1
|
Yu YH, Im H, Park S, Song B, Park DK, Kim DS, Gil HW. AST-120 Protects Cognitive and Emotional Impairment in Chronic Kidney Disease Induced by 5/6 Nephrectomy. Brain Sci 2024; 14:1043. [PMID: 39595807 PMCID: PMC11591787 DOI: 10.3390/brainsci14111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Uremic toxins resulting from chronic kidney disease (CKD) can cause cognitive and emotional disorders, as well as cardiovascular diseases. Indoxyl sulfate (IS) and p-cresol are notable uremic toxins found in patients with CKD. However, few studies have investigated whether reducing uremic toxins can alleviate cognitive and emotional disorders associated with CKD. METHODS We studied the effects of AST-120, which lowers IS levels, through behavioral tests, local field potentials, field excitatory postsynaptic potentials, and histological experiments in a 5/6 nephrectomy CKD model. RESULTS We confirmed AST-120's effectiveness in CKD by measuring serum creatinine, blood urea nitrogen, and IS levels and performing renal tissue staining. Behavioral phenotypes indicated an alleviation of cognitive and anxiety disorders following AST-120 treatment in CKD-induced rats, which was further validated through local field potentials and field excitatory postsynaptic potential recordings. Double immunofluorescence staining for aquaporin-4 and glial fibrillary acidic protein in the hippocampus of CKD rats treated with AST-120 showed reduced coexpression. CONCLUSIONS Our findings demonstrate the potential therapeutic effects of AST-120 in lowering IS levels and improving cognitive and emotional impairments associated with CKD.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si 31151, Republic of Korea;
| | - Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si 31151, Republic of Korea;
| |
Collapse
|
2
|
Yu YH, Kim SW, Im H, Lee YR, Kim GW, Ryu S, Park DK, Kim DS. Febrile Seizure Causes Deficit in Social Novelty, Gliosis, and Proinflammatory Cytokine Response in the Hippocampal CA2 Region in Rats. Cells 2023; 12:2446. [PMID: 37887290 PMCID: PMC10605585 DOI: 10.3390/cells12202446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Febrile seizure (FS), which occurs as a response to fever, is the most common seizure that occurs in infants and young children. FS is usually accompanied by diverse neuropsychiatric symptoms, including impaired social behaviors; however, research on neuropsychiatric disorders and hippocampal inflammatory changes following febrile seizure occurrences is very limited. Here, we provide evidence linking FS occurrence with ASD pathogenesis in rats. We developed an FS juvenile rats model and found ASD-like abnormal behaviors including deficits in social novelty, repetitive behaviors, and hyperlocomotion. In addition, FS model juvenile rats showed enhanced levels of gliosis and inflammation in the hippocampal CA2 region and cerebellum. Furthermore, abnormal levels of social and repetitive behaviors persisted in adults FS model rats. These findings suggest that the inflammatory response triggered by febrile seizures in young children could potentially serve as a mediator of social cognitive impairments.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Seong-Wook Kim
- Graduate School of New Drug Discovery & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Yu Ran Lee
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Gun Woo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Seongho Ryu
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea;
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| |
Collapse
|
3
|
Febrile Seizures Cause Depression and Anxiogenic Behaviors in Rats. Cells 2022; 11:cells11203228. [PMID: 36291094 PMCID: PMC9600115 DOI: 10.3390/cells11203228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Febrile seizure (FS) is a common type of seizure occurring in human during infancy and childhood. Although an epileptic seizure is associated with psychiatric disorders and comorbid diseases such as depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine, the causal relationship between FS and psychiatric disorders is poorly understood. The objective of the current study was to investigate the relationship of FS occurrence in childhood with the pathogenesis of anxiety disorder and depression using an FS rat model. We induced febrile seizures in infantile rats (11 days postnatal) using a mercury vapor lamp. At 3 weeks and 12 weeks after FS induction, we examined behaviors and recorded local field potentials (LFPs) to assess anxiety and depression disorder. Interestingly, after FS induction in infantile rats, anxiogenic behaviors and depression-like phenotypes were found in both adult and juvenile FS rats. The analysis of LFPs revealed that 4-7 Hz hippocampal theta rhythm, a neural oscillatory marker for anxiety disorder, was significantly increased in FS rats compared with their wild-type littermates. Taken together, our findings suggest that FS occurrence in infants is causally related to increased levels of anxiety-related behaviors and depression-like symptoms in juvenile and adult rodents.
Collapse
|
4
|
Cognitive Sequelae and Hippocampal Dysfunction in Chronic Kidney Disease following 5/6 Nephrectomy. Brain Sci 2022; 12:brainsci12070905. [PMID: 35884712 PMCID: PMC9321175 DOI: 10.3390/brainsci12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are prevalent in patients with chronic kidney disease (CKD). Vascular factors and uremic toxins are involved with cognitive impairment in CKD. In addition, vascular dementia-induced alterations in the structure and function of the hippocampus can lead to deficits in hippocampal synaptic plasticity and cognitive function. However, regardless of this clinical evidence, the pathophysiology of cognitive impairment in patients with CKD is not fully understood. We used male Sprague Dawley rats and performed 5/6 nephrectomy to observe the changes in behavior, field excitatory postsynaptic potential, and immunostaining of the hippocampus following CKD progression. We measured the hippocampus volume on magnetic resonance imaging scans in the controls (n = 34) and end-stage renal disease (ESRD) hemodialysis patients (n = 42). In four cognition-related behavior assays, including novel object recognition, Y-maze, Barnes maze, and classical contextual fear conditioning, we identified deficits in spatial working memory, learning and memory, and contextual memory, as well as the ability to distinguish familiar and new objects, in the rats with CKD. Immunohistochemical staining of Na+/H+ exchanger1 was increased in the hippocampus of the CKD rat models. We performed double immunofluorescent staining for aquaporin-4 and glial fibrillary acidic protein and then verified the high coexpression in the hippocampus of the CKD rat model. Furthermore, results from recoding of the field excitatory postsynaptic potential (fEPSP) in the hippocampus showed the reduced amplitude and slope of fEPSP in the CKD rats. ESRD patients with cognitive impairment showed a significant decrease in the hippocampus volume compared with ESRD patients without cognitive impairment or the controls. Our findings suggest that uremia resulting from decreased kidney function may cause the destruction of the blood–brain barrier and hippocampus-related cognitive impairment in CKD.
Collapse
|
5
|
Yu YH, Kim SW, Kang J, Song Y, Im H, Kim SJ, Yoo DY, Lee MR, Park DK, Oh JS, Kim DS. Phosphodiesterase-5 Inhibitor Attenuates Anxious Phenotypes and Movement Disorder Induced by Mild Ischemic Stroke in Rats. J Korean Neurosurg Soc 2022; 65:665-679. [PMID: 35430790 PMCID: PMC9452378 DOI: 10.3340/jkns.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke.
Methods We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations.
Results Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke.
Conclusion PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.
Collapse
|
6
|
Altered Emotional Phenotypes in Chronic Kidney Disease Following 5/6 Nephrectomy. Brain Sci 2021; 11:brainsci11070882. [PMID: 34209259 PMCID: PMC8301795 DOI: 10.3390/brainsci11070882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Increased prevalence of chronic kidney disease (CKD) and neurological disorders including cerebrovascular disease, cognitive impairment, peripheral neuropathy, and dysfunction of central nervous system have been reported during the natural history of CKD. Psychological distress and depression are serious concerns in patients with CKD. However, the relevance of CKD due to decline in renal function and the pathophysiology of emotional deterioration is not clear. Male Sprague Dawley rats were divided into three groups: sham control, 5/6 nephrectomy at 4 weeks, and 5/6 nephrectomy at 10 weeks. Behavior tests, local field potentials, and histology and laboratory tests were conducted and investigated. We provided direct evidence showing that CKD rat models exhibited anxiogenic behaviors and depression-like phenotypes, along with altered hippocampal neural oscillations at 1–12 Hz. We generated CKD rat models by performing 5/6 nephrectomy, and identified higher level of serum creatinine and blood urea nitrogen (BUN) in CKD rats than in wild-type, depending on time. In addition, the level of α-smooth muscle actin (α-SMA) and collagen I for renal tissue was markedly elevated, with worsening fibrosis due to renal failures. The level of anxiety and depression-like behaviors increased in the 10-week CKD rat models compared with the 4-week rat models. In the recording of local field potentials, the power of delta (1–4 Hz), theta (4–7 Hz), and alpha rhythm (7–12 Hz) was significantly increased in the hippocampus of CKD rats compared with wild-type rats. Together, our findings indicated that anxiogenic behaviors and depression can be induced by CKD, and these abnormal symptoms can be worsened as the onset of CKD was prolonged. In conclusion, our results show that the hippocampus is vulnerable to uremia.
Collapse
|
7
|
Andoh M, Ikegaya Y, Koyama R. Microglia modulate the structure and function of the hippocampus after early-life seizures. J Pharmacol Sci 2020; 144:212-217. [PMID: 33070840 DOI: 10.1016/j.jphs.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The hippocampus is a brain region well-known to exhibit structural and functional changes in temporal lobe epilepsy. Studies analyzing the brains of patients with epilepsy and those from animal models of epilepsy have revealed that microglia are excessively activated, especially in the hippocampus. These findings suggest that microglia may contribute to the onset and aggravation of epilepsy; however, direct evidence for microglial involvement or the underlying mechanisms by which this occurs remain to be fully discovered. To date, neuron-microglia interactions have been vigorously studied in adult epilepsy models; such studies have clarified microglial responses to excessive synchronous firing of neurons. In contrast, the role of microglia in the postnatal brain of patients with epileptic seizures remain largely unclear. Some early-life seizures, such as complex febrile seizures, have been shown to cause structural and functional changes in the brain, which is a risk factor for future development of epilepsy. Because brain structure and function are actively modulated by microglia in both health and disease, it is essential to clarify the role of microglia in early-life seizures and its impact on epileptogenesis.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Atabaki R, Roohbakhsh A, Moghimi A, Mehri S. Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int Immunopharmacol 2020; 86:106720. [PMID: 32585605 DOI: 10.1016/j.intimp.2020.106720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has a key role in seizure generation and perpetuation in the neonatal period, and toll-like receptor 4 (TLR4) pathway has a prominent role in neuroinflammatory diseases. Administration of antioxidants and targeting TLR4 in the embryonic period may protect rat offspring against the next incidence of febrile seizure and its harmful effects. Curcumin and hesperidin are natural compounds with anti-inflammatory and antioxidant properties and have an inhibitory action on TLR4 receptors. We evaluated the effect of maternal administration of curcumin and hesperidin on infantile febrile seizure and subsequent memory dysfunction in adulthood. Hyperthermia febrile seizure was induced on postnatal days 9-11 on male rat pups with 24 h intervals, in a Plexiglas box that was heated to ~45 °C by a heat lamp. We used enzyme-linked immunosorbent assay, Western blotting, malondialdehyde (MDA), and glutathione (GSH) assessment for evaluation of inflammatory cytokine levels, TLR4 protein expression, and oxidative responses in the hippocampal tissues. For assessing working memory and long-term potentiation, the double Y-maze test and Schaffer collateral-CA1 in vivo electrophysiological recording were performed, respectively Our results showed that curcumin and hesperidin decreased TNF-α, IL-10, and TLR4 protein expression and reversed memory dysfunction. However, they did not provoke a significant effect on GSH content or amplitude and slope of recorded fEPSPs in the hippocampus. In addition, curcumin, but not hesperidin, decreased interleukin-1β (IL-1β) and MDA levels. These findings imply that curcumin and hesperidin induced significant protective effects on febrile seizures, possibly via their anti-inflammatory and antioxidant properties and downregulation of TLR4.
Collapse
Affiliation(s)
- Rabi Atabaki
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Wang X, Zhang W, Li J, Yu M, Dong M, Meng H. Collapsin Response Mediator Protein 2, a Potential Therapeutic Target in Temporal Lobe Epilepsy. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Leung AK, Hon KL, Leung TN. Febrile seizures: an overview. Drugs Context 2018; 7:212536. [PMID: 30038660 PMCID: PMC6052913 DOI: 10.7573/dic.212536] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Febrile seizures are the most common neurologic disorder in childhood. Physicians should be familiar with the proper evaluation and management of this common condition. Objective To provide an update on the current understanding, evaluation, and management of febrile seizures. Methods A PubMed search was completed in Clinical Queries using the key terms ‘febrile convulsions’ and ‘febrile seizures’. The search strategy included meta-analyses, randomized controlled trials, clinical trials, observational studies, and reviews. Results Febrile seizures, with a peak incidence between 12 and 18 months of age, likely result from a vulnerability of the developing central nervous system to the effects of fever, in combination with an underlying genetic predisposition and environmental factors. The majority of febrile seizures occur within 24 hours of the onset of the fever. Febrile seizures can be simple or complex. Clinical judgment based on variable presentations must direct the diagnostic studies which are usually not necessary in the majority of cases. A lumbar puncture should be considered in children younger than 12 months of age or with suspected meningitis. Children with complex febrile seizures are at risk of subsequent epilepsy. Approximately 30–40% of children with a febrile seizure will have a recurrence during early childhood. The prognosis is favorable as the condition is usually benign and self-limiting. Intervention to stop the seizure often is unnecessary. Conclusion Continuous preventative antiepileptic therapy for the prevention of recurrent febrile seizures is not recommended. The use of intermittent anticonvulsant therapy is not routinely indicated. Antipyretics have no role in the prevention of febrile seizures.
Collapse
Affiliation(s)
- Alexander Kc Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Kam Lun Hon
- Department of Pediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Theresa Nh Leung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Sánchez-Ramón S, Faure F. The Thymus/Neocortex Hypothesis of the Brain: A Cell Basis for Recognition and Instruction of Self. Front Cell Neurosci 2017; 11:340. [PMID: 29163052 PMCID: PMC5663735 DOI: 10.3389/fncel.2017.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The recognition of internal and external sources of stimuli, the self from non-self, seems to be an intrinsic property to the adequate functioning of the immune system and the nervous system, both complex network systems that have evolved to safeguard the self biological identity of the organism. The mammalian brain development relies on dynamic and adaptive processes that are now well described. However, the rules dictating this highly constrained developmental process remain elusive. Here we hypothesize that there is a cellular basis for brain selfhood, based on the analogy of the global mechanisms that drive the self/non-self recognition and instruction by the immune system. In utero education within the thymus by multi-step selection processes discard overly low and high affinity T-lymphocytes to self stimuli, thus avoiding expendable or autoreactive responses that might lead to harmful autoimmunity. We argue that the self principle is one of the chief determinants of neocortical brain neurogenesis. According to our hypothesis, early-life education on self at the subcortical plate of the neocortex by selection processes might participate in the striking specificity of neuronal repertoire and assure efficiency and self tolerance. Potential implications of this hypothesis in self-reactive neurological pathologies are discussed, particularly involving consciousness-associated pathophysiological conditions, i.e., epilepsy and schizophrenia, for which we coined the term autophrenity.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Microbiology I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Florence Faure
- PSL Research University, INSERM U932, Institut Curie, Paris, France
| |
Collapse
|