1
|
He J, Xiong J, Huang Y. miR-29 as diagnostic biomarkers for tuberculosis: a systematic review and meta-analysis. Front Public Health 2024; 12:1384510. [PMID: 38807999 PMCID: PMC11130415 DOI: 10.3389/fpubh.2024.1384510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Background The timely diagnosis of tuberculosis through innovative biomarkers that do not rely on sputum samples is a primary focus for strategies aimed at eradicating tuberculosis. miR-29 is an important regulator of tuberculosis pathogenesis. Its differential expression pattern in healthy, latent, and active people who develop tuberculosis has revealed its potential as a biomarker in recent studies. Therefore, a systematic review and meta-analysis were performed for the role of miR-29 in the diagnosis of tuberculosis. Methods EMBASE, PubMed, CNKI, Web of Science, and Cochrane Library databases were searched utilizing predefined keywords for literature published from 2000 to February 2024.Included in the analysis were studies reporting on the accuracy of miR-29 in the diagnosis of tuberculosis, while articles assessing other small RNAs were not considered. All types of study designs, including case-control, cross-sectional, and cohort studies, were included, whether prospectively or retrospectively sampled, and the quality of included studies was determined utilizing the QUADAS-2 tool. Publication bias was analyzed via the construction of funnel plots. Heterogeneity among studies and summary results for specificity, sensitivity, and diagnostic odds ratio (DOR) are depicted in forest plots. Results A total of 227 studies were acquired from the various databases, and 18 articles were selected for quantitative analysis. These articles encompassed a total of 2,825 subjects, primarily sourced from the Asian region. Patient specimens, including sputum, peripheral blood mononuclear cells, cerebrospinal fluid and serum/plasma samples, were collected upon admission and during hospitalization for tuberculosis testing. miR-29a had an overall sensitivity of 82% (95% CI 77, 85%) and an overall specificity of 82% (95% CI 78, 86%) for detecting tuberculosis. DOR was 21 (95% CI 16-28), and the area under the curve was 0.89 (95% CI 0.86, 0.91). miR-29a had slightly different diagnostic efficacy in different specimens. miR-29a showed good performance in both the diagnosis of pulmonary tuberculosis and extrapulmonary tuberculosis. miR-29b and miR-29c also had a good performance in diagnosis of tuberculosis. Conclusion As can be seen from the diagnostic performance of miR-29, miR-29 can be used as a potential biomarker for the rapid detection of tuberculosis. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=461107.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Xiong
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Emergency Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuanyuan Huang
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
3
|
Barnacle JR, Davis AG, Wilkinson RJ. Recent advances in understanding the human host immune response in tuberculous meningitis. Front Immunol 2024; 14:1326651. [PMID: 38264653 PMCID: PMC10803428 DOI: 10.3389/fimmu.2023.1326651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tuberculous meningitis (TBM), the most severe form of tuberculosis, causes death in approximately 25% cases despite antibiotic therapy, and half of survivors are left with neurological disability. Mortality and morbidity are contributed to by a dysregulated immune response, and adjunctive host-directed therapies are required to modulate this response and improve outcomes. Developing such therapies relies on improved understanding of the host immune response to TBM. The historical challenges in TBM research of limited in vivo and in vitro models have been partially overcome by recent developments in proteomics, transcriptomics, and metabolomics, and the use of these technologies in nested substudies of large clinical trials. We review the current understanding of the human immune response in TBM. We begin with M. tuberculosis entry into the central nervous system (CNS), microglial infection and blood-brain and other CNS barrier dysfunction. We then outline the innate response, including the early cytokine response, role of canonical and non-canonical inflammasomes, eicosanoids and specialised pro-resolving mediators. Next, we review the adaptive response including T cells, microRNAs and B cells, followed by the role of the glutamate-GABA neurotransmitter cycle and the tryptophan pathway. We discuss host genetic immune factors, differences between adults and children, paradoxical reaction, and the impact of HIV-1 co-infection including immune reconstitution inflammatory syndrome. Promising immunomodulatory therapies, research gaps, ongoing challenges and future paths are discussed.
Collapse
Affiliation(s)
- James R. Barnacle
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Angharad G. Davis
- The Francis Crick Institute, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
4
|
Zhang X, Pan L, Zhang P, Wang L, Shen Y, Xu P, Ren Y, Huang W, Liu P, Wu Q, Li F. Single-cell analysis of the miRNA activities in tuberculous meningitis (TBM) model mice injected with the BCG vaccine. Int Immunopharmacol 2023; 124:110871. [PMID: 37708706 DOI: 10.1016/j.intimp.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Our previous study revealed the transcriptome atlas of specific cell types in tuberculous meningitis (TBM) model mice injected with the BCG vaccine via scRNA sequencing. However, the activities of miRNAs in TBM at single-cell resolution remain to be explored. METHOD Cell type-specific miRNA activities were investigated by using motif enrichment analyses (miReact) on the transcriptome data of 15 cell types. The target mRNAs of miRNAs were predicted and subjected to enrichment analysis. Furthermore, miRNAs and their target mRNAs with opposite expression trends were chosen to construct functional networks. Besides, qRT-PCR and RNA scope were performed to verify the expression level of representative miRNA. RESULTS The tSNE dimensionality reduction presented 15 cell types in TBM model mice, in which microglia and endothelial cells accounted for the majority. Target mRNAs of each cell type were predicted for verification or network construction. The immune and inflammation-related miRNA-mRNA networks of macrophages and microglia, oxidative phosphorylation-related miRNA-mRNA networks of neurons, ion and protein transport-related networks of epididymal cells, and angiogenesis-related miRNA-mRNA networks of VSMCs were constructed. The miRNA activity analysis revealed that miR-21a-3p activity was increased in microglia, macrophages, neurons and epididymal cells. The result of qRT-PCR and RNA scope indicate that miR-21a-3p was significantly higher-expressed in TBM brain tissue compared with normal brain tissue. CONCLUSION In our study, an in-depth exploration of the mRNA expression and miRNA activity of macrophages, microglia, epididymal cells, neurons and vascular smooth muscle cells during TBM progression was conducted using scRNA-Seq, which provided novel insights into the immune cell engagement in TBM patients.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yidan Shen
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Huang
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Liu
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Kelly E, Whelan SO, Harriss E, Murphy S, Pollard AJ, O' Connor D. Systematic review of host genomic biomarkers of invasive bacterial disease: Distinguishing bacterial from non-bacterial causes of acute febrile illness. EBioMedicine 2022; 81:104110. [PMID: 35792524 PMCID: PMC9256842 DOI: 10.1016/j.ebiom.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Infectious diseases play a significant role in the global burden of disease. The gold standard for the diagnosis of bacterial infection, bacterial culture, can lead to diagnostic delays and inappropriate antibiotic use. The advent of high- throughput technologies has led to the discovery of host-based genomic biomarkers of infection, capable of differentiating bacterial from other causes of infection, but few have achieved validation for use in a clinical setting. Methods A systematic review was performed. PubMed/Ovid Medline, Ovid Embase and Scopus databases were searched for relevant studies from inception up to 30/03/2022 with forward and backward citation searching of key references. Studies assessing the diagnostic performance of human host genomic biomarkers of bacterial infection were included. Study selection and assessment of quality were conducted by two independent reviewers. A meta-analysis was undertaken using a diagnostic random-effects model. The review was registered with PROSPERO (ID: CRD42021208462). Findings Seventy-two studies evaluating the performance of 116 biomarkers in 16,216 patients were included. Forty-six studies examined TB-specific biomarker performance and twenty-four studies assessed biomarker performance in a paediatric population. The results of pooled sensitivity, specificity, negative and positive likelihood ratio, and diagnostic odds ratio of genomic biomarkers of bacterial infection were 0.80 (95% CI 0.78 to 0.82), 0.86 (95% CI 0.84 to 0.88), 0.18 (95% CI 0.16 to 0.21), 5.5 (95% CI 4.9 to 6.3), 30.1 (95% CI 24 to 37), respectively. Significant between-study heterogeneity (I2 77%) was present. Interpretation Host derived genomic biomarkers show significant potential for clinical use as diagnostic tests of bacterial infection however, further validation and attention to test platform is warranted before clinical implementation can be achieved. Funding No funding received.
Collapse
Affiliation(s)
- Eimear Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford. UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Seán Olann Whelan
- Department of Clinical Microbiology, Galway University Hospital, Galway, Ireland
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford
| | - Sarah Murphy
- Department of Paediatrics, Cork University Maternity Hospital, Wilton, Cork, Ireland
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford. UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O' Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford. UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
6
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Kim SH, Chae SA. Promising candidate cerebrospinal fluid biomarkers of seizure disorder, infection, inflammation, tumor, and traumatic brain injury in pediatric patients. Clin Exp Pediatr 2022; 65:56-64. [PMID: 34425669 PMCID: PMC8841973 DOI: 10.3345/cep.2021.00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) is a dynamic metabolically active body fluid that has many important roles and is commonly analyzed in pediatric patients, mainly to diagnose central nervous system infection and inflammation disorders. CSF components have been extensively evaluated as biomarkers of neurological disorders in adult patients. Circulating microRNAs in CSF are a promising class of biomarkers for various neurological diseases. Due to the complexity of pediatric neurological disorders and difficulty in acquiring CSF samples from pediatric patients, there are challenges in developing CSF biomarkers of pediatric neurological disorders. This review aimed to provide an overview of novel CSF biomarkers of seizure disorders, infection, inflammation, tumor, traumatic brain injuries, intraventricular hemorrhage, and congenital hydrocephalus exclusively observed in pediatric patients.
Collapse
Affiliation(s)
- Seh Hyun Kim
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
| | - Soo Ahn Chae
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea.,College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
8
|
Tuberculous Meningitis: Pathogenesis, Immune Responses, Diagnostic Challenges, and the Potential of Biomarker-Based Approaches. J Clin Microbiol 2021; 59:JCM.01771-20. [PMID: 33087432 PMCID: PMC8106718 DOI: 10.1128/jcm.01771-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most devastating form of tuberculosis (TB), causing high mortality or disability. Clinical management of the disease is challenging due to limitations of the existing diagnostic approaches. Our knowledge on the immunology and pathogenesis of the disease is currently limited. More research is urgently needed to enhance our understanding of the immunopathogenesis of the disease and guide us toward the identification of targets that may be useful for vaccines or host-directed therapeutics. Tuberculous meningitis (TBM) is the most devastating form of tuberculosis (TB), causing high mortality or disability. Clinical management of the disease is challenging due to limitations of the existing diagnostic approaches. Our knowledge on the immunology and pathogenesis of the disease is currently limited. More research is urgently needed to enhance our understanding of the immunopathogenesis of the disease and guide us toward the identification of targets that may be useful for vaccines or host-directed therapeutics. In this review, we summarize the current knowledge about the immunology and pathogenesis of TBM and summarize the literature on existing and new, especially biomarker-based, approaches that may be useful in the management of TBM. We identify research gaps and provide directions for research which may lead to the development of new tools for the control of the disease in the near future.
Collapse
|
9
|
Kim SH, Yun SW, Kim HR, Chae SA. Exosomal microRNA expression profiles of cerebrospinal fluid in febrile seizure patients. Seizure 2020; 81:47-52. [DOI: 10.1016/j.seizure.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/18/2023] Open
|
10
|
Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells 2020; 9:cells9102160. [PMID: 32987746 PMCID: PMC7598604 DOI: 10.3390/cells9102160] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the most lethal infectious diseases with estimates of approximately 1.4 million human deaths in 2018. M. tuberculosis has a well-established ability to circumvent the host immune system to ensure its intracellular survival and persistence in the host. Mechanisms include subversion of expression of key microRNAs (miRNAs) involved in the regulation of host innate and adaptive immune response against M. tuberculosis. Several studies have reported differential expression of miRNAs during active TB and latent tuberculosis infection (LTBI), suggesting their potential use as biomarkers of disease progression and response to anti-TB therapy. This review focused on the miRNAs involved in TB pathogenesis and on the mechanism through which miRNAs induced during TB modulate cell antimicrobial responses. An attentive study of the recent literature identifies a group of miRNAs, which are differentially expressed in active TB vs. LTBI or vs. treated TB and can be proposed as candidate biomarkers.
Collapse
|
11
|
Tuberculosis: A granulomatous disease mediated by epigenetic factors. Tuberculosis (Edinb) 2020; 123:101943. [PMID: 32741528 DOI: 10.1016/j.tube.2020.101943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which is transmitted via aerosol. TB is a secular fatal disease which still represents a health problem worldwide. TB has long incubation period and usually at first, affects the lungs. However, the infection could also attack other organs including lymph nodes, abdomen, genitourinary tract, skin, joints, bones and nervous system, what are known as extrapulmonary TB (EPTB). The granulomatous lesions are characterized by necrosis and liquefaction, which causes several lungs damages. Granulomas have traditionally been known to be protective host structures, but mycobacteria can use granuloma as vehicle for expansion by intercellular spread, and it might facilitate M. tuberculosis dissemination to other body areas. Hypoxia, which occurs in granuloma areas contribute to disease progression, as the bacilli adapt to lack of oxygen and low nutrient concentration leading to modulation of angiogenesis genes expression. Induction of angiogenesis has controversial actions, while it could benefit the host by providing a direct source for the arrival of immune system cells against a pathogen, this conditions can also promote bacterial growth and spread to other tissues. This occurs due a greater supply of oxygen and nutrients. Epigenetic processes, such as miRNAs fluctuations, modulate angiogenesis resulting in pathogen mediated interference in angiogenic processes. M. tuberculosis infection affects microRNA expression profile in host tissues. Several miRNAs are involved in cell development, proliferation, differentiation, apoptosis, and even anti-inflammatory and pro-inflammatory stimuli. MicroRNAs promote dual role on M. tuberculosis infection, persistence, and host immune system modulation. These molecules might represent great potential as biomarkers of disease progression, spread, activity, and latency. The purpose of this review is to discuss how epigenetic mechanisms can influence the spread of Mycobacterium tuberculosis, affecting the expression of mediators of angiogenesis, the formation of granuloma, and the installation of the disease.
Collapse
|
12
|
Ruiz-Tagle C, Naves R, Balcells ME. Unraveling the Role of MicroRNAs in Mycobacterium tuberculosis Infection and Disease: Advances and Pitfalls. Infect Immun 2020; 88:e00649-19. [PMID: 31871103 PMCID: PMC7035921 DOI: 10.1128/iai.00649-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease of extremely high epidemiological burden worldwide that is easily acquired through the inhalation of infected respiratory droplets. The complex pathogenesis of this infection spans from subjects never developing this disease despite intense exposure, to others in which immune containment fails catastrophically and severe or disseminated forms of disease ensue. In recent decades, microRNAs (miRNAs) have gained increasing attention due to their role as gene silencers and because of their altered expression in diverse human diseases, including some infections. Recent research regarding miRNAs and TB has revealed that the expression profile for particular miRNAs clearly changes upon Mycobacterium tuberculosis infection and also varies in the different stages of this disease. However, despite the growing number of studies-some of which have even proposed some miRNAs as potential biomarkers-methodological variations and key differences in relevant factors, such as sex and age, cell type analyzed, M. tuberculosis strain, and antimicrobial therapy status, strongly hinder the comparison of data. In this review, we summarize and discuss the literature and highlight the role of selected miRNAs that have specifically and more consistently been associated with M. tuberculosis infection, together with a discussion of the possible gene and immune regulation pathways involved.
Collapse
Affiliation(s)
- Cinthya Ruiz-Tagle
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Naves
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Pan L, Liu F, Zhang J, Li J, Jia H, Huang M, Liu X, Chen W, Ding Z, Wang Y, Du B, Wei R, Sun Q, Xing A, Zhang Z. Genome-Wide miRNA Analysis Identifies Potential Biomarkers in Distinguishing Tuberculous and Viral Meningitis. Front Cell Infect Microbiol 2019; 9:323. [PMID: 31572691 PMCID: PMC6749153 DOI: 10.3389/fcimb.2019.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most common and severe form of central nervous system tuberculosis. Due to the non-specific clinical presentation and lack of efficient diagnosis methods, it is difficult to discriminate TBM from other frequent types of meningitis, especially viral meningitis (VM). In order to identify the potential biomarkers for discriminating TBM and VM and to reveal the different pathophysiological processes between TBM and VM, a genome-wide miRNA screening of PBMCs from TBM, VM, and healthy controls (HCs) using microarray assay was performed (12 samples). Twenty-eight differentially expressed miRNAs were identified between TBM and VM, and 11 differentially expressed miRNAs were identified between TBM and HCs. The 6 overlapping miRNAs detected in both TBM vs. VM and TBM vs. HCs were verified by qPCR analysis and showed a 100% consistent expression patterns with that in microarray test. Statistically significant differences of 4 miRNAs (miR-126-3p, miR-130a-3p, miR-151a-3p, and miR-199a-5p) were further confirmed in TBM compared with VM and HCs in independent PBMCs sample set (n = 96, P < 0.01). Three of which were also showed significantly different between TBM and VM in CSF samples (n = 70, P < 0.05). The receiver operating characteristic curve (ROC) analysis showed that the area under the ROC curve (AUC) of these 4 miRNAs in PBMCs were more than 0.70 in discriminating TBM from VM. Combination of these 4 miRNAs could achieve better discriminative capacity [AUC = 0.893 (0.788-0.957)], with a sensitivity of 90.6% (75.0-98.0%), and a specificity of 86.7% (69.3-96.2%). Additional validation was performed to evaluate the diagnostic panel in another independent sample set (n = 49), which yielded a sensitivity of 81.8% (9/11), and specificity of 90.0% (9/10) in distinguishing TBM and VM, and a sensitivity of 81.8% (9/11), and a specificity of 84.6% (11/13) in discriminating TBM from other non-TBM patients. This study uncovered the miRNA profiles of TBM and VM patients, which can facilitate better understanding of the pathogenesis involved in these two diseases and identified 4 novel miRNAs in distinguishing TBM and VM.
Collapse
Affiliation(s)
- Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Liu
- Tuberculosis Department, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinli Zhang
- Neurology Department, Chinese People's Liberation Army 263 Hospital, Beijing, China
| | - Jing Li
- Neurology Department, Chinese People's Liberation Army 263 Hospital, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mailing Huang
- Tuberculosis Department, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuehua Liu
- Hyperbaric Oxygen Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weibi Chen
- Neurology Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeyu Ding
- Neurology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Laboratory Medical Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Boping Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rongrong Wei
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Lu Y, Wang X, Dong H, Wang X, Yang P, Han L, Wang Y, Zheng Z, Zhang W, Zhang L. Bioinformatics analysis of microRNA expression between patients with and without latent tuberculosis infections. Exp Ther Med 2019; 17:3977-3988. [PMID: 30988779 PMCID: PMC6447890 DOI: 10.3892/etm.2019.7424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is a globally prevalent infectious disease. The mechanisms of latent TB infection (LTBI) remain to be fully elucidated and may provide novel approaches for diagnosis. As therapeutic targets and molecular diagnostic markers, microRNAs (miRs) have been studied and utilized in various diseases. In the present study, the differentially expressed miRs (DEMs) in LTBI were screened and analyzed to determine the underlying mechanisms and identify potential biomarkers, thereby contributing to the diagnosis of LTBI. The GSE25435 and GSE29190 datasets from Gene Expression Omnibus were selected for analysis. The 2 datasets were analyzed individually using the Bioconductor package to screen the DEMs with specific cut-off criteria [P<0.01 and |log (fold change)|≥1]. Target gene prediction and interaction network construction were performed using Targetscan, the Search Tool for the Retrieval of Interacting Genes and Proteins and Cytoscape individually, and were merged using the latter tool. The hub genes were finally selected based on their degree of connectivity (DC). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the KEGG and GENCLIP. A total of 144 DEMs were identified from the 2 datasets. By exploring the overlapping miRs in the two datasets, Homo sapiens (hsa)-miR-29a and hsa-miR-15b were identified to be decreased, while hsa-miR-576-5p, hsa-miR-500 and hsa-miR-155 were identified to be upregulated. hsa-miR-500a-3p and hsa-miR-29a-3p, as well as 4 genes, namely cell division cycle (CDC)42, actin α1, skeletal muscle (ACTA1), phosphatase and tensin homolog (PTEN) and fos proto-oncogene (FOS), were selected as the key factors in this regulatory network. A total of 9 signaling pathways, including phosphoinositide-3 kinase (PI3K)/AKT and 11 biological processes, were identified to be associated with LTBI. In conclusion, the present analysis identified hsa-miR-500a-3p and hsa-miR-29a-3p, as well as CDC42, ACTA1, PTEN and FOS, as the most promising biomarkers and therapeutic candidates for LTBI. The PI3K/AKT signaling pathway is the key signaling pathway implicated in LTBI, and an in-depth investigation of the efficiency of PI3K/AKT signaling inhibitors may be used to prevent a chronic state of infection in LTBI.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xinmin Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Hongchang Dong
- Department of Biochemistry, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xiaofang Wang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Pu Yang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Ling Han
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yingzi Wang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhihong Zheng
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Wanjiang Zhang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Le Zhang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|