes Rotational Behavior In Tandem with Exocytotic-like Increases in Dopamine Measured by In Vivo Intracerebral Microdialysis. J Neurosci Methods 2020; 346:108894. [PMID: 32771372 PMCID: PMC7606747 DOI: 10.1016/j.jneumeth.2020.108894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Electrical Stimulation is a traditional tool in neuroscience and is commonly used in vivo to evoke behavior and in vitro to study neural mechanisms. In vivo intracerebral microdialysis, also a traditional technique, is used to assay neurotransmitter release. However, the combination of these techniques is highly limited to studies using anesthetized animals; therefore, evoking and measuring exocytotic neurotransmitter release in awake models is lacking. Combining these techniques in an awake animal preparation is presented here with evidence to support the mechanistic action of electrical stimulation in vivo. NEW METHODS This report presents converging evidence to validate the combination of intracerebral electrical stimulation with microdialysis as a novel procedure to study exocytotic-like dopamine release in behaving animals. RESULTS It is shown that electrical stimulation of the medial forebrain bundle can be used to evoke frequency- and intensity-dependent exocytotic-like dopamine overflow and rotational behavior that are sensitive to Na+ channel blockade and Ca++ availability. COMPARISON WITH EXISTING METHODS Studies using modern techniques to evoke neurotransmitter release, combined with in vivo intracerebral microdialysis, and measured behavioral output are scarce. In contrast, commonly used pharmacological methods often are less precise and inefficient to evoke exocytotic dopamine release and behavior. Here we demonstrate, the combination of in vivo intracerebral microdialysis with electrical stimulation as a simple approach to simultaneously assess physiologically relevant neurotransmitter 'release' and behavior. CONCLUSIONS Research that aims to understand how dopamine neurotransmission is altered in behavioral disorders can utilize this innovative combination of electrical stimulation with in vivo intracerebral microdialysis.
Collapse
Affiliation(s)
- Alice H Grant
- Department of Psychology, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, USA.
| | - Mabel A Terminel
- Department of Psychology, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, USA.
| | - Jeremiah Ramos
- Department of Psychology, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, USA.
| | - Luisa F Alatorre
- Department of Psychology, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, USA.
| | - Edward Castañeda
- Department of Psychology, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, USA; Department of Psychology, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Brain signalling systems: A target for treating type I diabetes mellitus. Brain Res Bull 2019; 152:191-201. [PMID: 31325597 DOI: 10.1016/j.brainresbull.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
From early to later stages of Type I Diabetes Mellitus (TIDM), signalling molecules including brain indolamines and protein kinases are altered significantly, and that has been implicated in the Metabolic Disorders (MD) as well as impairment of retinal, renal, neuronal and cardiovascular systems. Considerable attention has been focused to the effects of diabetes on these signalling systems. However, the exact pathophysiological mechanisms of these signals are not completely understood in TIDM, but it is likely that hyperglycemia, acidosis, and insulin resistance play significant roles. Insulin maintains normal glycemic levels and it acts by binding to its receptor, so that it activates the receptor's tyrosine kinase activity, resulting in phosphorylation of several substrates. Those substrates provide binding/interaction sites for signalling molecules, including serine/threonine kinases and indolamines. For more than two decades, our research has been focused on the mechanisms of protein kinases, CaM Kinase and Serotonin transporter mediated alterations of indolamines in TIDM. In this review, we have also discussed how discrete areas of brain respond to insulin or some of the pharmacological agents that triggers or restores these signalling molecules, and it may be useful for the treatment of specific region wise changes/disorders of diabetic brain.
Collapse
|
8
|
Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 2019; 152:143-158. [PMID: 31302238 DOI: 10.1016/j.brainresbull.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary.
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Szilvia Barsi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Benjamin Hajnal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| |
Collapse
|
9
|
Patejdl R, Gromann A, Bänsch D, Noack T. Effects of ajmaline on contraction patterns of isolated rat gastric antrum and portal vein smooth muscle strips and on neurogenic relaxations of gastric fundus. Pflugers Arch 2019; 471:995-1005. [PMID: 31044280 DOI: 10.1007/s00424-019-02279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022]
Abstract
Class-I-antiarrhythmics like ajmaline are known to alter smooth muscle function, which may cause alterations in gastrointestinal motility. The effects of ajmaline on isolated gastric and portal vein smooth muscle and the underlying mechanisms are unknown. We studied the effects of ajmaline on the contractile patterns of isolated preparations of gastric antrum and portal vein from Wistar rats. The organ bath technique was used to measure spontaneous or pharmacologically induced isometric contractions. Changes in force observed after application of ajmaline or under control conditions are reported as % of the amplitude of an initial K+-induced contraction. Electric field stimulation was used to study neurogenic relaxations of gastric fundus smooth muscle. Ajmaline increased the amplitude of spontaneous contractions of muscle strips (portal vein: control 31.1 ± 15.2%, with 100 μM ajmaline 76.6 ± 32.3%, n = 9, p < 0.01; gastric antrum: control 9.5 ± 1.6%, with 100 μM ajmaline 63.9 ± 9.96%, n = 14, p < 0.01). The frequency of spontaneous activity was reduced in portal vein, but not in gastric antrum strips. The effects of ajmaline were not blocked by tetrodotoxin, L-nitroarginine methyl ester, or atropine. Ajmaline abolished coordinated neurogenic relaxations triggered by electric field stimulation and partly reversed the inhibition of GA spontaneous activity caused by the gap junction blocker carbenoxolone. Ajmaline enhances the amplitude of spontaneous contractions in rat gastric and portal vein smooth muscle. This effect may be accompanied, but not caused by an inhibition of enteric neurotransmission. Enhanced syncytial coupling as indicated by its ability to antagonize the effects of carbenoxolone is likely to underlie the enhancement of contractility.
Collapse
Affiliation(s)
- Robert Patejdl
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany.
| | - Alina Gromann
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Dietmar Bänsch
- Department of Cardiac Electrophysiology, KMG Hospital Güstrow, Güstrow, Germany
| | - Thomas Noack
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| |
Collapse
|
10
|
Sonohata M, Doi A, Yasaka T, Uta D, Mawatari M, Yoshimura M. Noradrenaline modulates mechanically evoked responses in the rat spinal dorsal horn: an in vivo patch-clamp study. J Pain Res 2019; 12:1269-1278. [PMID: 31114307 PMCID: PMC6489873 DOI: 10.2147/jpr.s181210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: We investigated the effects of noradrenaline (NA) on physiologically evoked synaptic responses of substantia gelatinosa (SG) neurons using anesthetized animals. Methods: Male Sprague–Dawley rats (6–8 weeks, 200–300 g, n=21) were anesthetized. The lumbar spinal cord was exposed from L3 to L5; subsequently, the rats were fixed to a stereotaxic apparatus. The electrode was advanced at an angle of 30–45 degrees into the SG using a micromanipulator. We recorded excitatory post-synaptic currents (EPSC). Under these conditions, innocuous or noxious mechanical stimuli were applied to the receptive field of the ipsilateral hindlimb with or without NA, respectively. Results: NA (50 μM) pre-application induced three types of responses for pinch-evoked EPSCs. The number of neurons showing inhibition, facilitation, and no-effect was 15 (71.4%), 2 (9.5%), and 4 (19%), respectively (n=21). Pre-treatment with NA also induced three different types of responses for puff-evoked EPSC (n=21). The number of neurons showing inhibition, facilitation, and no-effect was 9 (42.9%), 9 (42.9%), and 3 (14.2%), respectively. Further, there was a significant difference in the rate distribution (inhibition, facilitation, and no change) between puff- and pinch-evoked responses. Conclusion: Our present data indicate that NA acts on noxious and innocuous mechanical transmission in the SG. Considering the distinct sensory inputs to the SG, the different actions of NA on the transmission of sensory information imply that NA exerts its analgesic effects in a manner more complicated than previously believed.
Collapse
Affiliation(s)
- Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Atsushi Doi
- Department of Physical Therapy, Kumamoto Health Science University, Kumamoto, Japan
| | - Toshiharu Yasaka
- Department of Immunology, Graduate School of Medical and Dental SciencesKagoshima University, Kagoshima, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Megumu Yoshimura
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Nakamura Hospital, Nogata, Fukuoka, Japan
| |
Collapse
|
11
|
Hunyady Á, Hajna Z, Gubányi T, Scheich B, Kemény Á, Gaszner B, Borbély É, Helyes Z. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms. Brain Res Bull 2019; 147:165-173. [PMID: 30664920 DOI: 10.1016/j.brainresbull.2019.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/15/2023]
Abstract
The Tac4 gene-derived hemokinin-1 (HK-1) is present in pain-related regions and activates the tachykinin NK1 receptor, but with binding site and signaling pathways different from Substance P (SP). NK1 receptor is involved in nociception, but our earlier data showed that it has no role in chronic neuropathic hyperalgesia, similarly to SP. Furthermore, NK1 antagonists failed in clinical trials as analgesics due to still unknown reasons. Therefore, we investigated the role of HK-1 in pain conditions of distinct mechanisms using genetically modified mice. Chronic neuropathic mechanical and cold hyperalgesia after partial sciatic nerve ligation (PSL) were determined by dynamic plantar aesthesiometry and withdrawal latency from icy water, motor coordination on the accelerating Rotarod. Peripheral nerve growth factor (NGF) production was measured by ELISA, neuronal and glia cell activation by immunohistochemistry in pain-related regions. Acute somatic and visceral chemonocifensive behaviors were assessed after intraplantar formalin or intraperitoneal acetic-acid injection, respectively. Resiniferatoxin-induced inflammatory mechanical and thermal hyperalgesia by aesthesiometry and increasing temperature hot plate. Chronic neuropathic mechanical and cold hypersensitivity were significantly decreased in HK-1 deficient mice. NGF level in the paw homogenates of intact mice were significantly lower in case of HK-1 deletion. However, it significantly increased under neuropathic condition in contrast to wildtype mice, where the higher basal concentration did not show any changes. Microglia, but not astrocyte activation was observed 14 days after PSL in the ipsilateral spinal dorsal horn of wildtype, but not HK-1-deficient mice. However, under neuropathic conditions, the number of GFAP-positive astrocytes was significantly smaller in case of HK-1 deletion. Acute visceral, but not somatic nocifensive behavior, as well as neurogenic inflammatory mechanical and thermal hypersensitivity were significantly reduced by HK-1 deficiency similarly to NK1, but not to SP deletion. We provide evidence for pro-nociceptive role of HK-1, via NK1 receptor activation in acute inflammation models, but differently from SP-mediated actions. Identification of its targets and signaling can open new directions in pain research.
Collapse
Affiliation(s)
- Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Tímea Gubányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Bálint Scheich
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; Department of Medical Biology, Medical School, University of Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| |
Collapse
|
12
|
Málly J, Stone TW, Sinkó G, Geisz N, Dinya E. Long term follow-up study of non-invasive brain stimulation (NBS) (rTMS and tDCS) in Parkinson’s disease (PD). Strong age-dependency in the effect of NBS. Brain Res Bull 2018; 142:78-87. [DOI: 10.1016/j.brainresbull.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
13
|
Thabet AA, Youssef FS, El-Shazly M, Singab ANB. Sterculia and Brachychiton: a comprehensive overview on their ethnopharmacology, biological activities, phytochemistry and the role of their gummy exudates in drug delivery. ACTA ACUST UNITED AC 2018; 70:450-474. [PMID: 29423957 DOI: 10.1111/jphp.12876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Sterculia and Brachychiton are two related genera (Malvaceae) containing more than 300 species. Most of these species are ornamental trees that are native to Australia and widely cultivated in many countries. Different members of the two genera were used by various cultures for medicinal and economical purposes. This review sheds light on the medicinal values and chemical composition of various species of these two genera. KEY FINDINGS Sterculia and Brachychiton species were used traditionally for the treatment of gastrointestinal disorders, microbial infection, skin diseases, inflammation and many other conditions. The seeds of various species were roasted and eaten by many traditional tribes. Plants from the two genera revealed their anti-inflammatory, antioxidant, antimicrobial, antidiabetic, antiulcer, insecticidal and analgesic activity. These activities may be attributed to the presence of a wide range of secondary metabolites as flavonoids, phenolic acids, coumarins, terpenoids particularly sesquiterpenes and triterpenes in addition to sterols and fatty acids. Moreover, the gummy exudates obtained from some members of these genera played an important role in different pharmaceutical dosage forms and drug-delivery systems. CONCLUSIONS More research is recommended on other species of Sterculia and Brachychiton to discover new molecular entities with potential biological and economic values.
Collapse
Affiliation(s)
- Amany A Thabet
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Végh D, Somogyi A, Bányai D, Lakatos M, Balogh M, Al-Khrasani M, Fürst S, Vizi E, Hermann P. Effects of articaine on [ 3 H]noradrenaline release from cortical and spinal cord slices prepared from normal and streptozotocin-induced diabetic rats and compared to lidocaine. Brain Res Bull 2017; 135:157-162. [DOI: 10.1016/j.brainresbull.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022]
|
15
|
Málly J, Geisz N, Dinya E. Follow up study: The influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson’s disease. Brain Res Bull 2017; 135:98-104. [DOI: 10.1016/j.brainresbull.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023]
|
16
|
Chen L, Wang X, Huang W, Ying T, Chen M, Cao J, Wang M. MicroRNA-137 and its downstream target LSD1 inversely regulate anesthetics-induced neurotoxicity in dorsal root ganglion neurons. Brain Res Bull 2017; 135:1-7. [PMID: 28899795 DOI: 10.1016/j.brainresbull.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Anesthetic reagents, such as bupivacaine (Bv), induce significant neurotoxicity in dorsal root ganglion neurons (DRGNs). In this study, we investigated the expression, function and cross-association of microRNA-137-3p (miR-137-3p) and lysine (K)-specific demethylase 1A (LSD1) in a murine model of Bv-induced neural injury in DRGNs. METHODS Murine DRGNs were culture in vitro and treated with Bv. QPCR was used to evaluate miR-137-3p expression in Bv-injured DRGNs. MiR-137-3p was genetically downregulated to evaluate its rescuing effect on Bv-induced DRGN apoptosis and neurite retraction. The association of miR-137-3p on its downstream target, LSD1 coding gene KDM1A, was evaluated by dual-luciferase activity assay and qPCR. In miR-137-3p-downregulated DRGNs, KDM1A was inhibited to evaluate its involvement in miR-137-3p-mediated modulation on Bv-induced DRGN neurotoxicity. Furthermore, KDM1A expression in Bv-injured DRGN was evaluated by qPCR, and LSD1 was overexpressed in DRGN to evaluate its direct effect on Bv-induced neurotoxicity. RESULTS MiR-137-3p was upregulated in Bv-injured DRGNs. MiR-137-3p downregulation rescued Bv-induced DRGN apoptosis and neurite retraction. LSD1 was demonstrated to be downstream to, and inversely modulated by miR-137-3p in DRGN. In Bv-injured DRGNs, LSD1 downregulation reversed miR-137-3p-downregualtion-induced neural protection. Furthermore, LSD1 upregulation directly rescued Bv-induced apoptosis and neurite retraction in DRGNs. CONCLUSIONS MiR-137-3p and its downstream target LSD1 are inversely associated to regulate anesthetics-induced neurotoxicity in DRGN. This signaling pathway may be a therapeutic candidate to reduce anesthetics-induced neurological damage in human patients.
Collapse
Affiliation(s)
- Lingyang Chen
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xiaodan Wang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Wenguang Huang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Tingting Ying
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Minjuan Chen
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Jianbin Cao
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Mingcang Wang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
17
|
Wu JR, Chen H, Yao YY, Zhang MM, Jiang K, Zhou B, Zhang DX, Wang J. Local injection to sciatic nerve of dexmedetomidine reduces pain behaviors, SGCs activation, NGF expression and sympathetic sprouting in CCI rats. Brain Res Bull 2017; 132:118-128. [DOI: 10.1016/j.brainresbull.2017.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
|
18
|
Borbély Z, Csomó BK, Kittel Á, Gerber G, Varga G, Vizi ES. Effect of rat spinal cord injury (hemisection) on the ex vivo uptake and release of [ 3 H]noradrenaline from a slice preparation. Brain Res Bull 2017; 131:150-155. [DOI: 10.1016/j.brainresbull.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
|
19
|
Liu F, Lu XW, Zhang YJ, Kou L, Song N, Wu MK, Wang M, Wang H, Shen JF. Effects of chlorogenic acid on voltage-gated potassium channels of trigeminal ganglion neurons in an inflammatory environment. Brain Res Bull 2016; 127:119-125. [DOI: 10.1016/j.brainresbull.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
|
20
|
Emam AH, Hajesfandiari N, Shahidi S, Komaki A, Ganji M, Sarihi A. Modulation of nociception by medial pre-optic area orexin a receptors and its relation with morphine in male rats. Brain Res Bull 2016; 127:141-147. [PMID: 27641968 DOI: 10.1016/j.brainresbull.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Recent studies have shown that medial pre-optic area (MPOA) of hypothalamus are involved in nociception. Orexin A (hypocretin 1) has been found to have numerous applications including pain modulation. However, the role of orexin A receptors in the MPOA on the nociception has not been yet studied. Therefore, the aim of the present study is to investigate the effect of orexin A microinjection on MPOA on the nociception transmission and morphine induced analgesia in adult male rats. METHODS Using stereotaxic surgery, a cannula was implanted at a site 1mm above the MPOA in the anesthetized rats. After the recovery period, tail-flick (TF) latency was measured as 0, 15, 30, 45 and 60min following the onset of two experimental protocols. Two experiments were carried out. Experiment 1: The male rats received intra-MPOA of 25, 100, 1000, 10000pmol/0.5μl orexin A or 0.5μl of aCSF (control, just 5min before the TF assay. Experiment 2: The aim of this experiment was to examine the effect of orexin microinjection into MPOA on morphine analgesia (3mg/kg,s.c). Morphine was administered 30min before orexin A intra-MPOA microinjection (four doses similar to experiment 1) or aCSF, then TF latency was measured. RESULTS The results indicated that microinjection of orexin A into the MPOA showed anti-nociceptive effect in a time-dependent manner. Dose response curve results also revealed that the maximum effective dose of orexin A injection into MPOA for pain inhibition is 1000pmol/0.5μl. Co-administration of systemic morphine and orexin into the MPOA has additive analgesia with different time course compared morphine or orexin alone. CONCLUSION It can be concluded that MPOA OrexinA receptors play an important role in the modulation of pain in normal and morphine treated male rats.
Collapse
Affiliation(s)
- Amir Hossein Emam
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naeimeh Hajesfandiari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maziar Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Gong SS, Li YX, Zhang MT, Du J, Ma PS, Yao WX, Zhou R, Niu Y, Sun T, Yu JQ. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain. Neurochem Res 2016; 41:3147-3159. [PMID: 27561290 DOI: 10.1007/s11064-016-2040-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/17/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapy drugs such as vincristine (VCR) can cause neuropathic pain, and there is still lack of ideal strategy to treat it. The current study was designed to investigate effect of matrine (MT) on VCR-induced neuropathic pain in animal model. VCR (75 μg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy model in mice. MT (15, 30 and 60 mg/kg, i.p.) and pregabalin (10 mg/kg, i.p.) were administered for 11 consecutive days. Various tests were performed to assess the degree of pain at different days (1, 6, 11, 16, and 21). Von Frey hair, hot plate, cold-plate and paw pressure tests were conducted to assess the degree of mechanical allodynia, thermal hyperalgesia, cold allodynia and mechanical hyperalgesia in the hind paw respectively. The electrophysiological and histopathological changes were also analyzed. Furthermore, tissue malondialdehyde (MDA), total antioxidant capacity (T-AOC),superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total calcium (TCA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) were measured to investigate possible involvement of MT in inflammation and oxidative stress. Administration of MT attenuated the VCR-induced behavioral alterations as well as electrophysiological and histopathological changes in a dose dependent manner. Further, MT also attenuated the VCR-induced oxidative stress (MDA, T-AOC, GSH-Px, SOD and TCA) and inflammation (MPO, TNF-α, IL-6 and IL-10). Taken together, MT ameliorated VCR-induced painful neuropathy, which might be attributed to neuroprotective effects by subsequent reduction in oxidative stress and anti-inflammatory actions.
Collapse
Affiliation(s)
- Shuai-Shuai Gong
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Meng-Ting Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Peng-Sheng Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Wan-Xia Yao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
22
|
Yang Y, Zhang Z, Guan J, Liu J, Ma P, Gu K, Zhao J, Yang G, Song T. Administrations of thalidomide into the rostral ventromedial medulla alleviates painful diabetic neuropathy in Zucker diabetic fatty rats. Brain Res Bull 2016; 125:144-51. [DOI: 10.1016/j.brainresbull.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023]
|