1
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
2
|
Kiyak V, Gevrek F, Demir O, Katar M. Secukinumab Ameliorates Oxidative Damage Induced by Subarachnoid Hemorrhage. World Neurosurg 2024; 190:e158-e164. [PMID: 39154958 DOI: 10.1016/j.wneu.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the histological and biochemical neuroprotective effects of secukinumab (SEC) on brain damage induced by subarachnoid hemorrhage (SAH) in male Wistar Albino rats. METHODS Forty male Wistar Albino rats were randomly divided into 4 groups of equal size: control, SEC, SAH, and SAH + SEC. SAH was induced the SAH and SAH + SEC groups by injecting autologous blood collected from the hearts of the rats into the subarachnoid space via the foramen magnum. SEC was administered intraperitoneally once a week to the SEC and SAH + SEC groups after the surgical procedure. On the 14th day of surgery, the rats were sacrificed and their cerebral tissues were collected for biochemical analysis and histopathological examination. RESULTS SAH led to changes in oxidative stress parameters by increasing malondialdehyde levels and decreasing superoxide dismutase, glutathione, catalase, and glutathione peroxidase levels. Histopathologically, cerebral tissues in the SAH groups showed alterations such as congestion and cell infiltration. Treatment with SEC significantly reduced malondialdehyde levels and increased superoxide dismutase, glutathione, catalase, and glutathione peroxidase levels. SEC also decreased histopathological alterations in brain tissues. CONCLUSIONS This study revealed that SEC (3 mg/kg) therapeutically influenced oxidative and histopathological changes in blood parameters and brain tissues caused by experimental SAH. SEC helps reduce brain damage in rats with SAH and possesses antioxidant and neuroprotective properties. Further advanced studies are needed to prove its potential benefits for humans.
Collapse
Affiliation(s)
- Veysel Kiyak
- Department of Neurosurgery-Tokat, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Fikret Gevrek
- Department of Histology and Embryology-Tokat, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Osman Demir
- Department of Bioistatistic-Tokat, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Muzaffer Katar
- Faculty of Medicine, Department of Biochemistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
3
|
Arslan R, Doganay S, Budak O, Bahtiyar N. Investigation of preconditioning and the protective effects of nicotinamide against cerebral ischemia-reperfusion injury in rats. Neurosci Lett 2024; 840:137949. [PMID: 39181500 DOI: 10.1016/j.neulet.2024.137949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This study investigated the antioxidant and neuroprotective effects of nicotinamide combined with ischemic preconditioning against cerebral ischemia reperfusion (CIR) injury. Thirty-five Wistar albino male rats were randomly divided into five groups: sham, preconditioned ischemia/reperfusion (IP+IR), ischemia/reperfusion (IR), preconditioned ischemia/reperfusion + nicotinamide (IP+IR+N), and ischemia/reperfusion + nicotinamide (IR+N). CIR was achieved with bilateral common carotid artery occlusion. IP+IR and IP+IR+N groups 30 min before ischemia; Three cycles of 10 sec ischemia/30 sec reperfusion followed by 20 min IR were applied. The IP+IR+N and IR+N groups received 500 mg/kg nicotinamide intraperitoneally. After 24 h of reperfusion, a neurological evaluation was performed and vertıcal pole test. Biochemically, malondialdehyde (MDA), glutathione (GSH) levels and catalase (CAT) activity were measured in blood and brain tissue samples. Rates of red neurons, sateliosis and spongiosis were determined histopathologically in the prefrontal cortex areas. After CIR, MDA levels increased significantly in serum and brain tissue in the IR group compared to the sham group, while GSH and CAT activity decreased in the brain tissue (p < 0.05). MDA levels in the tissues were found significantly decreased in the IR+N group compared to the IR group (p < 0.05). Administration of nicotinamide together with IP significantly decreased MDA levels in brain tissue and increased GSH and CAT activity (p < 0.05). Compared to the IR group, the morphological and neurological damage in the prefrontal cortex areas decreased in the IP+IR, IP+IR+N, and IR+N groups (p < 0.05). In addition, red neuron, sateliosis and spongiosis rates increased significantly in the IR group compared to the Sham, IP+IR+N, IR+N groups (p < 0.001 for all). In neurological evaluation, while the neurological score increased and the time on the vertical pole decreased significantly in the IR group, preconditioning, and nicotinamide groups reversed (p < 0.05). The study's results show that nicotinamide administration with ischemic preconditioning alleviates cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ruhat Arslan
- Istinye University, Faculty of Medicine, Department of Physiology, TR - 34000 Istanbul, Turkey; Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Physiology, TR-34098 Istanbul, Turkey.
| | - Songul Doganay
- Sakarya University, Faculty of Medicine, Department of Physiology, TR-54000 Sakarya, Turkey.
| | - Ozcan Budak
- Sakarya University, Faculty of Medicine, Department of Histology and Embryology, TR-54000 Sakarya, Turkey.
| | - Nurten Bahtiyar
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Biophysics, TR-34098 Istanbul, Turkey.
| |
Collapse
|
4
|
Guo C, Yin Y, Ma Z, Xu F, Wang S. Astilbin exerts a neuroprotective effect by upregulating the signaling of nuclear NF-E2-related factor 2 in vitro. Heliyon 2024; 10:e37276. [PMID: 39296123 PMCID: PMC11409207 DOI: 10.1016/j.heliyon.2024.e37276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Objective The present study aims to evaluate the impact of Astilbin (AST) on cortical neuron survival in vitro under conditions of oxygen-glucose deprivation and reoxygenation (OGD/R) and determine the role of NF-E2-related factor 2 (Nrf2) in this process. Methods Primary neurons were pre-treated with various concentrations of AST for 8 h before OGD induction. Cell viability and lactate dehydrogenase (LDH) leakage were assessed to determine the optimal concentration. Biomarkers related to oxidative stress, antioxidant enzyme activities, and apoptosis were evaluated at 24 h post-OGD/R. To investigate the involvement of Nrf2 in AST-mediated neuroprotection, we conducted molecular docking and microscale thermophoresis analyses, as well as examined the expression levels of Nrf2 and its regulatory genes including heme oxygenase-1(HO-1), (NAD(P)H: quinone oxidoreductase 1 (NQO-1), and peroxiredoxin 1 (Prdx1). Additionally, lentivirus-mediated knockdown of Nrf2 and overexpression of Nrf2 with L-sulforaphane (SFN) were performed, followed by an assessment of cell viability, oxidative stress, antioxidant enzyme activities and apoptosis. Results Pre-treatment with AST reduced oxidative stress levels while increasing antioxidant enzyme activities and mitigating neuronal apoptosis. After OGD/R exposure, AST upregulated nuclear Nrf2 expression and increased the expression of HO-1, NQO-1 and Prdx1 in the cytoplasm. However, the knockdown of Nrf2 abolished the antioxidative and protective effects exerted by AST treatment. Conversely, combining AST with the Nrf2 agonist SFN demonstrated an enhancement in the protective effects provided by AST. These results demonstrate that Nrf2-dependent antioxidant responses contribute to AST-induced tolerance against neuronal injury caused by OGD/R injury. Conclusions Overall findings support the ability of AST to protect primary neurons from OGD/R-induced damage through activation of Nrf2-dependent antioxidant responses.
Collapse
Affiliation(s)
- Chao Guo
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangqin Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Yuan J, Yu Z, Zhang P, Luo K, Xu Y, Lan T, Zhang M, Chen Y, Lu Z. DDAH1 recruits peroxiredoxin 1 and sulfiredoxin 1 to preserve its activity and regulate intracellular redox homeostasis. Redox Biol 2024; 70:103080. [PMID: 38354630 PMCID: PMC10876909 DOI: 10.1016/j.redox.2024.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.
Collapse
Affiliation(s)
- Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoran Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, 55455, USA
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Lan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China.
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Zhou J, Sun F, Zhang W, Feng Z, Yang Y, Mei Z. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury. Front Pharmacol 2024; 15:1352760. [PMID: 38487170 PMCID: PMC10937431 DOI: 10.3389/fphar.2024.1352760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a major contributor to poor prognosis of ischemic stroke. Flavonoids are a broad family of plant polyphenols which are abundant in traditional Chinese medicine (TCM) and have beneficial effects on several diseases including ischemic stroke. Accumulating studies have indicated that flavonoids derived from herbal TCM are effective in alleviating CIRI after ischemic stroke in vitro or in vivo, and exhibit favourable therapeutical potential. Herein, we systematically review the classification, metabolic absorption, neuroprotective efficacy, and mechanisms of TCM flavonoids against CIRI. The literature suggest that flavonoids exert potential medicinal functions including suppressing excitotoxicity, Ca2+ overloading, oxidative stress, inflammation, thrombin's cellular toxicity, different types of programmed cell deaths, and protecting the blood-brain barrier, as well as promoting neurogenesis in the recovery stage following ischemic stroke. Furthermore, we identified certain matters that should be taken into account in future research, as well as proposed difficulties and opportunities in transforming TCM-derived flavonoids into medications or functional foods for the treatment or prevention of CIRI. Overall, in this review we aim to provide novel ideas for the identification of new prospective medication candidates for the therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Yang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
7
|
Wang P, Huang Y, Sun B, Chen H, Ma Y, Liu Y, Yang T, Jin H, Qiao Y, Cao Y. Folic acid blocks ferroptosis induced by cerebral ischemia and reperfusion through regulating folate hydrolase transcriptional adaptive program. J Nutr Biochem 2024; 124:109528. [PMID: 37979712 DOI: 10.1016/j.jnutbio.2023.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is notably linked with folic acid (FA) deficiency. The aim of our investigation was to explore the effects and underlying mechanisms by which FA mitigates I/R, specifically through regulating the GCPII transcriptional adaptive program. Initially, we discovered that following cerebral I/R, levels of FA, methionine synthase (MTR), and methylenetetrahydrofolate reductase (MTHFR) were decreased, while GCPII expression was elevated. Secondly, administering FA could mitigate cognitive impairment and neuronal damage induced by I/R. Thirdly, the mechanism of FA supplementation involved suppressing the transcriptional factor Sp1, subsequently inhibiting GCPII transcription, reducing Glu content, obstructing cellular ferroptosis, and alleviating cerebral I/R injury. In summary, our data demonstrate that FA affords protection against cerebral I/R injury by inhibiting the GCPII transcriptional adaptive response. These findings unveil that targeting GCPII might be a viable therapeutic strategy for cerebral I/R.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yangyang Huang
- Department of Pediatrics, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Buxun Sun
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongpeng Chen
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - YiFan Ma
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yuhang Liu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Tao Yang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongbo Jin
- Department of Physiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yuandong Qiao
- Department of Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.
| | - Yongggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.
| |
Collapse
|
8
|
Wang X, Yu J, Wen H, Yan J, Peng K, Zhou H. Antioxidative stress protein SRXN1 can be used as a radiotherapy prognostic marker for prostate cancer. BMC Urol 2023; 23:148. [PMID: 37726767 PMCID: PMC10507967 DOI: 10.1186/s12894-023-01319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE To explore the mechanisms of radiotherapy resistance and search for prognostic biomarkers for prostate cancer. METHODS The GSE192817 and TCGA PRAD datasets were selected and downloaded from the GEO and UCSC Xena databases. Differential expression and functional annotation analyses were applied to 52 tumour cell samples from GSE192817. Then, the ssGSEA or GSVA algorithms were applied to quantitatively score the biological functional activity of samples in the GSE192817 and TCGA PRAD datasets, combined with specific gene sets collected from the Molecular Signatures Database (MSigDB). Subsequently, the Wilcoxon rank-sum test was used to compare the differences in ssGSEA or GSVA scores among cell types or PRAD patients. Moreover, radiotherapy resistance-associated gene screening was performed on DU145 and PC3 cells (prostate cancer cells), and survival analysis was used to evaluate the efficacy of these genes for predicting the prognosis of PRAD patients. RESULTS A total of 114 genes that were differentially expressed in more than two different cancer cell types and associated with either sham surgery or radiotherapy treatment (X-ray or photon irradiation) were detected in cancer cells from GSE192817. Comparison of DNA damage-related ssGSEA scores between sham surgery and radiotherapy treatment in prostate cancer cells (DU145 and PC3) showed that photon irradiation was potentially more effective than X-ray treatment. In the TCGA PRAD dataset, patients treated with radiotherapy had much higher "GOBP_CELLULAR_RESPONSE_TO_DNA_DAMAGE_STIMULUS", "GOBP_G2_DNA_DAMAGE_CHECKPOINT" and "GOBP_INTRA_S_DNA_DAMAGE_CHECKPOINT" GSVA scores, and the Wilcoxon rank-sum test p values were 0.0005, 0.0062 and 0.0800, respectively. Furthermore, SRXN1 was upregulated in DU145 cells (resistant to X-ray irradiation compared to PC3 cells) after radiotherapy treatment, and low SRXN1 expression in patients was beneficial to radiotherapy outcomes. The log-rank test p value for PFS was 0.0072. CONCLUSIONS Radiotherapy can damage DNA and induce oxidative stress to kill tumour cells. In this study, we found that SRXN1, as an antioxidative stress gene, plays an important role in radiotherapy for prostate cancer treatment, and this gene is also a potential biomarker for predicting the prognosis of patients treated with radiotherapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Urology, Zhejiang Hospital, # 1229, Gudun Road, Hangzhou, 310030, China
| | - Jiandi Yu
- Department of Urology, Zhejiang Hospital, # 1229, Gudun Road, Hangzhou, 310030, China
| | - Huali Wen
- Department of Urology, Zhejiang Hospital, # 1229, Gudun Road, Hangzhou, 310030, China
| | - Junfeng Yan
- Department of Urology, Zhejiang Hospital, # 1229, Gudun Road, Hangzhou, 310030, China
| | - Kun Peng
- Department of Urology, Zhejiang Hospital, # 1229, Gudun Road, Hangzhou, 310030, China
| | - Haiyong Zhou
- Department of Urology, Zhejiang Hospital, # 1229, Gudun Road, Hangzhou, 310030, China.
| |
Collapse
|
9
|
Xu L, Chen Z, Li X, Xu H, Zhang Y, Yang W, Chen J, Zhang S, Xu L, Zhou S, Li G, Yu B, Gu X, Yang J. Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Sci Data 2022; 9:666. [PMID: 36323676 PMCID: PMC9630366 DOI: 10.1038/s41597-022-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaodi Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
10
|
Leroux S, Rodriguez-Duboc A, Arabo A, Basille-Dugay M, Vaudry D, Burel D. Intermittent hypoxia in a mouse model of apnea of prematurity leads to a retardation of cerebellar development and long-term functional deficits. Cell Biosci 2022; 12:148. [PMID: 36068642 PMCID: PMC9450451 DOI: 10.1186/s13578-022-00869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Apnea of prematurity (AOP) is caused by respiratory control immaturity and affects nearly 50% of premature newborns. This pathology induces perinatal intermittent hypoxia (IH), which leads to neurodevelopmental disorders. The impact on the brain has been well investigated. However, despite its functional importance and immaturity at birth, the involvement of the cerebellum remains poorly understood. Therefore, this study aims to identify the effects of IH on cerebellar development using a mouse model of AOP consisting of repeated 2-min cycles of hypoxia and reoxygenation over 6 h and for 10 days starting on postnatal day 2 (P2). Results At P12, IH-mice cerebella present higher oxidative stress associated with delayed maturation of the cerebellar cortex and decreased dendritic arborization of Purkinje cells. Moreover, mice present with growth retardation and motor disorders. In response to hypoxia, the developing cerebellum triggers compensatory mechanisms resulting in the unaltered organization of the cortical layers from P21 onwards. Nevertheless, some abnormalities remain in adult Purkinje cells, such as the dendritic densification, the increase in afferent innervation, and axon hypomyelination. Moreover, this compensation seems insufficient to allow locomotor recovery because adult mice still show motor impairment and significant disorders in spatial learning. Conclusions All these findings indicate that the cerebellum is a target of intermittent hypoxia through alterations of developmental mechanisms leading to long-term functional deficits. Thus, the cerebellum could contribute, like others brain structures, to explaining the pathophysiology of AOP. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00869-5.
Collapse
|
11
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Ren W, Zhao F, Han Y, Liu Z, Zhai J, Jia K. Muscone improves hypoxia/reoxygenation (H/R)-induced neuronal injury by blocking HMGB1/TLR4/NF-κB pathway via modulating microRNA-142. PeerJ 2022; 10:e13523. [PMID: 35860039 PMCID: PMC9290999 DOI: 10.7717/peerj.13523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Previous reports have indicated that natural muscone has neuroprotective effects against cerebral hypoxia injury; however, little is known in regards to its pharmacological mechanism. In this study, we tried to evaluate the neuroprotective effects and mechanisms of muscone against cerebral hypoxia injury using an in vitro model. The cerebral hypoxia injury cell model was produced by hypoxia/reoxygenation (H/R). The cell viability and apoptosis were measured using the cell counting Kit-8 and the Annexin V-FITC/PI Apoptosis Detection kit, respectively. To screen microRNAs regulated by muscone, we analyzed the gene expression datasets of GSE84216 retrieved from gene expression omnibus (GEO). Here, it was demonstrated that muscone treatment significantly alleviated the cell apoptosis, oxidative stress and inflammation in H/R-exposed neurons. Subsequently, through analyzing GSE84216 from the GEO database, miR-142-5p was markedly upregulated by treatment of muscone in this cell model of cerebral hypoxia injury. Further experiments revealed that downregulation of miR-142-5p eliminated the neuroprotective effects of muscone against H/R induced neuronal injury. Additionally, high mobility group box 1 (HMGB1), an important inflammatory factor, was identified as a direct target of miR-142-5p in neurons. Meanwhile, we further demonstrated that muscone could reduce the expression of HMGB1 by upregulating miR-142-5p expression, which subsequently resulted in the inactivation of TLR4/NF-κB pathway, finally leading to the improvement of cell injury in H/R-exposed neurons. Overall, we demonstrate for the first time that muscone treatment alleviates cerebral hypoxia injury in in vitro experiments through blocking activation of the TLR4/NF-κB signaling pathway by targeting HMGB1, suggesting that muscone may serve as a potential therapeutic drug for treating cerebral hypoxia injury.
Collapse
|
13
|
Cucos CA, Cracana I, Dobre M, Popescu BO, Tudose C, Spiru L, Manda G, Niculescu G, Milanesi E. Sulfiredoxin-1 blood mRNA expression levels negatively correlate with hippocampal atrophy and cognitive decline. F1000Res 2022; 11:114. [PMID: 35242306 PMCID: PMC8857523 DOI: 10.12688/f1000research.76191.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Cognitive decline, correlating with hippocampal atrophy, characterizes several neurodegenerative disorders having a background of low-level chronic inflammation and oxidative stress. Methods: In this cross-sectional study, we examined how cognitive decline and hippocampal subfields volume are associated with the expression of redox and inflammatory genes in peripheral blood. We analyzed 34 individuals with different cognitive scores according to Mini-Mental State Examination, corrected by age and education (adjMMSE). We identified a group presenting cognitive decline (CD) with adjMMSE<27 (n=14) and a normal cognition (NC) group with adjMMSE≥27 (n=20). A multiparametric approach, comprising structural magnetic resonance imaging measurement of different hippocampal segments and blood mRNA expression of redox and inflammatory genes was applied. Results: Our findings indicate that hippocampal segment volumes correlate positively with adjMMSE and negatively with the blood transcript levels of 19 genes, mostly redox genes correlating especially with the left subiculum and presubiculum. A strong negative correlation between hippocampal subfields atrophy and Sulfiredoxin-1 (
SRXN1) redox gene was emphasized. Conclusions: Concluding, these results suggest that
SRXN1 might be a valuable candidate blood biomarker for non-invasively monitoring the evolution of hippocampal atrophy in CD patients.
Collapse
Affiliation(s)
| | - Ioana Cracana
- Medinst Diagnostic Romano-German SRL, Bucharest, Romania
| | - Maria Dobre
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Bogdan Ovidiu Popescu
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Clinical Hospital Colentina, Bucharest, Romania
| | - Catalina Tudose
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Prof. Dr. Al. Obregia” Psychiatry Clinical Hospital & the Memory Center of the Romanian Alzheimer Society, Section II, Bucharest, Romania
| | - Luiza Spiru
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Ana Aslan” International Foundation, Bucharest, Romania
| | - Gina Manda
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Gabriela Niculescu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| |
Collapse
|
14
|
Dexmedetomidine Alleviates Lung Oxidative Stress Injury Induced by Ischemia-Reperfusion in Diabetic Rats via the Nrf2-Sulfiredoxin1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5584733. [PMID: 35252452 PMCID: PMC8894003 DOI: 10.1155/2022/5584733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Oxidative stress injury (OSI) is an important pathological process in lung ischemia-reperfusion injury (LIRI), and diabetes mellitus (DM) can exacerbate this injury. Dexmedetomidine protects against LIRI by reducing OSI. However, the effect of dexmedetomidine on LIRI under diabetic conditions remains unclear. Therefore, this study is aimed at exploring the effects and mechanisms of dexmedetomidine on OSI induced by LIRI in diabetic rats. Rats were randomly divided into control+sham (CS), DM+sham (DS), control+ischemia-reperfusion (CIR), DM+ischemia-reperfusion (DIR), and DM+ischemia-reperfusion+dexmedetomidine (DIRD) groups (
). In the CS and DS groups, the nondiabetic and diabetic rats underwent thoracotomy only without LIRI. In the CIR, DIR, and DIRD groups, LIRI was induced through left hilum occlusion for 60 min, followed by reperfusion for 120 min in nondiabetic and diabetic rats, and rats in the DIRD group were administered dexmedetomidine (3, 5, and 10 μg/kg). Compared with those in the CS group, the OSI, lung compliance, apoptosis, and oxygenation indices deteriorated in the DS group (
), and these indices were further aggravated in the CIR and DIR groups (
), being the worst in the DIR group (
). Compared to those of the DIR group, the OSI, lung compliance (
vs.
), apoptosis (
vs.
), oxygenation (
vs.
), and caspase-3 and caspase-9 protein expression indices were attenuated, and Nrf2 and sulfiredoxin1 protein expression was increased in the DIRD group (
). And the lung injury, oxygenation, OSI, and Nrf2 and sulfiredoxin1 protein expression changed in a concentration-dependent manner. In conclusion, dexmedetomidine alleviated lung OSI and improved lung function in a diabetic rat LIRI model through the Nrf2-sulfiredoxin1 pathway.
Collapse
|
15
|
Jiang H, Zhao Y, Feng P, Liu Y. Sulfiredoxin-1 Inhibits PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Enhancing the Activation of Nrf2/ARE Signaling. Int Heart J 2022; 63:113-121. [PMID: 35034915 DOI: 10.1536/ihj.21-213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulfiredoxin1 (Srxn1), an endogenous antioxidant protein, is involved in cardiovascular diseases. In this study, we aimed to investigate the role of Srxn1 in VSMCs and its molecular mechanism. The murine vascular smooth muscle cells MOVAS were treated with different doses of platelet-derived growth factor-BB (PDGF-BB); then, Srxn1 expression was detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. MTT and wound healing assay were used to examine the effect of Srxn1 on MOVAS cell proliferation and migration. Reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in MOVAS cells were detected using corresponding commercial kits. Moreover, the expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 2 (MMP-2), and nuclear factor erythroid-2-related factor 2 (Nrf2) /antioxidant response element (ARE) signaling-related proteins was detected using western blot analysis. In our study, PDGF-BB dose-dependently increased Srxn1 expression in MOVAS cells, and Srxn1 expression was increased with time dependence in PDGF-BB-treated MOVAS cells. The knockdown of Srxn1 increased PDGF-BB-induced the proliferation, migration, ROS production, MDA level, and the protein expression of PCNA and MMP-2, as well as decreased SOD activity and the expression of Nrf2/ARE signaling-related proteins in PDGF-BB-stimulated MOVAS cells. However, the overexpression of Srxn1 showed the opposite results to those of knockdown of Srxn1. Moreover, the inhibitory effects of Srxn1 overexpression on PDGF-BB induced proliferation, migration, ROS production, and MDA level and the promotion of Srxn1 overexpression on PDGF-BB induced SOD activity were partially reversed by the knockdown of Nrf2. Srxn1 inhibited PDGF-BB-induced proliferation, migration, and oxidative stress through activating Nrf2/ARE signaling.
Collapse
Affiliation(s)
- Haijie Jiang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| | - Yueyan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| | - Panyang Feng
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| | - Yan Liu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| |
Collapse
|
16
|
Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis. Antioxidants (Basel) 2021; 11:antiox11010076. [PMID: 35052580 PMCID: PMC8772732 DOI: 10.3390/antiox11010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023] Open
Abstract
The peroxiredoxins (PRXs) constitute a ubiquitous antioxidant. Growing evidence in neurodegenerative disorders such as Parkinson’s disease (PD) or Alzheimer’s disease (AD) has highlighted a crucial role for PRXs against neuro-oxidation. Chorea-acanthocytosis/Vps13A disease (ChAc) is a devastating, life-shortening disorder characterized by acanthocytosis, neurodegeneration and abnormal proteostasis. We recently developed a Vps13a−/− ChAc-mouse model, showing acanthocytosis, neurodegeneration and neuroinflammation which could be restored by LYN inactivation. Here, we show in our Vps13a−/− mice protein oxidation, NRF2 activation and upregulation of downstream cytoprotective systems NQO1, SRXN1 and TRXR in basal ganglia. This was associated with upregulation of PRX2/5 expression compared to wild-type mice. PRX2 expression was age-dependent in both mouse strains, whereas only Vps13a−/− PRX5 expression was increased independent of age. LYN deficiency or nilotinib-mediated LYN inhibition improved autophagy in Vps13a−/− mice. In Vps13a−/−; Lyn−/− basal ganglia, absence of LYN resulted in reduced NRF2 activation and down-regulated expression of PRX2/5, SRXN1 and TRXR. Nilotinib treatment of Vps13a−/− mice reduced basal ganglia oxidation, and plasma PRX5 levels, suggesting plasma PRX5 as a possible ChAc biomarker. Our data support initiation of therapeutic Lyn inhibition as promptly as possible after ChAc diagnosis to minimize development of irreversible neuronal damage during otherwise inevitable ChAc progression.
Collapse
|
17
|
LncRNA SNHG15 Promotes Oxidative Stress Damage to Regulate the Occurrence and Development of Cerebral Ischemia/Reperfusion Injury by Targeting the miR-141/SIRT1 Axis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6577799. [PMID: 34868528 PMCID: PMC8641992 DOI: 10.1155/2021/6577799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a kind of disease with high mortality and high disability, which brings a huge burden to the public health system (Hu et al. (2017)), and it poses a serious threat to the quality of life of patients. Cerebral ischemia/reperfusion injury is an important pathophysiological mechanism. This study aims to assess the mechanism of SNHG15 in the occurrence and development of cerebral ischemia/reperfusion injury of nerve cells and to investigate its potential value for diagnosis and treatment. SNHG15 targeted miRNA molecules and target genes were predicted with bioinformatics tools such as StarBase and TargetScan. The process of ischemic reperfusion in cerebral apoplexy in normal cultured and oxygen-glucose-deprived and reoxygenated neurons was simulated with RT-PCR and western blot technique. The expressions of SNHG15 and miR-141 were detected with qPCR, and the expressions of SIRT1 and p65, TNF-α, ROS, iNOS, and IL-6 were detected with western blot. Meanwhile, SNHG15 siRNAs and miR-141 mimics were transfected for SH-SY5Y, with western blot testing. And the expressions of miR-141, SIRT1, and p65, TNF-α, ROS, iNOS, and IL-6 were tested. According to the prediction with bioinformatics tools of StarBase and TargetScan, miR-141 is the target of lncSNHG15. In the luciferase reporter plasmid double-luciferase assay, miR-141 and SIRT1 were defined as the target relationship. In the oxygen-glucose-deprived reoxygenation model group, SNHG15 expression increased, miR-141 expression decreased, SIRT1 expression increased, and the expressions of p65, TNF-α, ROS, iNOS, and IL-6 decreased. In the SNHG15-siRNA-transfected oxygen-glucose-deprived reoxygenation cell model group, miR-141 expression increased, SIRT1 expression decreased, and the expressions of p65, TNF-α, and IL-6 increased compared with the si-NC group. In the miR-141-mimic-transfected oxygen-glucose-deprived reoxygenation cell model, SNHG15 expression decreased, SIRT1 expression decreased, and the expressions of p65, TNF-α, IL-1β, and IL-6 increased. In conclusion, SNHG15 expression increased during the process of oxygen-glucose-deprived reoxygenation, and the oxidative stress process was reduced by miR-141/SIRT1.
Collapse
|
18
|
Zhu F, Shao J, Tian Y, Xu Z. Sulfiredoxin-1 protects retinal ganglion cells from high glucose-induced oxidative stress and inflammatory injury by potentiating Nrf2 signaling via the Akt/GSK-3β pathway. Int Immunopharmacol 2021; 101:108221. [PMID: 34653733 DOI: 10.1016/j.intimp.2021.108221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Sulfiredoxin-1 (Srxn1) has been acknowledged as a remarkable pro-survival factor in the protection of cells against stress-induced damage. The persistent exposure of retinal ganglion cells (RGCs) to high glucose (HG) in diabetes induces cellular damage, which contributes to the onset of diabetic retinopathy, a severe complication of diabetes. So far, little is known about the role of Srxn1 in regulating HG-induced injury of RGCs. The goals of this work were to evaluate the possible relevance of Srxn1 in the modulation of HG-induced apoptosis, oxidative stress and inflammation of RGCs in vitro. Our data showed that HG exposure caused a marked decrease in Srxn1 expression in RGCs. The up-regulation of Srxn1 markedly decreased HG-evoked apoptosis, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release in RGCs. On the contrary, the depletion of Srxn1 rendered RGCs more susceptible to HG-induced injury. Further data demonstrated that Srnx1 enhanced the activation of nuclear factor erythroid-2 (E2)-related factor 2 (Nrf2) signaling in HG-exposed RGCs associated with up-regulating the phosphorylation of Akt and glucogen synthase kinase-3β (GSK-3β). Notably, the inhibition of Akt abolished Srnx1-overexpression-mediated Nrf2 activation, while GSK-3β inhibition reversed Srnx1-depletion-mediated inactivation of Nrf2. In addition, Nrf2 inhibition partially abrogated Srnx1-mediated protective effects against HG-induced injury of RGCs. In summary, these data demonstrate that the overexpression of Srxn1 protects RGCs from the HG-induced injury of RGCs by enhancing Nrf2 signaling via modulation of Akt/GSK-3β axis. Our work highlights that the Srxn1-mediated Akt/GSK-3β/Nrf2 axis may exert a possible role in regulating RGC injury of diabetic retinopathy.
Collapse
Affiliation(s)
- Fei Zhu
- Ophthalmology, Yulin Hospital of Traditional Chinese Medicine, Yulin 719000, China
| | - Juan Shao
- Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yunlin Tian
- Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhiguo Xu
- Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
19
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
20
|
Alonso-Garrido M, Frangiamone M, Font G, Cimbalo A, Manyes L. In vitro blood brain barrier exposure to mycotoxins and carotenoids pumpkin extract alters mitochondrial gene expression and oxidative stress. Food Chem Toxicol 2021; 153:112261. [PMID: 34015425 DOI: 10.1016/j.fct.2021.112261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by antioxidants like carotenoids. Some mycotoxins as well as carotenoids penetrate the blood brain barrier (BBB) inducing alterations related to redox balance in the mitochondria. Therefore, the in vitro BBB model ECV304 was subcultured for 7 days and exposed to beauvericine, enniatins, ochratoxin A, zearalenone (100 nM each), individually and combined, and pumpkin extract (500 nM). Reactive oxygen species were measured by fluorescence using the dichlorofluorescein diacetate probe at 0 h, 2 h and 4 h. Intracellular ROS generation reported was condition dependent. RNA extraction was performed and gene expression was analyzed by qPCR after 2 h exposure. The selected genes were related to the Electron Transport Chain (ETC) and mitochondrial activity. Gene expression reported upregulation for exposures including mycotoxins plus pumpkin extract versus individual mycotoxins. Beauvericin and Beauvericin-Enniatins exposure significantly downregulated Complex I and pumpkin addition reverted the effect upregulating Complex I. Complex IV was the most downregulated structure of the ETC. Thioredoxin Interacting Protein was the most upregulated gene. These data confirm that mitochondrial processes in the BBB could be compromised by mycotoxin exposure and damage could be modulated by dietary antioxidants like carotenoids.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - M Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
21
|
McGinnis A, Klichko VI, Orr WC, Radyuk SN. Hyperoxidation of Peroxiredoxins and Effects on Physiology of Drosophila. Antioxidants (Basel) 2021; 10:antiox10040606. [PMID: 33920774 PMCID: PMC8071185 DOI: 10.3390/antiox10040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The catalytic activity of peroxiredoxins (Prx) is determined by the conserved peroxidatic cysteine (CysP), which reacts with peroxides to form sulfenic acid (Cys-SOH). Under conditions of oxidative stress, CysP is oxidized to catalytically inactive sulfinic (Cys-SO2) and sulfonic (Cys-SO3) forms. The Cys-SO2 form can be reduced in a reaction catalyzed by sulfiredoxin (Srx). To explore the physiological significance of peroxiredoxin overoxidation, we investigated daily variations in the oxidation state of 2-Cys peroxiredoxins in flies of different ages, or under conditions when the pro-oxidative load is high. We found no statistically significant changes in the 2-Cys Prxs monomer:dimer ratio, which indirectly reflects changes in the Prx catalytic activity. However, we found daily variations in Prx-SO2/3 that were more pronounced in older flies as well as in flies lacking Srx. Unexpectedly, the srx mutant flies did not exhibit a diminished survivorship under normal or oxidative stress conditions. Moreover, the srx mutant was characterized by a higher physiological activity. In conclusion, catalytically inactive forms of Prx-SO2/3 serve not only as a marker of cellular oxidative burden, but may also play a role in an adaptive response, leading to a positive effect on the physiology of Drosophila melanogaster.
Collapse
|
22
|
Fan Y, Wei L, Zhang S, Song X, Yang J, He X, Zheng X. LncRNA SNHG15 Knockdown Protects Against OGD/R-Induced Neuron Injury by Downregulating TP53INP1 Expression via Binding to miR-455-3p. Neurochem Res 2021; 46:1019-1030. [PMID: 33528807 DOI: 10.1007/s11064-020-03222-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the common symptom of ischemic stroke, which poses a heavy burden to human health. Long non-coding RNA (lncRNA) is indicated to be a critical regulator in cerebral ischemia. This study aims to reveal the effects of lncRNA small nucleolar RNA host gene 15 (SNHG15) on oxygen-glucose deprivation and reoxygenation (OGD/R)-induced neuron injury and underlying mechanism. The expression levels of SNHG15, microRNA-455-3p (miR-455-3p) and tumour protein p53 inducible nuclear protein 1 (TP53INP1) mRNA were determined by quantitative real time polymerase chain reaction in P12 cells. The protein levels of TP53INP1, cleaved caspase-3, caspase-3, B-cell lymphoma-2 and BCL2-associated x protein (Bax) were detected by western blot in P12 cells. Cell viability and apoptosis were revealed by cell counting kit-8 assay and flow cytometry analysis, respectively, in P12 cells. Caspase-3 activity, the levels of tumor necrosis factor-α and interleukin-1β and the production of reactive oxygen species (ROS) were severally determined by caspase-3 activity assay, Enzyme-linked immunosorbent assay and ROS detection assay in P12 cells. The binding relationship between miR-455-3p and SNHG15 or TP53INP1 was predicted by starbase online database, and identified by dual-luciferase reporter, RNA pull-down or RNA immunoprecipitation assay. SNHG15 expression and the mRNA and protein levels of TP53INP1 were dramatically upregulated, while miR-455-3p expression was apparently downregulated in OGD/R-induced PC12 cells. SNHG15 silencing hindered the effects of OGD/R treatment on cell viability, apoptosis, inflammation and oxidative in PC12 cells; however, these impacts were restored after miR-455-3p inhibitor transfection. Additionally, SNHG15 acted as a sponge of miR-455-3p and miR-455-3p bound to TP53INP1. SNHG15 contributed to OGD/R-induced neuron injury by regulating miR-455-3p/TP53INP1 axis, which provided a novel insight to study lncRNA-directed therapy in ischemia stoke.
Collapse
Affiliation(s)
- Yun Fan
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China
| | - Lihong Wei
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China
| | - Sanjun Zhang
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China
| | - Xueyun Song
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China
| | - Jiaqing Yang
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China
| | - Xiaoxia He
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China
| | - Xianzhao Zheng
- Department of Neurology, Jiaozuo People's Hospital, No, 267, Jiefang Middle Road, Jiaozuo, 454002, Henan, China.
| |
Collapse
|
23
|
Park YE, Noh Y, Kim DW, Lee TK, Ahn JH, Kim B, Lee JC, Park CW, Park JH, Kim JD, Kim YM, Kang IJ, Lee JW, Kim SS, Won MH. Experimental pretreatment with YES-10 ®, a plant extract rich in scutellarin and chlorogenic acid, protects hippocampal neurons from ischemia/reperfusion injury via antioxidant role. Exp Ther Med 2021; 21:183. [PMID: 33488792 PMCID: PMC7812581 DOI: 10.3892/etm.2021.9614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Erigeron annuus (L.) PERS. (EALP) and Clematis mandshurica RUPR. (CMR) have been used in traditional remedies due to their medicinal effects. Recently, we reported that pretreatment with 200 mg/kg of YES-10® (a combination of extracts from leaves of EALP and CMR) displayed neuroprotective effects against brain ischemia and reperfusion injury. The present study analyzed the major ingredients of YES-10® and investigated whether neuroprotection from YES-10® was dependent upon antioxidant effects in the cornu ammonis 1 (CA1) field in the gerbil hippocampus, after transient forebrain ischemia for 5 min. YES-10® was demonstrated to predominantly contain scutellarin and chlorogenic acid. Pretreatment with YES-10® significantly increased protein levels and the immunoreactivity of copper/zinc-superoxide dismutase (SOD1) and manganese-superoxide dismutase (SOD2) was in the pyramidal neurons of the hippocampal CA1 field when these were examined prior to transient ischemia induction. The increased SODs in CA1 pyramidal neurons following YES-10® treatment were maintained after ischemic injury. In this case, the CA1 pyramidal neurons were protected from ischemia-reperfusion injury. Oxidative stress was significantly attenuated in the CA1 pyramidal neurons, and this was determined by 4-hydroxy-2-nonenal immunohistochemistry and dihydroethidium histofluorescence staining. Taken together, the results indicated that YES-10® significantly attenuated transient ischemia-induced oxidative stress and may be utilized for developing a protective agent against ischemic insults.
Collapse
Affiliation(s)
- Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoohun Noh
- Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea.,Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.,Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
24
|
Lan W, Lin J, Liu W, Wang F, Xie Y. Sulfiredoxin-1 protects spinal cord neurons against oxidative stress in the oxygen-glucose deprivation/reoxygenation model through the bax/cytochrome c/caspase 3 apoptosis pathway. Neurosci Lett 2021; 744:135615. [PMID: 33421493 DOI: 10.1016/j.neulet.2020.135615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal cord ischemia/reperfusion injury is a common clinical, pathophysiological phenomenon with complex molecular mechanisms. Currently, there are no therapeutics available to alleviate the same. This study investigates the protective effects of sulfiredoxin-1 (Srxn 1) on spinal cord neurons following exposure to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. MATERIALS AND METHODS Primary spinal cord neurons were cultured, detected by anti-tubulin βⅢ, and transfected with adeno-associated virus (AAV)-Srxn 1 to overexpress Srxn 1. They were identified by their morphology and CCK-8 assay. The superoxide dismutase level was measured by superoxide dismutase assay. Malondialdehyde level was measured by malondialdehyde assay. The apoptosis ratio was calculated by Hoechst 33342 and Annexin V-PE/7-AAD staining. Mitochondrial transmembrane potential (Δψm) was detected by tetramethylrhodamine-methyl ester-perchlorate (TMRM) staining. The mRNA expression levels of Srxn 1 and caspase 3 were detected by quantitative reverse transcription-polymerase chain reaction, and the protein expression levels of Srxn 1, bax, bcl-2, cytosolic cytochrome c, and caspase 3 were detected by western blotting. RESULTS AAV-Srxn 1 up-regulated mRNA and protein levels of Srxn 1 in spinal cord neurons. Following exposure to OGD/R, overexpression of Srxn 1 improved the neuronal viability, alleviated the neuron apoptosis, enhanced the mitochondrial transmembrane potential, increased the SOD level, decreased the MDA level, inhibited the expression of cytosolic cytochrome c, bax, and caspase 3, and promoted the expression of bcl-2. CONCLUSION Srxn 1 plays a significant role in anti-apoptosis of spinal cord neurons, and Srxn 1 may be a potential therapeutic target for spinal cord I/R injury.
Collapse
Affiliation(s)
- Wenbin Lan
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Weinan Liu
- Department of Orthopedics, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China
| | - Fasheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yun Xie
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
25
|
Xu M, Xiang D, Wang W, Chen L, Lu W, Cheng F. Inhibition of miR-448-3p Attenuates Cerebral Ischemic Injury by Upregulating Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). Neuropsychiatr Dis Treat 2021; 17:3147-3158. [PMID: 34703235 PMCID: PMC8541769 DOI: 10.2147/ndt.s310495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator responsible for oxidative stress in brain injury. This study aimed to investigate the potential mechanism of miR-448-3p and Nrf2 in cerebral ischemia/reperfusion (I/R) injury. METHODS In vitro and in vivo cerebral I/R injury models were constructed, and Nrf2 expression levels were detected by qRT-PCR and Western blot. The potential miRNAs for Nrf2 were predicted by bioinformatic analysis. The binding interaction between miR-448-3p and Nrf2 was determined by luciferase reporter assay. The effects of miR-448-3p on neurological deficit, infarct volume, and brain water content in mice were tested. The effects of miR-448-3p on oxidative stress indicators (SOD activity, MDA content, and ROS production) were detected by commercial assay kits. The levels of HO-1 and cleaved caspase-3 were evaluated by Western blot. Cell viability was evaluated by MTT assay, and cell apoptosis was evaluated by TUNEL staining and flow cytometry. RESULTS Nrf2 was significantly downregulated and miR-448-3p was upregulated in cerebral I/R injury both in vivo and in vitro. MiR-448-3p downregulation efficiently attenuated brain injury and reduced oxidative stress and apoptosis. MiR-448-3p was identified to act as ceRNA of Nrf2 and negatively regulated Nrf2 expression, which was consistent with the animal studies. In addition, Nrf2 silencing obviously attenuated the neuroprotective effects of miR-448-3p inhibitor in vitro. CONCLUSION MiR-448-3p participated in the regulation of cerebral I/R injury via inhibiting Nrf2.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province, 215300, People's Republic of China
| | - Dingchao Xiang
- Department of Neurosurgery, Wuxi clinical medical school of Anhui Medical University, 904th Hospital of PLA(Taihu Hospital of Wuxi), Wuxi, 214000, People's Republic of China
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province, 215300, People's Republic of China
| | - Long Chen
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province, 215300, People's Republic of China
| | - Wei Lu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province, 215300, People's Republic of China
| | - Feng Cheng
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu Province, People's Republic of China
| |
Collapse
|
26
|
Berntsen HF, Duale N, Bjørklund CG, Rangel-Huerta OD, Dyrberg K, Hofer T, Rakkestad KE, Østby G, Halsne R, Boge G, Paulsen RE, Myhre O, Ropstad E. Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 146:106240. [PMID: 33186814 DOI: 10.1016/j.envint.2020.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, 0304 Oslo, Norway.
| | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | | | - Kine Dyrberg
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Kirsten Eline Rakkestad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Gunn Østby
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ruth Halsne
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Gudrun Boge
- Department of Companion Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| |
Collapse
|
27
|
Zhang YM, Qu XY, Tao LN, Zhai JH, Gao H, Song YQ, Zhang SX. XingNaoJing injection ameliorates cerebral ischaemia/reperfusion injury via SIRT1-mediated inflammatory response inhibition. PHARMACEUTICAL BIOLOGY 2020; 58:16-24. [PMID: 31854225 PMCID: PMC6968491 DOI: 10.1080/13880209.2019.1698619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: XingNaoJing injection (XNJ), extracted from a traditional compound Chinese medicine Angong niuhuang pill, is well known for treating stroke in the clinic, but the specific effects and mechanisms remain unclear.Objective: We investigated the mechanistic basis for the protective effect of XNJ on cerebral ischaemia/reperfusion (I/R) injury.Materials and methods: Five groups of 10 SD rats underwent 2 h of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. XNJ at 10 and 15 mL/kg was intraperitoneally administered 24 h before ischaemia and at the onset of reperfusion respectively. The silent information regulator 1 (SIRT1) inhibitor EX527 was intracerebroventricularly injected 0.5 h before reperfusion. Cerebral infarction size, neurological scores, morphological changes, and expression levels of inflammatory mediators and SIRT1 were measured. Furthermore, human brain microvascular endothelial cells (HBMECs) were subjected to 3 h oxygen and glucose deprivation (OGD) followed by 24 h reoxygenation to mimic cerebral I/R in vitro. EX527 pre-treatment occurred 1 h before OGD. SIRT1 and inflammatory mediator levels were analyzed.Results: Both XNJ doses significantly decreased cerebral infarct area (40.11% vs. 19.66% and 9.87%) and improved neurological scores and morphological changes. Inflammatory mediator levels were remarkably decreased in both model systems after XNJ treatment. XNJ also enhanced SIRT1 expression. Notably, the SIRT1 inhibitor EX527 attenuated the XNJ-mediated decrease in inflammation in vivo and in vitro.Conclusions: XNJ improved cerebral I/R injury through inhibiting the inflammatory response via the SIRT1 pathway, which may be a useful target in treating cerebral I/R injury.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Xiao-Yu Qu
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Li-Na Tao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Jing-Hui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Yan-Qing Song
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
- CONTACT Yan-Qing Song
| | - Si-Xi Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
- Si-Xi Zhang Department of Pharmacy, the First Hospital of Jilin University, 71# Xinmin Street, Changchun130021, Jilin Province, PR China
| |
Collapse
|
28
|
Wu Z, Lu Z, Ou J, Su X, Liu J. Inflammatory response and oxidative stress attenuated by sulfiredoxin‑1 in neuron‑like cells depends on nuclear factor erythroid‑2‑related factor 2. Mol Med Rep 2020; 22:4734-4742. [PMID: 33173963 PMCID: PMC7646873 DOI: 10.3892/mmr.2020.11545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023] Open
Abstract
Sulfiredoxin‑1 (SRX1) is a conserved endogenous antioxidative protein, which is involved in the response to cellular damage caused by oxidative stress. Oxidative stress and inflammation are the primary pathological changes in spinal cord injuries (SCI). The aim of present study was to explore the roles of SRX1 in SCI. Using reverse transcription‑quantitative PCR and western blotting, the present study discovered that the expression levels of SRX1 were downregulated in the spinal cord tissues of SCI model rats. Massive irregular cavities and decreased Nissl bodies were observed in the model group compared with the sham group. Thus, to determine the underlying mechanisms, neuron‑like PC12 cells were cultured in vitro. Western blotting analysis indicated that SRX1 expression levels were downregulated following the exposure of cells to lipopolysaccharide (LPS). Following the transfection with the SRX1 overexpression plasmid and stimulation with LPS, the results of the Cell Counting Kit‑8 assay indicated that the cell viability was increased compared with LPS stimulation alone. Furthermore, the expression levels of proinflammatory cytokines secreted by LPS‑treated PC12 cells were downregulated following SRX1 overexpression. Increased malondialdehyde content, decreased superoxide dismutase activity and reactive oxygen species production were also identified in PC12 cells treated with LPS using commercial detection kits, whereas the overexpression of SRX1 partially reversed the effects caused by LPS stimulation. The aforementioned results were further verified by determining the expression levels of antioxidative proteins using western blotting analysis. In addition, nuclear factor erythroid‑2‑related factor 2 (NRF2), a transcription factor known to regulate SRX1, was indicated to participate in the protective effect of SRX1 against oxidative stress. Inhibition of NRF2 further downregulated the expression levels of SRX1, NAD(P)H dehydrogenase quinone 1 and heme oxygenase‑1 in the presence of LPS, while activation of NRF2 reversed the effects of LPS on the expression levels of these proteins. In conclusion, the results of the present study indicated that the anti‑inflammatory and antioxidative effects of SRX1 may depend on NRF2, providing evidence that SRX1 may serve as a novel molecular target to exert a neuroprotective effect in SCI.
Collapse
Affiliation(s)
- Zhiliang Wu
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Zhenghao Lu
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jun Ou
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Xiaotao Su
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jingnan Liu
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
29
|
Farfán N, Carril J, Redel M, Zamorano M, Araya M, Monzón E, Alvarado R, Contreras N, Tapia-Bustos A, Quintanilla ME, Ezquer F, Valdés JL, Israel Y, Herrera-Marschitz M, Morales P. Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia. Int J Mol Sci 2020; 21:ijms21207800. [PMID: 33096871 PMCID: PMC7589575 DOI: 10.3390/ijms21207800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal Asphyxia (PA) is a leading cause of motor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-α+IFN-γ (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 °C for 21 min. Thereafter, 16 μL of MSC-S (containing 6 μg of protein derived from 2 × 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-κB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia.
Collapse
Affiliation(s)
- Nancy Farfán
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Jaime Carril
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Martina Redel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Marta Zamorano
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Maureen Araya
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Estephania Monzón
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Raúl Alvarado
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Norton Contreras
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - María Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - José Luis Valdés
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
- Correspondence: ; Tel.: +56-229786788
| |
Collapse
|
30
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
31
|
Tea Polysaccharide (TPS) Reduces Astrocytes Apoptosis Induced by Oxygen-Glucose Deprivation/Reoxygenation by Regulating the miR-375/SRXN1 Axis. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/1308081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effect of tea polysaccharides (TPS) mediated by miR-375/SRXN1 axis on mice with cerebral ischemia-reperfusion injury and proliferation and apoptosis of astrocytes (AS) conducted with oxygen-glucose deprivation/reoxygenation (OGD/R). Methods. Mouse model of middle cerebral artery occlusion (MCAO) and OGD/R-induced AS injury model were established; brain obstruction volume was measured by TTC staining; dry/wet weight ratio was used for measuring brain water content; hydrogen peroxide (H2O2) content in brain tissue was measured by H2O2 assay kit; cell viability and apoptosis rate were detected by MTT assay and flow cytometry, respectively; the expression level of miR-375 in OGD/R-AS was detected using qPCR; dual-luciferase reporter assay was used to verify the targeting relationship between miR-375 and SRXN1; mRNA levels of miR-375, SRXN1, Bcl-2, Bax, and caspase-3 were measured by qPCR; the protein levels of SRXN1, Bcl-2, Bax, and caspase-3 were measured by Western blotting. Results. The volume of cerebral obstruction, brain water content and H2O2 content in mice decreased gradually with the increase of TPS concentration. TPS treatment in vitro could effectively improve OGD/R-AS viability and reduce the apoptotic rate; overexpression of miR-375 inhibited AS viability but increased the apoptotic rate; TPS treatment resulted in a decrease in the expression of miR-375 in OGD/R-AS; MiR-375 targeted SRXN1 in AS; inhibition of miR-375 expression significantly upregulated SRXN1 levels; TPS treatment with simultaneous overexpression of SRXN1 significantly increased OGD/R-AS activity and reduced apoptosis; however, TPS treatment with simultaneous overexpression of SRXN1 and miR-375 resulted in no significant difference in cell viability and apoptosis rate compared with the control group. Conclusion. TPS reduces astrocyte injury induced by cerebral ischemia-reperfusion in mice by regulating the miR-375/SRXN1 molecular axis.
Collapse
|
32
|
Intra- and extra-hospital improvement in ischemic stroke patients: influence of reperfusion therapy and molecular mechanisms. Sci Rep 2020; 10:3513. [PMID: 32103074 PMCID: PMC7044227 DOI: 10.1038/s41598-020-60216-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroprotective treatments in ischemic stroke are focused to reduce the pernicious effect of excitotoxicity, oxidative stress and inflammation. However, those cellular and molecular mechanisms may also have beneficial effects, especially during the late stages of the ischemic stroke. The objective of this study was to investigate the relationship between the clinical improvement of ischemic stroke patients and the time-dependent excitotoxicity and inflammation. We included 4295 ischemic stroke patients in a retrospective study. The main outcomes were intra and extra-hospital improvement. High glutamate and IL-6 levels at 24 hours were associated with a worse intra-hospital improvement (OR:0.993, 95%CI: 0.990–0.996 and OR:0.990, 95%CI: 0.985–0.995). High glutamate and IL-6 levels at 24 hours were associated with better extra-hospital improvement (OR:1.13 95%CI, 1.07–1.12 and OR:1.14, 95%CI, 1.09–1.18). Effective reperfusion after recanalization showed the best clinical outcome. However, the long term recovery is less marked in patients with an effective reperfusion. The variations of glutamate and IL6 levels in the first 24 hours clearly showed a relationship between the molecular components of the ischemic cascade and the clinical outcome of patients. Our findings suggest that the rapid reperfusion after recanalization treatment blocks the molecular response to ischemia that is associated with restorative processes.
Collapse
|
33
|
Hu W, Wang H, Shu Q, Chen M, Xie L. Green Tea Polyphenols Modulated Cerebral SOD Expression and Endoplasmic Reticulum Stress in Cardiac Arrest/Cardiopulmonary Resuscitation Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5080832. [PMID: 32185207 PMCID: PMC7060848 DOI: 10.1155/2020/5080832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/04/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Reducing cerebral ischemia-reperfusion injury is crucial for improving survival and neurologic outcomes after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The purpose of this study is to investigate the neuroprotective effects of green tea polyphenols (GTPs) concern with the modulation of endogenous antioxidation and endoplasmic reticulum stress. METHODS After subjecting to CA/CPR, rats were randomized into the saline group (NS, n = 40) and the GTPs group (GTPs, n = 40) and the GTPs group (GTPs, n = 40) and the GTPs group (GTPs. RESULTS Comparing with that in NS group, GTPs increased the expression of SOD1 and SOD2 at 12 h, 24 h, 48 h, 72 h, and the expression of GRP78 at 24 h and 48 h (p < 0.05) butdecreased caspase-12, CHOP, caspase-3 level, and apoptotic number of neurons (p < 0.05) butdecreased caspase-12, CHOP, caspase-3 level, and apoptotic number of neurons (. CONCLUSION GTPs exert neuroprotective effects via mechanisms that may be related to the enhancement of endogenous antioxidant capacity and inhibition of endoplasmic reticulum stress in CA/CPR rat models.
Collapse
Affiliation(s)
- Wanxiang Hu
- Department of Physiology, School of Pre-Clinical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Huihui Wang
- Qilu Medical University, Zibo, Shandong, China
| | - Quan Shu
- Department of Physiology, School of Pre-Clinical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Hubei University of Science and Technology, Xianning, Hubei, China
| | - Menghua Chen
- Institute of Cardiovascular Diseases, The Second Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Lu Xie
- Department of Physiology, School of Pre-Clinical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
34
|
Liu D, Wang H, Zhang Y, Zhang Z. Protective Effects of Chlorogenic Acid on Cerebral Ischemia/Reperfusion Injury Rats by Regulating Oxidative Stress-Related Nrf2 Pathway. Drug Des Devel Ther 2020; 14:51-60. [PMID: 32021091 PMCID: PMC6954849 DOI: 10.2147/dddt.s228751] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cerebral ischemia-reperfusion (CI/R) injury is caused by blood flow recovery after ischemic stroke. Chlorogenic acid (CGA, 5-O-caffeoylquinic acid) is a major polyphenol component of Coffea canephora, Coffea arabica L. and Mate (Ilex paraguariensis A. StHil.). Previous studies have shown that CGA has a significant neuroprotective effect and can improve global CI/R injury. However, the underlying molecular mechanism of CGA in CI/R injury has not been fully revealed. MATERIALS In this study, CI/R rat model was constructed. The rats were randomly divided into nine groups with ten in each group: Control, CGA (500 mg·kg-1), CI/R, CI/R + CGA (20 mg·kg-1), CI/R + CGA (100 mg·kg-1), CI/R + CGA (500 mg·kg-1), ML385 (30 mg·kg-1), CI/R + ML385 (30 mg·kg-1), CI/R + CGA + ML385. Cerebral infarction volume was detected by TTC staining. Brain pathological damage was detected by H&E staining. Apoptosis of cortical cells was detected by TUNEL staining. The expression of related proteins was detected by RT-qPCR and Western blotting. RESULTS Step-down test and Y maze test showed that CGA dose-dependently mitigated CI/R-induced brain damage and enhanced learning and spatial memory. Besides, CGA promoted the expression of BDNF and NGF in a dose-dependent manner and alleviated CI/R-induced nerve injury. Moreover, CGA increased the activity of SOD and the level of GSH, as well as decreased production of ROS and LDH and the accumulation of MDA. Notably, CGA attenuated oxidative stress-induced brain injury and apoptosis and inhibited the expression of apoptosis-related proteins (cleaved caspase 3 and caspase 9). Additionally, CGA reversed CI/R induced inactivation of Nrf2 pathway and promoted Nrf2, NQO-1 and HO-1 expression. Nrf2 pathway inhibitor ML385 destroyed this promotion. DISCUSSION All the data indicated that CGA had a neuroprotective effect on the CI/R rats by regulating oxidative stress-related Nrf2 pathway.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan471000, People’s Republic of China
| | - Huilin Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan471000, People’s Republic of China
| | - Yangang Zhang
- Department of Ultrasound, The Affiliated Children's Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Zhan Zhang
- Department of Ultrasound, The Affiliated Children's Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| |
Collapse
|
35
|
Clematichinenoside Facilitates Recovery of Neurological and Motor Function in Rats after Cerebral Ischemic Injury through Inhibiting Notch/NF-κB Pathway. J Stroke Cerebrovasc Dis 2019; 28:104288. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 07/07/2019] [Indexed: 11/23/2022] Open
|
36
|
Li R, Li X, Wu H, Yang Z, Fei L, Zhu J. Theaflavin attenuates cerebral ischemia/reperfusion injury by abolishing miRNA‑128‑3p‑mediated Nrf2 inhibition and reducing oxidative stress. Mol Med Rep 2019; 20:4893-4904. [PMID: 31638230 PMCID: PMC6854549 DOI: 10.3892/mmr.2019.10755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Theaflavin has been proven to own strong antioxidative capacity; however, the molecular mechanism underlying its protective effect against cerebral ischemia-reperfusion (I/R) injury remains unclear. Therefore, the present study was designed to elucidate the neuroprotective effects of theaflavin on cerebral I/R injury and its underlying molecular mechanisms. To investigate the effects of theaflavin on neurological function, neurogenesis, and oxidative stress, experiments were performed using a cerebral I/R injury rat model, and neural stem cells (NSCs) were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R). Further, the expression profiles of miRNA-128-3p and the regulatory function of nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) were evaluated in these models. We found that theaflavin treatment significantly reduced infarct volume and neuronal injury, and thus improved the impaired memory and learning ability. Furthermore, theaflavin treatment significantly enhanced the increase in NSC proliferation, reduction in the apoptotic rate and inhibition of oxidative stress. Mechanistically, theaflavin targeted miRNA-128-3p and further activated the Nrf2 pathway to reduce oxidative stress. In summary, theaflavin has a strong ability to attenuate cerebral I/R injury through miRNA-128-3p-mediated recovery of the impaired antioxidant defense system, which suggests that it could be a potential drug candidate for ischemic stroke.
Collapse
Affiliation(s)
- Ronggang Li
- Department of Neurosurgery, Fudan University Huashan Hospital and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Xin Li
- Department of Imaging, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Haibing Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Zhikun Yang
- Department of Neurosurgery, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Li Fei
- Department of Neurosurgery, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Jianhong Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
37
|
Wang J, Chen J, Chen J, Liu X, Yang H, Liu J, He A, Gao X, Xin Y. KIF2 mediates the neuroprotection in cerebral ischaemia injury by affecting NF-κB pathway. Clin Exp Pharmacol Physiol 2019; 47:274-280. [PMID: 31514228 DOI: 10.1111/1440-1681.13175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/28/2022]
Abstract
Stroke is the most common cerebrovascular disease with high morbidity and mortality around the world. However, the underlying mechanisms involved in nerve injury and cerebral ischaemia/reperfusion (I/R) during cerebrovascular disease are still not completely clear. In the present study, we investigate the role of kinesin family member 2 (KIF2) in the neuroprotection after cerebral I/R injury. KIF2 was aberrantly expressed in the cerebral tissues from middle cerebral artery occlusion (MCAO) rat model in a time dependent manner. A similar changing pattern was found in the cultured hypoxic neurons as well as SK-N-SH cells in vitro. Compared to the control, KIF2 inhibition significantly increased the level of malonic dialdehyde (MDA), and reduced the level of superoxide dismutase (SOD) as well as glutathione peroxidase (GSH-px) activity in cerebral tissues of MCAO rat model. The reactive oxygen species (ROS) level was also up-regulated after KIF2 siRNA knockdown in cultured hypoxic SK-N-SH cells. The apoptosis rates of hypoxic neurons and SK-N-SH cells as well as activated-caspase-3 level were obviously increased after KIF2 silencing. Furthermore, we found that the nuclear factor-kappa B (NF-κB) pathway was involved in KIF2-mediated neuroprotection after cerebral I/R injury, and induced apoptosis of hypoxic SK-N-SH cells by KIF2 silencing could be attenuated by the specific inhibitor BAY11-7082 of NF-κB. In conclusion, we demonstrate that KIF2 could mediate the neuroprotection in cerebral I/R injury by inhibiting activation of NF-κB pathway. This might provide a novel therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Department of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Encephalopathy, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Jie Chen
- Department of Encephalopathy, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Jun Chen
- Department of Encephalopathy, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Xifang Liu
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haixia Yang
- Department of Encephalopathy, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Liu
- Department of Encephalopathy, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Ali He
- Department of Acupuncture, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaohang Gao
- Department of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinhu Xin
- Department of Encephalopathy, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Shen Y, Chen S, Zhao Y. Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3β. Biochem Biophys Res Commun 2019; 516:1137-1144. [DOI: 10.1016/j.bbrc.2019.06.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023]
|
39
|
Roles Played by the Na +/Ca 2+ Exchanger and Hypothermia in the Prevention of Ischemia-Induced Carrier-Mediated Efflux of Catecholamines into the Extracellular Space: Implications for Stroke Therapy. Neurochem Res 2019; 45:16-33. [PMID: 31346893 PMCID: PMC6942591 DOI: 10.1007/s11064-019-02842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl−-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.
Collapse
|
40
|
Irisin Contributes to the Hepatoprotection of Dexmedetomidine during Intestinal Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7857082. [PMID: 31191804 PMCID: PMC6525857 DOI: 10.1155/2019/7857082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
Intestinal ischemia/reperfusion (I/R), which is associated with high morbidity and mortality, is also accompanied with abnormal energy metabolism and liver injury. Irisin, a novel exercise-induced hormone, can regulate adipose browning and thermogenesis. The following study investigated the potential role of dexmedetomidine in liver injury during intestinal I/R in rats. Adult male Sprague-Dawley rats underwent occlusion of the superior mesenteric artery for 90 min followed by 2 h of reperfusion. Dexmedetomidine or irisin-neutralizing antibody was intravenously administered for 1 h before surgery. The results demonstrated that severe intestine and liver injuries occurred during intestinal I/R as evidenced by pathological scores and an apparent increase in serum diamine oxidase (DAO), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels. In addition, the hepatic irisin, cleaved caspase-3, Bax, and NLRP3 inflammasome components (including NLRP3, ASC, and caspase-1), protein expressions, apoptotic index, reactive oxygen species (ROS), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 levels increased; however, the serum irisin level and hepatic Bcl-2 protein expression and superoxide dismutase (SOD) activity decreased after intestinal I/R. Interestingly, dexmedetomidine could reduce the above listed changes and increase the irisin levels in plasma and the liver in I/R rats. Dexmedetomidine-mediated protective effects on liver injury and NLRP3 inflammasome activation during intestinal I/R were partially abrogated via irisin-neutralizing antibody treatment. The results suggest that irisin might contribute to the hepatoprotection of dexmedetomidine during intestinal ischemia/reperfusion.
Collapse
|
41
|
Zhang FB, Wang JP, Zhang HX, Fan GM, Cui X. Effect of β-patchoulene on cerebral ischemia-reperfusion injury and the TLR4/NF-κB signaling pathway. Exp Ther Med 2019; 17:3335-3342. [PMID: 30988709 PMCID: PMC6447785 DOI: 10.3892/etm.2019.7374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
β-patchoulene (β-PAE), an active constituent of the Pogostemon cablin, is well known for its anti-inflammatory and antioxidative functions in various diseases. However, little is known about the impact of β-PAE on the cerebral ischemia-reperfusion (I/R) injury. The current study aimed to determine the neuroprotective effect of β-PAE and the underlying mechanisms on cerebral I/R injury. Following pretreatment with β-PAE (10 mg/kg body weight) by tail intravenous injection for 1 h, Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 h and reperfusion for 24 h. The results indicated that pretreatment with β-PAE could diminish the infarct volume, decrease the brain water content, reduce the neurological deficit score and restore the mitochondrial membrane potential, compared with the untreated I/R injury group. Furthermore, cell apoptosis was markedly suppressed by β-PAE, and this effect was associated with the decreased apoptosis regulator BAX/apoptosis regulator Bcl-2 expression ratio and caspase-3 activity. In addition, β-PAE significantly inhibited the release of proinflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Superoxide generation and malondialdehyde levels were reduced while the levels of glutathione peroxidase and superoxide dismutase were elevated following treatment with β-PAE, indicating the antioxidative role of β-PAE in cerebral I/R injury. Furthermore, the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was inhibited by β-PAE, as demonstrated by the decreased TLR4 expression and nuclear translocation of p65, and increased IκBα level. Taken together, the results suggested that β-PAE may exhibit a neuroprotective effect on cerebral I/R injury in rats through inactivating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fu-Bo Zhang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jian-Ping Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hong-Xia Zhang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Gui-Mei Fan
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xin Cui
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
42
|
Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019; 10:153. [PMID: 30890934 PMCID: PMC6411824 DOI: 10.3389/fphar.2019.00153] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Logan M Locascio
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon MC, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide Against 6-OHDA Toxicity in Cultured Rat Astrocytes. J Mol Neurosci 2018; 69:1-16. [PMID: 30343367 DOI: 10.1007/s12031-018-1181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,CIRB, CNRS UMR 7241/INSERM U1050, PSL University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France.,Imagine Institute and Center of Psychiatry and Neuroscience, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Fatma Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - Ibtissem Bouannee
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Sami Zekri
- USCR Transmission Electron Microscopy, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Sana Mezghani
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.
| |
Collapse
|
44
|
Liu C, Yang J, Zhang C, Geng X, Zhao H. The changes of systemic immune responses during the neuroprotection induced by remote ischemic postconditioning against focal cerebral ischemia in mice. Neurol Res 2018; 41:26-36. [PMID: 30281410 DOI: 10.1080/01616412.2018.1523037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin 2018; 39:998-1011. [PMID: 29022576 DOI: 10.1038/aps.2017.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
Salvianolate lyophilized injection (SLI) and Xueshuantong injection (lyophilized) (XST) are two herbal standardized preparations that have been widely used in China for the treatment of acute cerebral infarction. In this study, we investigated the neuroprotective effects of SLI combined with XST in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Wistar rats were subjected to 1.5 h of MCAO followed by reperfusion for 3 h, then were treated with SLI or XST alone, or with their combinations via tail vein injection daily for 3 d. Edaravone (EDI, 6 mg·kg-1·d-1) was used as a positive control drug, We showed that administration of a combination of 1X1S (XST 100 mg·kg-1·d-1 plus SLI 21 mg·kg-1·d-1) more effectively protected the ischemic brains than SLI or XST used alone. Administration of 1X1S not only significantly decreased neurological deficit scores and infarct volumes and increased regional cerebral blood flow, but also inhibited the activation of both microglia and astrocytes in the hippocampus. Furthermore, administration of 1X1S significantly decreased the levels of MDA and ROS with concomitant increases in the levels of antioxidant activity (SOD, CAT and GSH) in the brain tissues as compared with SLI and XST used alone. Moreover, administration of 1X1S remarkably upregulated the expression of Nrf-2, HO-1 and NQO-1, and downregulated the expression of Keap1 and facilitated the nuclear translocation of Nrf-2 in the brain tissues as compared with XST used alone. Our study demonstrates that a combination of 1X1S effectively protects MCAO/R injury via suppressing oxidative stress and the Nrf-2/Keap1 pathway.
Collapse
|
46
|
Cheng Y, Luo F, Zhang Q, Sang Y, Chen X, Zhang L, Liu Y, Li X, Li J, Ding H, Mei Y. α-Lipoic acid alleviates pentetrazol-induced neurological deficits and behavioral dysfunction in rats with seizures via an Nrf2 pathway. RSC Adv 2018. [DOI: 10.1039/c7ra11491e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epilepsy (EP) is a type of chronic brain disease characterized by transient central nervous system malfunction which is the result of neuron paradoxical discharge in the brain.
Collapse
|