1
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
2
|
Kong CH, Park K, Kim DY, Kim JY, Kang WC, Jeon M, Min JW, Lee WH, Jung SY, Ryu JH. Effects of oleanolic acid and ursolic acid on depression-like behaviors induced by maternal separation in mice. Eur J Pharmacol 2023; 956:175954. [PMID: 37541369 DOI: 10.1016/j.ejphar.2023.175954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
4
|
Hsu TW, Chu CS, Ching PY, Chen GW, Pan CC. The efficacy and tolerability of memantine for depressive symptoms in major mental diseases: A systematic review and updated meta-analysis of double-blind randomized controlled trials. J Affect Disord 2022; 306:182-189. [PMID: 35331821 DOI: 10.1016/j.jad.2022.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To date, there is limited evidence on the antidepressant effects of memantine in patients with major mental diseases. We conducted a systematic review and meta-analysis to assess the efficacy of memantine in such populations. METHODS A literature search was performed for randomized controlled trials (RCTs) from the date of their inception until September 28, 2021, using PubMed, Medline, Embase, and the Cochrane Library. Changes in depression scores were the primary outcome. The response rate and remission rate to the treatment were secondary outcomes. We also assessed the dropout rate for tolerance. RESULTS Eleven double-blind RCTs were included with 899 participants. Memantine significantly reduced depressive symptom scores compared with the control group (k = 11, n = 899, Hedges' g = -0.17, 95% confidence interval [CI] = -0.30 to -0.04, p = 0.009) with a small effect size. For secondary outcomes, memantine did not show a significant effect on response rate nor remission rate. In the subgroup analysis, memantine significantly reduced depressive symptom scores in patients with mood disorders (k = 8, n = 673, Hedges' g = -0.17, 95% CI = -0.32 to -0.01, p = 0.035) with a small effect size, but not in patients with schizophrenia. CONCLUSION The present meta-analysis indicates that memantine effectively alleviates depressive symptoms in patients with mood disorders with a small effect size. Furthermore, memantine is well-tolerated and acceptable.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Non-invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pao-Yuan Ching
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Guan-Wei Chen
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Chuan Pan
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Schroder JD, de Araújo JB, de Oliveira T, de Moura AB, Fries GR, Quevedo J, Réus GZ, Ignácio ZM. Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications. Rev Neurosci 2021; 33:227-255. [PMID: 34388328 DOI: 10.1515/revneuro-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.
Collapse
Affiliation(s)
- Jessica Daniela Schroder
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Julia Beatrice de Araújo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Airam Barbosa de Moura
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Gabriel Rodrigo Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| |
Collapse
|
6
|
Krzystanek M, Surma S, Pałasz A, Romańczyk M, Krysta K. Possible Antidepressant Effects of Memantine-Systematic Review with a Case Study. Pharmaceuticals (Basel) 2021; 14:ph14050481. [PMID: 34070216 PMCID: PMC8158771 DOI: 10.3390/ph14050481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of bipolar depression is hampered by the inadequate efficacy of antidepressants, moderate effect of mood stabilizers, and the side effects of some second-generation antipsychotics. There is limited evidence to date regarding the antidepressant effects of memantine in bipolar depression. The aim of the article was to provide a short review of preclinical and clinical studies on the antidepressant effect of memantine, and to present the case of a bipolar depression patient successfully treated with memantine. The described patient with bipolar disorder was unsuccessfully treated with two mood stabilizers. The addition of memantine at a dose of 20 mg/d to the treatment with lamotrigine and valproic acid resulted in a reduction in the severity of depression measured on the HDRS-17 scale by 35%, and by 47.1% after 7 weeks. The discussion presents experimental evidence for the antidepressant effect of memantine, as well as data from clinical trials in recurrent and bipolar depression. The presented case is the second report in the medical literature showing the antidepressant effect of memantine as an add-on treatment for bipolar depression. The described case and literature analysis indicate that memantine may be an effective and safe method of augmentation of mood stabilizing therapy in bipolar depression.
Collapse
Affiliation(s)
- Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Clinic of Psychiatric Rehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland; (S.S.); (M.R.); (K.K.)
- Correspondence: or ; Tel.: +48-693-281-021; Fax: +48-322-059-260
| | - Stanisław Surma
- Department of Psychiatry and Psychotherapy, Clinic of Psychiatric Rehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland; (S.S.); (M.R.); (K.K.)
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Monika Romańczyk
- Department of Psychiatry and Psychotherapy, Clinic of Psychiatric Rehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland; (S.S.); (M.R.); (K.K.)
| | - Krzysztof Krysta
- Department of Psychiatry and Psychotherapy, Clinic of Psychiatric Rehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland; (S.S.); (M.R.); (K.K.)
| |
Collapse
|
7
|
Memantine in neurological disorders - schizophrenia and depression. J Mol Med (Berl) 2021; 99:327-334. [PMID: 33447926 PMCID: PMC7900025 DOI: 10.1007/s00109-020-01982-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Memantine is used in Alzheimer's disease treatment as a non-competitive modern-affinity strong voltage-dependent N-methyl-D-aspartate receptor antagonist. The fundamental role of these receptors is to bind glutamate: the main excitatory neurotransmitter in the brain, believed to play a crucial role in neuronal plasticity and learning mechanisms. Glutamate transmission plays an important role in all internal CNS structures and maintains the physiological state of the brain. Excessive glutamate transmission can lead to enlarged calcium ion current which may cause neurotoxicity; however, insufficient transmission can drastically alter the information flow in neurons and the brain, potentially causing schizophrenia-like symptoms by replacing lost information with completely new stimuli. Hence, it is possible that the modulation of NMDA activity may give rise to pathophysiological states. Available literature and clinical trials indicate that memantine is well tolerated by patients, with very few and light side effects. There is a belief that memantine may also benefit other conditions such as schizophrenia and depression.
Collapse
|
8
|
Combined treatment with escitalopram and memantine increases gray matter volume and cortical thickness compared to escitalopram and placebo in a pilot study of geriatric depression. J Affect Disord 2020; 274:464-470. [PMID: 32663977 PMCID: PMC7368564 DOI: 10.1016/j.jad.2020.05.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Geriatric depression with subjective cognitive complaints increases the risk of Alzheimer's Disease (AD). Memantine is a cognitive enhancer used to treat AD. In a 6-month double-blind randomized placebo-controlled trial of escitalopram and memantine (ESC/MEM), ESC/MEM improved cognition at 12 month in geriatric depression (NCT01902004). We now investigated structural neuroplastic changes at 3 months. METHODS Forty-one older depressed adults (mean age=70.43, SD=7.33, 26 female) were randomized to receive ESC/MEM or ESC/PBO. Mood scores (Hamilton Depression Rating Scale, HAMD) and high-resolution structural T1-weighted images were acquired at baseline and 3 months. Freesurfer 6.0 for image processing and General Linear Models was used to examine group differences in symmetrized percent change gray matter volume (GMV) and cortical thickness, controlling for age and intracranial volume. Nonparametric tests were used to investigate group differences in mood and subcortical volume change. RESULTS Among 27 completers (ESC/MEM n = 13; ESC/PBO n = 14), 62% achieved remission (HAMD≤6) with ESC/MEM and 43% with ESC/PBO (Fisher's exact p=.45). Change in HAMD did not differ between groups (F(1,23)=0.14, p=.7). GMV and thickness increased more with ESC/MEM than with ESC/PBO in the left middle and inferior temporal lobe, right medial, and lateral orbito-frontal cortex (OFC). LIMITATIONS included small sample size, dropout, and the lack of cognitive data at 3 months. CONCLUSIONS Although significant group differences in mood improvement were not observed, ESC/MEM resulted in increased GMV and cortical thickness in several brain regions compared to placebo. Larger longitudinal clinical trials can further examine the neuroprotective effect of memantine in geriatric depression.
Collapse
|
9
|
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease. Life Sci 2020; 257:118020. [PMID: 32603820 DOI: 10.1016/j.lfs.2020.118020] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. β-amyloid peptide (Aβ) is currently assumed to be the main cause of synaptic dysfunction and cognitive impairments in AD, but the molecular signaling pathways underlying its neurotoxic consequences have not yet been completely explored. Additional investigations regarding these pathways will contribute to development of new therapeutic targets. In context, developing evidence suggest that Aβ decreases brain-derived neurotrophic factor (BDNF) mostly by lowering phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) protein. In fact, it has been observed that brain or serum levels of BDNF appear to be beneficial markers for cognitive condition. In addition, the participation of transcription mediated by CREB has been widely analyzed in the memory process and AD development. Designing pharmacologic or genetic therapeutic approaches based on the targeting of CREB-BDNF signaling could be a promising treatment potential for AD. In this review, we summarize data demonstrating the role of CREB-BDNF signaling pathway in cognitive status and mediation of Aβ toxicity in AD. Finally, we also focus on the developing intervention methods for improvement of cognitive decline in AD based on targeting of CREB-BDNF pathway.
Collapse
Affiliation(s)
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ewa Kucharska
- Jesuit University Ignatianum in Krakow, Faculty of Education, Institute of Educational Sciences, Poland
| | - Josiane Budni
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Yong-Ku Kim
- Departments of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Yang Y, Song Y, Zhang X, Zhao W, Ma T, Liu Y, Ma P, Zhao Y, Zhang H. Ketamine relieves depression-like behaviors induced by chronic postsurgical pain in rats through anti-inflammatory, anti-oxidant effects and regulating BDNF expression. Psychopharmacology (Berl) 2020; 237:1657-1669. [PMID: 32125485 DOI: 10.1007/s00213-020-05490-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Clinically, chronic postsurgical pain (CPSP) is very common. Many CPSP patients may experience depression. Thus far, little is known about the mechanism of the comorbidity of CPSP and depression. Ketamine has been confirmed to possess analgesic and rapid antidepressant effects, but it is unclear whether ketamine can relieve the comorbidity of CPSP and depression. OBJECTIVES The present study evaluated the effects of ketamine in rats with the comorbidity of CPSP and depression. METHODS We induced CPSP in rats by thoracotomy and screened for rats with or without depression-like phenotype by hierarchical cluster analysis based on the results of depression-related behavioral experiments. Subsequently, rats were intraperitoneally injected with ketamine (20 mg/kg) and were evaluated by mechanical withdrawal threshold, cold hyperalgesia test, sucrose preference test, forced swimming test, and open field test. The inflammatory-related cytokines (IL-1, IL-6, TNF-α, nuclear factor-kappaB), oxidative stress parameters (superoxide dismutase, malondialdehyde, glutathione, catalase), and brain-derived neurotrophic factor (BDNF) in rat hippocampus were detected. RESULTS In the hippocampus of rats with the comorbidity of CPSP and depression, IL-1, IL-6, TNF-α, nuclear factor-kappaB, and malondialdehyde were significantly increased, while superoxide dismutase, glutathione, catalase, and BDNF were significantly decreased. Ketamine relieved depression but did not attenuate hyperalgesia in CPSP rats. Additionally, ketamine reduced proinflammatory cytokines, inhibited oxidative stress, and elevated BDNF levels in rat hippocampus. CONCLUSIONS Ketamine can rapidly relieve CPSP-induced depression in rats, which may be related to the reduction of proinflammatory cytokines, regulating oxidative stress and increasing BDNF in the hippocampus.
Collapse
Affiliation(s)
- Yitian Yang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Yuxiang Song
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Weixing Zhao
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Tao Ma
- Department of Anesthesiology, Rocket Army Characteristic Medical Center, Beijing, 100088, China
| | - Yi Liu
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Penglei Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Yifan Zhao
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, Beijing, 100037, China
| | - Hong Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
11
|
SafialHosseini Z, Bigdeli M, Khaksar S, Aliaghaei A. Allograft of Sertoli Cell Transplantation in Combination with Memantine Alleviates Ischemia-Induced Tissue Damages in An Animal Model of Rat. CELL JOURNAL 2019; 22:334-343. [PMID: 31863659 PMCID: PMC6947000 DOI: 10.22074/cellj.2020.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/08/2019] [Indexed: 11/04/2022]
Abstract
Objective Brain ischemia is the most common disease in the world caused by the disruption of the blood supply of
brain tissue. Cell therapy is one of the new and effective strategies used for the prevention of brain damages. Sertoli
cells (SCs) can hide from the host immune system and secrete trophic factors. So, these cells have attracted the
attention of researchers as a therapeutic option for the treatment of neurodegenerative diseases. Also, memantine,
as a reducer of glutamate and intracellular calcium, is a suitable candidate for the treatment of cerebral ischemia. The
principal target of this research was to examine the effect of SC transplantation along with memantine on ischemic
injuries.
Materials and Methods In this experimental research, male rats were classified into five groups: sham, control, SC
transplant recipient, memantine-treated, and SCs- and memantine-treated groups. SCs were taken from another rat
tissue and injected into the right striatum region. A week after stereotaxic surgery and SCs transplantation, memantine
was injected. Administered doses were 1 mg/kg and 20 mg/kg at a 12-hour interval. One hour after the final injection,
the surgical procedures for the induction of cerebral ischemia were performed. After 24 hours, some regions of the brain
including the cortex, striatum, and Piriform cortex-amygdala (Pir-Amy) were isolated for the evaluation of neurological
deficits, infarction volume, blood-brain barrier (BBB) permeability, and cerebral edema.
Results This study shows that a combination of SCs and memantine caused a significant decrease in neurological
defects, infarction volume, the permeability of the blood-brain barrier, and edema in comparison with the control group.
Conclusion Probably, memantine and SCs transplantation reduce the damage of cerebral ischemia, through the
secretion of growth factors, anti-inflammatory cytokines, and antioxidant factors.
Collapse
Affiliation(s)
- Zeinab SafialHosseini
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammadreza Bigdeli
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran. Electronic Address: .,Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Khaksar
- Department of Herbal Science, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
12
|
Carlessi AS, Borba LA, Zugno AI, Quevedo J, Réus GZ. Gut microbiota-brain axis in depression: The role of neuroinflammation. Eur J Neurosci 2019; 53:222-235. [PMID: 31785168 DOI: 10.1111/ejn.14631] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Major depressive disorder (MDD) is a psychiatric condition that affects a large number of people in the world, and the treatment existents do not work for all individuals affected. Thus, it is believed that other systems or pathways which regulate brain networks involved in mood regulation and cognition are associated with MDD pathogenesis. Studies in humans and animal models have been shown that in MDD there are increased levels of inflammatory mediators, including cytokines and chemokines in both periphery and central nervous system (CNS). In addition, microglial activation appears to be a key event that triggers changes in signaling cascades and gene expression that would be determinant for the onset of depressive symptoms. Recent researches also point out that changes in the gut microbiota would lead to a systemic inflammation that in different ways would reach the CNS modulating inflammatory pathways and especially the microglia, which could influence responses to treatments. Moreover, pre- and probiotics have shown antidepressant responses and anti-inflammatory effects. This review will focus on studies that show the relationship of inflammation with the gut microbiota-brain axis and its relation with MDD.
Collapse
Affiliation(s)
- Anelise S Carlessi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
13
|
Réus GZ, de Moura AB, Borba LA, Abelaira HM, Quevedo J. Strategies for Treatment-Resistant Depression: Lessons Learned from Animal Models. MOLECULAR NEUROPSYCHIATRY 2019; 5:178-189. [PMID: 31768371 PMCID: PMC6873047 DOI: 10.1159/000500324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Around 300 million individuals are affected by major depressive disorder (MDD) in the world. Despite this high number of affected individuals, more than 50% of patients do not respond to antidepressants approved to treat MDD. Patients with MDD that do not respond to 2 or more first-line antidepressant treatments are considered to have treatment-resistant depression (TRD). Animal models of depression are important tools to better understand the pathophysiology of MDD as well as to help in the development of novel and fast antidepressants for TRD patients. This review will emphasize some discovery strategies for TRD from studies on animal models, including, antagonists of N-methyl-D-aspartate (NMDA) receptor (ketamine and memantine), electroconvulsive therapy (ECT), lithium, minocycline, quetiapine, and deep brain stimulation. Animal models of depression are not sufficient to represent all the traits of TRD, but they greatly aid in understanding the mechanism by which therapies that work for TRD exert antidepressant effects. Interestingly, these innovative therapies have mechanisms of action different from those of classic antidepressants. These effects are mainly related to the regulation of neurotransmitter activity, including general glutamate and increased connectivity, synaptic capacity, and neuroplasticity.
Collapse
Affiliation(s)
- Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Airam Barbosa de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Laura Araújo Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Helena Mendes Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
14
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Amen DG, Taylor DV, Meysami S, Raji CA. Deficits in Regional Cerebral Blood Flow on Brain SPECT Predict Treatment Resistant Depression. J Alzheimers Dis 2019; 63:529-538. [PMID: 29578481 DOI: 10.3233/jad-170855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depression remains an important risk factor for Alzheimer's disease, yet few neuroimaging biomarkers are available to identify treatment response in depression. OBJECTIVE To analyze and compare functional perfusion neuroimaging in persons with treatment resistant depression (TRD) compared to those experiencing full remission. METHODS A total of 951 subjects from a community psychiatry cohort were scanned with perfusion single photon emission computed tomography (SPECT) of the brain in both resting and task related settings. Of these, 78% experienced either full remission (n = 506) or partial remission (n = 237) and 11% were minimally responsive (n = 103) or non-responsive (11%. n = 106). Severity of depression symptoms were used to define these groups with changes in the Beck Depression Inventory prior to and following treatment. Voxel-based analyses of brain SPECT images from full remission compared to the worsening group was conducted with the statistical parametric mapping software, version 8 (SPM 8). Multiple comparisons were accounted for with a false discovery rate (p < 0.001). RESULTS Persons with depression that worsened following treatment had reduced cerebral perfusion compared to full remission in the multiple regions including the bilateral frontal lobes, right hippocampus, left precuneus, and cerebellar vermis. Such differences were observed on both resting and concentration SPECT scans. CONCLUSION Our findings identify imaging-based biomarkers in persons with depression related to treatment response. These findings have implications in understanding both depression to prognosis and its role as a risk factor for dementia.
Collapse
|
16
|
ω-3 and folic acid act against depressive-like behavior and oxidative damage in the brain of rats subjected to early- or late-life stress. Nutrition 2018; 53:120-133. [DOI: 10.1016/j.nut.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/14/2018] [Accepted: 03/03/2018] [Indexed: 01/26/2023]
|
17
|
Zhou XD, Shi DD, Zhang ZJ. Antidepressant and anxiolytic effects of the proprietary Chinese medicine Shexiang Baoxin pill in mice with chronic unpredictable mild stress. J Food Drug Anal 2018; 27:221-230. [PMID: 30648575 PMCID: PMC9298624 DOI: 10.1016/j.jfda.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/15/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Depression and anxiety often co-occur with cardiac diseases. The Shexiang Baoxin pill (SBP) is a proprietary Chinese medicine initially used to treat cardiac conditions. This study explored whether SBP has antidepressant and anxiolytic effects in addition to hormonal and psychotropic mechanisms. Mice underwent 6 weeks of chronic unpredictable mild stress (CUMS) to induce depression- and anxiety-like behavior. During the 6-week experiment, mice received SBP at intragastric doses of 20.25 mg/kg or 40.5 mg/kg daily. Animals were then tested for depression in sucrose preference, forced-swimming, and tail suspension paradigms, and for anxiety in open field and elevated plus maze tests. Both SBP doses significantly reduced anhedonic behavior in the sucrose preference test; the high SBP dose also increased the number of entries into the central zone of the open field. SBP-treated mice had markedly lower blood levels of corticotrophin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) than stressed mice treated with vehicle. Either low- or high-dose SBP reversed stress-induced reductions of norepinephrine (NE) and dopamine (DA) metabolites and the expression levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell-derived neurotrophic factor (GDNF) in related brain regions. These results suggest that SBP could prevent and alleviate prolonged stress-induced anhedonia and anxiety in association with its suppression of the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, modulation of brain monoamine neurotransmitter metabolism and neurotrophins. SBP may be particularly suitable for the management of depressive and anxiety disorders in patients with cardiac conditions.
Collapse
Affiliation(s)
- Xi-Dan Zhou
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dong-Dong Shi
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Valvassori SS, Borges C, Bavaresco DV, Varela RB, Resende WR, Peterle BR, Arent CO, Budni J, Quevedo J. Hypericum perforatum chronic treatment affects cognitive parameters and brain neurotrophic factor levels. ACTA ACUST UNITED AC 2018; 40:367-375. [PMID: 30110089 PMCID: PMC6899380 DOI: 10.1590/1516-4446-2017-2271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
Abstract
Objective: To evaluate the effects of Hypericum perforatum (hypericum) on cognitive behavior and neurotrophic factor levels in the brain of male and female rats. Methods: Male and female Wistar rats were treated with hypericum or water during 28 days by gavage. The animals were then subjected to the open-field test, novel object recognition and step-down inhibitory avoidance test. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-line derived neurotrophic factor (GDNF) levels were evaluated in the hippocampus and frontal cortex. Results: Hypericum impaired the acquisition of short- and long-term aversive memory in male rats, evaluated in the inhibitory avoidance test. Female rats had no immediate memory acquisition and decreased short-term memory acquisition in the inhibitory avoidance test. Hypericum also decreased the recognition index of male rats in the object recognition test. Female rats did not recognize the new object in either the short-term or the long-term memory tasks. Hypericum decreased BDNF in the hippocampus of male and female rats. Hypericum also decreased NGF in the hippocampus of female rats. Conclusions: The long-term administration of hypericum appears to cause significant cognitive impairment in rats, possibly through a reduction in the levels of neurotrophic factors. This effect was more expressive in females than in males.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Cenita Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Daniela V Bavaresco
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Roger B Varela
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Wilson R Resende
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Bruna R Peterle
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Department of Psychiatry and Behavioral Sciences, Center for Experimental Models in Psychiatry, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Lu Y, Ho CS, McIntyre RS, Wang W, Ho RC. Effects of vortioxetine and fluoxetine on the level of Brain Derived Neurotrophic Factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res Bull 2018; 142:1-7. [PMID: 29933036 DOI: 10.1016/j.brainresbull.2018.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Vortioxetine is a novel antidepressant capable of improving depressive and cognitive symptoms associated with major depressive disorder (MDD). This study established whether treatment with vortioxetine, fluoxetine or vehicle alters the modulation of brain-derived neurotrophic factor (BDNF) under the 21-day chronic unpredictable mild stress (CUMS) condition in 54 Sprague-Dawley rats. Vortioxetine mitigated the reduction in rearing behavior by CUMS in the OFT on day 7 and 21, as well as sucrose preference on day 21. Histological examination by H&E staining showed that most hippocampal neurons in the CUMS + FLU and CUMS + VOR groups were intact, although some of them demonstrated karyopyknosis. The mean optical density value of hippocampal BDNF was significantly higher in the CUMS + VOR group than the CUMS and CUMS + FLU groups. There was a trend towards a higher number of hippocampal BDNF-positive cells in the CUMS + VOR group, although it did not reach statistical significance. In conclusion, vortioxetine, but not fluoxetine, increased hippocampal BDNF levels in rats subject to CUMS.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Cyrus S Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, National University Health System, Singapore
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Toxicology and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Wei Wang
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Roger C Ho
- Department of Psychological Medicine, National University Health System, Singapore; Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore
| |
Collapse
|
20
|
Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress. Pharmacol Rep 2018; 70:600-606. [DOI: 10.1016/j.pharep.2017.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 01/20/2023]
|
21
|
Wang C, Gan D, Wu J, Liao M, Liao X, Ai W. Honokiol Exerts Antidepressant Effects in Rats Exposed to Chronic Unpredictable Mild Stress by Regulating Brain Derived Neurotrophic Factor Level and Hypothalamus-Pituitary-Adrenal Axis Activity. Neurochem Res 2018; 43:1519-1528. [PMID: 29855846 DOI: 10.1007/s11064-018-2566-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Honokiol (HNK), the main active component of Magnolia officinalis, has shown a variety of pharmacological activities. In the present study, we measured the antidepressant-like effects of HNK in a rat model of chronic unpredictable mild stress (CUMS) and explored its possible mechanisms. The antidepressant-like effects of HNK were assessed in rats by an open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST). Then, serum levels of corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) and hippocampal brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor α (GRα) levels were assessed to explore the possible mechanisms. We identified that HNK treatment (2, 4, and 8 mg/kg) alleviated the CUMS-induced behavioural deficits. Treatment with HNK also normalized the CUMS-induced hyperactivity of the limbic hypothalamic-pituitary-adrenal (HPA) axis, as indicated by reduced CRH, ACTH and CORT serum levels. In addition, HNK increased the expression of GRα (mRNA and protein) and BDNF (mRNA and protein) in the hippocampus. These data confirmed the antidepressant-like effects of HNK, which may be related to its normalizing the function of the HPA axis and increasing the BDNF level in the hippocampus.
Collapse
Affiliation(s)
- Canmao Wang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, Guangdong, 518000, China
| | - Danna Gan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jingang Wu
- The Second People's Hospital of China Three Gorges University, Yichang, Hubei, 443000, China
| | - Minhui Liao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Xinghuan Liao
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, Guangdong, 518000, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
22
|
Hansen SN, Ipsen DH, Schou-Pedersen AM, Lykkesfeldt J, Tveden-Nyborg P. Long term Westernized diet leads to region-specific changes in brain signaling mechanisms. Neurosci Lett 2018; 676:85-91. [DOI: 10.1016/j.neulet.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
|
23
|
The role of memantine in the treatment of major depressive disorder: Clinical efficacy and mechanisms of action. Eur J Pharmacol 2018; 827:103-111. [PMID: 29551658 DOI: 10.1016/j.ejphar.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
A developing body of evidence indicates that disturbed glutamate neurotransmission especially through N-methyl-d-aspartate (NMDA) is central to the pathophysiology of major depressive disorder (MDD) and NMDA receptor antagonists have shown therapeutic potential in the MDD treatment. Memantine is an uncompetitive NMDA receptor antagonist, approved for treatment of Alzheimer's disease (AD) that in contrast to other NMDA receptor antagonists at therapeutic doses does not induce highly undesirable side effects. Neuroprotective properties and well tolerability of memantine have been attributed to its unique pharmacological features such as moderate affinity, rapid blocking kinetics and strongly voltage-dependency. In this review we summarized clinical trial evidence of antidepressant effectiveness of memantine and its mechanisms of action. Available data indicate contradictory findings relating to clinical efficacy suggesting further research is necessary in determining as to whether memantine will eventually be an advantageous therapy for MDD. Preclinical data proposed various neurobiological mechanisms underlying antidepressant-like properties of memantine that are responsible for synaptic plasticity and cell survival.
Collapse
|
24
|
Folch J, Busquets O, Ettcheto M, Sánchez-López E, Castro-Torres RD, Verdaguer E, Garcia ML, Olloquequi J, Casadesús G, Beas-Zarate C, Pelegri C, Vilaplana J, Auladell C, Camins A. Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. J Alzheimers Dis 2018; 62:1223-1240. [PMID: 29254093 PMCID: PMC5870028 DOI: 10.3233/jad-170672] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of extracellular amyloid-β protein (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. The N-Methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptor, are essential for processes like learning and memory. An excessive activation of NMDARs has been associated with neuronal loss. The discovery of extrasynaptic NMDARs provided a rational and physiological explanation between physiological and excitotoxic actions of glutamate. Memantine (MEM), an antagonist of extrasynaptic NMDAR, is currently used for the treatment of AD jointly with acetylcholinesterase inhibitors. It has been demonstrated that MEM preferentially prevents the excessive continuous extrasynaptic NMDAR disease activation and therefore prevents neuronal cell death induced by excitotoxicity without disrupting physiological synaptic activity. The problem is that MEM has shown no clear positive effects in clinical applications while, in preclinical stages, had very promising results. The data in preclinical studies suggests that MEM has a positive impact on improving AD brain neuropathology, as well as in preventing Aβ production, aggregation, or downstream neurotoxic consequences, in part through the blockade of extrasynaptic NMDAR. Thus, the focus of this review is primarily to discuss the efficacy of MEM in preclinical models of AD, consider possible combinations of this drug with others, and then evaluate possible reasons for its lack of efficacy in clinical trials. Finally, applications in other pathologies are also considered.
Collapse
Affiliation(s)
- Jaume Folch
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ruben Dario Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departamento de Biología Celular y Molecular, Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, CUCBA, México
| | - Ester Verdaguer
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Maria Luisa Garcia
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, CUCBA, México
| | - Carme Pelegri
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vilaplana
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|