1
|
Chen G, Zhang J, Sheng M, Zhang S, Wu Q, Liu L, Yu B, Kou J. Serum of limb remote ischemic postconditioning inhibits fMLP-triggered activation and reactive oxygen species releasing of rat neutrophils. Redox Rep 2021; 26:176-183. [PMID: 34663202 PMCID: PMC8530488 DOI: 10.1080/13510002.2021.1982515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives The study explores the protective role of the peripheral serum of limb remote ischemic postconditioning (LRIP) in reducing the reactive oxygen species (ROS) levels and neutrophil activation, which are responsible for the deleterious reperfusion injury. Methods LRIP was induced in Sprague–Dawley rats by three cycles of 5 min occlusion /5 min reperfusion on the left hind limb. The blood samples were collected before LRIP or 0 and 1 h after LRIP (named SerumSham, SerumLRIP0, SerumLRIP1, respectively). The effects of LRIP serum on ROS level and neutrophils activation were determined. The expression of MyD88-TRAF6-MAPKs and PI3K/AKT pathways in neutrophils were examined. Results When compared with SerumSham, SerumLRIP0 and SerumLRIP1 significantly reduced the ROS released from neutrophils activated by fMLP. Meanwhile, the mRNA expression levels of NADPH oxidase subunit p22phox and multiple ROS-producing related key proteins, such as NADPH oxidase subunit p47phox ser 304, ser 345. MyD88, p-ERK, p-JNK and p-P38 expression of neutrophils were downregulated by SerumLRIP0 and SerumLRIP1. SerumLRIP1 also downregulated p47phox mRNA expression and tumor necrosis factor receptor-associated factor 6 (TRAF6) protein expression. Conclusion LRIP serum protects against ROS level and neutrophils activation involving the MyD88-TRAF6-MAPKs. This finding provides new insight into the understanding of LRIP mechanisms.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiangwei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mingyue Sheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Sanli Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Boyang Yu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Early Electroacupuncture Extends the rtPA Time Window to 6 h in a Male Rat Model of Embolic Stroke via the ERK1/2-MMP9 Pathway. Neural Plast 2020. [DOI: 10.1155/2020/8851089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Recombinant tissue plasminogen activator (rtPA) is the only recommended pharmacological treatment for acute ischemic stroke, but it has a restricted therapeutic time window. When administered at time points greater than 4.5 h after stroke onset, rtPA disrupts the blood-brain barrier (BBB), which leads to serious brain edema and hemorrhagic transformation. Electroacupuncture (EA) exerts a neuroprotective effect on cerebral ischemia; however, researchers have not clearly determined whether EA increases the safety of thrombolysis and extends the therapeutic time window of rtPA administration following ischemic stroke. Objective. The present study was conducted to test the hypothesis that EA extends the therapeutic time window of rtPA for ischemic stroke in a male rat model of embolic stroke. Methods. SD rats were randomly divided into the sham operation group, model group, rtPA group, EA+rtPA group, and rtPA+MEK1/2 inhibitor group. An injection of rtPA was administered 6 h after ischemia. Rats were treated with EA at the Shuigou (GV26) and Neiguan (PC6) acupoints at 2 h after ischemia. Neurological function, infarct volume, BBB permeability, brain edema, and hemorrhagic transformation were assessed at 24 h after ischemia. Western blotting and immunofluorescence staining were performed to detect the levels of proteins involved in the ERK1/2 signaling pathway (MEK1/2 and ERK1/2), tight junction proteins (Claudin5 and ZO-1), and MMP9 in the ischemic penumbra at 24 h after stroke. Results. Delayed rtPA treatment aggravated hemorrhagic transformation and brain edema. However, treatment with EA plus rtPA significantly improved neurological function and reduced the infarct volume, hemorrhagic transformation, brain edema, and EB leakage in rats compared with rtPA alone. EA increased the levels of tight junction proteins, inhibited the activation of the ERK1/2 signaling pathway, and reduced MMP9 overexpression induced by delayed rtPA thrombolysis. Conclusions. EA potentially represents an effective adjunct method to increase the safety of thrombolytic therapy and extend the therapeutic time window of rtPA administration following ischemic stroke. This neuroprotective effect may be mediated by the inhibition of the ERK1/2-MMP9 pathway and alleviation of the destruction of the BBB.
Collapse
|
3
|
Whole body hypothermia extends tissue plasminogen activator treatment window in the rat model of embolic stroke. Life Sci 2020; 256:117450. [PMID: 32087233 DOI: 10.1016/j.lfs.2020.117450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Late treatment with tissue plasminogen activator (tPA) leads to reperfusion injury and poor outcome in ischemic stroke. We have recently shown the beneficial effects of local brain hypothermia after late thrombolysis. Herein, we investigated whether transient whole-body hypothermia was neuroprotective and could prevent the side effects of late tPA therapy at 5.5 h after embolic stroke. After induction of stroke, male rats were randomly assigned into four groups: Control, Hypothermia, tPA and Hypothermia+tPA. Hypothermia started at 5 h after embolic stroke and continued for 1 h. Thirty min after hypothermia, tPA was administrated. Infarct volume, brain edema, blood-brain barrier (BBB) and matrix metalloproteinase-9 (MMP-9) were assessed 48 h and neurological functions were assessed 24 and 48 hour post-stroke. Compared with the control or tPA groups, whole-body hypothermia decreased infarct volume (P < 0.01), BBB disruption (P < 0.05) and MMP-9 level (P < 0.05). However, compared with hypothermia alone a combination of hypothermia and tPA was more effective in reducing infarct volume. While hypothermia alone did not show any effect, its combination with tPA reduced brain edema (P < 0.05). Hypothermia alone or when combined with tPA decreased MMP-9 compared with control or tPA groups (P < 0.01). Although delayed tPA therapy exacerbated BBB integrity, general cooling hampered its leakage after late thrombolysis (P < 0.05). Moreover, only combination therapy significantly improved sensorimotor function as well as forelimb muscle strength at 24 or 48 h after stroke (P < 0.01). Transient whole-body hypothermia in combination with delayed thrombolysis therapy shows more neuroprotection and extends therapeutic time window of tPA up to 5.5 h.
Collapse
|
4
|
Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR. Thermostability of Lactate Dehydrogenase in Rat Brain under Conditions of Short-Term Moderate Hypothermia. Bull Exp Biol Med 2020; 168:326-329. [PMID: 31940129 DOI: 10.1007/s10517-020-04701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 11/30/2022]
Abstract
Thermostability of rat brain lactate dehydrogenase (LDH) was studied in intact animals and animals subjected to moderate short-term hypothermia. Two exponential stages, rapid and slow, were distinguished in the thermodenaturation kinetics. The contribution of the rapid phase to the lactate dehydrogenase denaturation kinetics was more significant: the energy of activation for this phase was 2.33 times lower than that for the slow phase. Moderate shortterm hypothermia led to a significant decrease of lactate dehydrogenase thermostability: thermodenaturation rate constants for the rapid (k1) and slow (k2) phases increased. Significant changes in parameters a and b reflecting the initial proportion of the two native forms of the enzyme developed only at 40°C. As hypothermia caused no appreciable changes in the energy of activation of lactate dehydrogenase denaturation, a significant contribution of the entropic factor to the decrease of free energy of enzyme denaturation was hypothesized. The data indicated significant labilization of lactate dehydrogenase structure under conditions of moderate hypothermia.
Collapse
Affiliation(s)
- R A Khalilov
- Department of Biochemistry and Biophysics, Dagestan State University, Makhachkala, Russia
| | - A M Dzhafarova
- Department of Biochemistry and Biophysics, Dagestan State University, Makhachkala, Russia.
| | - S I Khizrieva
- Department of Biochemistry and Biophysics, Dagestan State University, Makhachkala, Russia
| | - V R Abdullaev
- Department of Biochemistry and Biophysics, Dagestan State University, Makhachkala, Russia
| |
Collapse
|
5
|
Effect of selective brain cooling versus core cooling on achieving target temperature among patients with severe traumatic brain injury. INTERNATIONAL JOURNAL OF AFRICA NURSING SCIENCES 2020. [DOI: 10.1016/j.ijans.2020.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Roles Played by the Na +/Ca 2+ Exchanger and Hypothermia in the Prevention of Ischemia-Induced Carrier-Mediated Efflux of Catecholamines into the Extracellular Space: Implications for Stroke Therapy. Neurochem Res 2019; 45:16-33. [PMID: 31346893 PMCID: PMC6942591 DOI: 10.1007/s11064-019-02842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl−-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.
Collapse
|
7
|
Tu Y, Guo C, Song F, Huo Y, Geng Y, Guo M, Bao H, Wu X, Fan W. Mild hypothermia alleviates diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis. Brain Res Bull 2019; 150:1-12. [PMID: 31082455 DOI: 10.1016/j.brainresbull.2019.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Diabetic patients manifest with more severe neurological deficits than non-diabetes after ischemic stroke. It has been shown that hypothermia has neuroprotective effects on cerebral ischemia, but whether it is effective for cerebral ischemia in diabetic patients remains unknown. The aim of this study was to investigate whether hypothermia can alleviate cerebral ischemic injury in diabetic rats and the regulation of autophagy and pyroptosis of the treatment. We introduced permanent middle cerebral artery occlusion (pMCAO) in a model of type 2 diabetic rats prepared by high-fat diet combined with intraperitoneal injection of STZ in vivo and mimicked cerebral ischemia with diabetes by employing high glucose stimulation and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Moreover, 3-methyladenine and bafilomycin A1 were used to evaluate the association between autophagy and pyroptosis in vitro. Our results showed that diabetes aggravated neurological deficits, increased the volume of cerebral infarction and brain edema as well as the blood brain barrier permeability after cerebral ischemia, which were alleviated by mild hypothermia. Compared with the pMCAO model in non-diabetic rats and OGD/R model without high glucose stimulation in vitro, the expression of P62, NOD-like receptor protein 3 (NLRP3), cleaved caspase-1 and Gasdermin-N increased and the ratio of microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ/Ⅰ decreased in the pMCAO model in diabetic rats and OGD/R model with high glucose stimulation, which could be reversed by mild hypothermia. In conclusion, mild hypothermia alleviated diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis.
Collapse
Affiliation(s)
- Yanling Tu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Cen Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Yajing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yang Geng
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China.
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China.
| |
Collapse
|
8
|
New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res Bull 2019; 144:46-57. [DOI: 10.1016/j.brainresbull.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
|
9
|
Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3804979. [PMID: 29770166 PMCID: PMC5892600 DOI: 10.1155/2018/3804979] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury) has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage.
Collapse
|