1
|
Fathy N, Labib MA, Essam RM, El-Boghdady NA. The Interplay between MiR-134/BDNF and LKB1/AMPK/SIRT1 Accentuates the Antidepressant Efficacy of Empagliflozin in Ovariectomized Rats. ACS Chem Neurosci 2024. [PMID: 39350330 DOI: 10.1021/acschemneuro.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Major depressive disorder (MDD) is considered a major cause of suicide worldwide. As previous studies revealed that neuroinflammation is a significant factor in the etiology of MDD, this study proposed to unravel the possible antidepressant effect of Empagliflozin (EMPA) through targeting miRNA-134 (miR-134)/brain-derived neurotrophic factor (BDNF) and liver kinase B1 (LKB1)/adenosine 5'-monophosphate-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axes in ovariectomized (OVX) female rats. Rats were assigned randomly to four groups: Sham operation (SO), OVX, OVX + EMPA (10 mg/kg/day, p.o.), and OVX + EMPA + Dorsomorphin (DORSO) (25 μg/day/rat, i.v.). Drugs were administered for 28 days after 2 weeks of surgery. EMPA debilitated OVX-induced depressive-like behavior by mitigating the immobility time in the tail suspension test and forced swimming test. Moreover, EMPA curtailed OVX-induced alterations of serum estradiol, hippocampal serotonin, miR-134 expression, as well as BDNF. EMPA also dwindled OVX-induced changes of hippocampal p-LKB1/LKB1, p-AMPK/AMPK, SIRT1, and inflammatory markers (nuclear factor-kappa-B, interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha). Additionally, the EMPA-treated group exhibited marked improvement in different brain regions' histopathology. However, DORSO coadministration reversed most of EMPA's beneficial effects. The current study displayed the modulatory role of EMPA on miR-134/BDNF and LKB1/AMPK/SIRT1 axes, thus offering a partial explanation of its antidepressant efficacy and proposing EMPA as a novel therapeutic avenue for MDD.
Collapse
Affiliation(s)
- Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Merna A Labib
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Biology Department, School of Pharmacy, Newgiza University, Giza 3296121, Egypt
| | - Noha A El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Zhang WJ, Guo ZX, Wang YD, Fang SY, Wan CM, Yu XL, Guo XF, Chen YY, Zhou X, Huang JQ, Li XJ, Chen JX, Fan LL. From Perspective of Hippocampal Plasticity: Function of Antidepressant Chinese Medicine Xiaoyaosan. Chin J Integr Med 2024; 30:747-758. [PMID: 38900227 DOI: 10.1007/s11655-024-3908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 06/21/2024]
Abstract
The hippocampus is one of the most commonly studied brain regions in the context of depression. The volume of the hippocampus is significantly reduced in patients with depression, which severely disrupts hippocampal neuroplasticity. However, antidepressant therapies that target hippocampal neuroplasticity have not been identified as yet. Chinese medicine (CM) can slow the progression of depression, potentially by modulating hippocampal neuroplasticity. Xiaoyaosan (XYS) is a CM formula that has been clinically used for the treatment of depression. It is known to protect Gan (Liver) and Pi (Spleen) function, and may exert its antidepressant effects by regulating hippocampal neuroplasticity. In this review, we have summarized the association between depression and aberrant hippocampal neuroplasticity. Furthermore, we have discussed the researches published in the last 30 years on the effects of XYS on hippocampal neuroplasticity in order to elucidate the possible mechanisms underlying its therapeutic action against depression. The results of this review can aid future research on XYS for the treatment of depression.
Collapse
Affiliation(s)
- Wu-Jing Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ze-Xuan Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi-di Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Shao-Yi Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Chun-Miao Wan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Long Yu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fang Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yue-Yue Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li-Li Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Ning Y, Feng S, Zheng S, Wu Z, Liu X, Dong L, Jia H. How BDNF affects working memory in acute sleep deprivation: The mediating role of spontaneous brain activity. Sleep Med 2024; 118:1-8. [PMID: 38564888 DOI: 10.1016/j.sleep.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
The brain-derived neurotrophic factor (BDNF) mediates the plasticity associated with memory processing, and compensatorily increases after acute sleep deprivation (SD). However, whether the altered spontaneous brain activity mediates the association between BDNF and working memory in SD remains unknown. Here, we aimed to probe the mediating role of the spontaneous brain activity between plasma BDNF and WM function in SD. A total of 30 healthy subjects with regular sleep were enrolled in this study. Resting-sate functional magnetic resonance imaging (fMRI) scans and the peripheral blood were collected before and after 24 h SD. All participants also received n-back task assessing working memory (WM) performance. The amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were calculated to reflect the intensity of regional spontaneous brain activity. Plasma BDNF was measured by sandwich ELISA. Our results revealed a significant decline in WM and increase in plasma BDNF level after SD, and negative association between the changed WM performance and plasma BDNF level. Specially, the ALFF of the left inferior parietal cortex and right inferior frontal cortex, and fALFF of the left anterior cingulate and medial prefrontal cortex and left posterior opercular cortex regulated the association between the BDNF and one-back reaction time respectively. Our results suggest that the association between BDNF and working memory may be mediated through regional spontaneous brain activity involving in the cerebral cortex, which may provide new sight into the interaction between neurotrophic factors and cognition, and potential targets for noninvasive brain stimulation on WM decline after acute SD.
Collapse
Affiliation(s)
- Yanzhe Ning
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Sitong Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ziyao Wu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinzi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Linrui Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Ning B, Ge T, Wu Y, Wang Y, Zhao M. Role of Brain-Derived Neurotrophic Factor in Anxiety or Depression After Percutaneous Coronary Intervention. Mol Neurobiol 2024; 61:2921-2937. [PMID: 37946008 DOI: 10.1007/s12035-023-03758-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Anxiety or depression after percutaneous coronary intervention (PCI) is one of the key clinical problems in cardiology that need to be solved urgently. Brain-derived neurotrophic factor (BDNF) may be a potential biomarker for the pathogenesis and treatment of anxiety or depression after PCI. This article reviews the correlation between BDNF and cardiovascular system and nervous system from the aspects of synthesis, release and action site of BDNF, and focuses on the latest research progress of the mechanism of BDNF in anxiety or depression after PCI. It includes the specific mechanisms by which BDNF regulates the levels of inflammatory factors, reduces oxidative stress damage, and mediates multiple signaling pathways. In addition, this review summarizes the therapeutic potential of BDNF as a potential biomarker for anxiety or depression after PCI.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yongqing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mingjun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China.
| |
Collapse
|
5
|
Huang R, Gong M, Tan X, Shen J, Wu Y, Cai X, Wang S, Min L, Gong L, Liang W. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 2024; 61:1655-1672. [PMID: 37751044 DOI: 10.1007/s12035-023-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People's Republic of China
| | - Min Gong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Jianying Shen
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - You Wu
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Xiaoshi Cai
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Suying Wang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Li Min
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Lin Gong
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Wenna Liang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
6
|
Herselman MF, Bobrovskaya L. The Effects of Chronic Unpredictable Mild Stress and Semi-Pure Diets on the Brain, Gut and Adrenal Medulla in C57BL6 Mice. Int J Mol Sci 2023; 24:14618. [PMID: 37834073 PMCID: PMC10572190 DOI: 10.3390/ijms241914618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system. CUMS induced anxiety-like behaviour, dysregulated the tryptophan and serotonin metabolic pathways in the hippocampus, prefrontal cortex, and colon, and altered the composition of the gut microbiota. CUMS reduced the catecholamine synthetic capacity of the adrenal glands. Differential effects were found in these parameters in the HFD and SUP diet. Thus, dietary modifications may profoundly affect the multiple dynamic systems involved in mood disorders.
Collapse
Affiliation(s)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
7
|
LeDuke DO, Borio M, Miranda R, Tye KM. Anxiety and depression: A top-down, bottom-up model of circuit function. Ann N Y Acad Sci 2023; 1525:70-87. [PMID: 37129246 PMCID: PMC10695657 DOI: 10.1111/nyas.14997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A functional interplay of bottom-up and top-down processing allows an individual to appropriately respond to the dynamic environment around them. These processing modalities can be represented as attractor states using a dynamical systems model of the brain. The transition probability to move from one attractor state to another is dependent on the stability, depth, neuromodulatory tone, and tonic changes in plasticity. However, how does the relationship between these states change in disease states, such as anxiety or depression? We describe bottom-up and top-down processing from Marr's computational-algorithmic-implementation perspective to understand depressive and anxious disease states. We illustrate examples of bottom-up processing as basolateral amygdala signaling and projections and top-down processing as medial prefrontal cortex internal signaling and projections. Understanding these internal processing dynamics can help us better model the multifaceted elements of anxiety and depression.
Collapse
Affiliation(s)
- Deryn O. LeDuke
- Salk Institute for Biological Studies, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Matilde Borio
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Raymundo Miranda
- Salk Institute for Biological Studies, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| |
Collapse
|
8
|
Huang P, Wei S, Ren J, Tang Z, Guo M, Situ F, Zhang D, Zhu J, Xiao L, Xu J, Liu G. MicroRNA-124-3p alleviates cerebral ischaemia-induced neuroaxonal damage by enhancing Nrep expression. J Stroke Cerebrovasc Dis 2023; 32:106949. [PMID: 36535134 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Ischaemic stroke has a high death rate and frequently results in long-term and severe brain damage in survivors. miRNA-124-3p (miR-124-3p) treatment has been suggested to reduce ischaemia and play a vital function in avoiding neuron death. An investigation of the role of miR-124-3p, in the ischaemia damage repair or protection in the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/R) model, was the purpose of this research. METHODS The expression of miRNA and mRNA in the MCAO model was predicted using bioinformatics analysis. The OGD/R neuronal model was developed. We examined the influence of a number of compounds on the OGD/R model in vitro using gain- and loss-of-function approaches. RESULTS For starters, miR-124-3p and Nrep level in the MCAO model were found to be lower in the model predicted by bioinformatics than in the sham-operated group. And then in the OGD/R model, miR-124-3p treatment reduced OGD/R neuronal damage, increased neuronal survival, and reduced apoptosis in cell lines. Moreover, we further looked at the impact of miR-124-3p on downstream Rnf38 and Nrep using the OGD/R model. Western blot analysis and dual-luciferase reporter assays indicated that miR-124-3p binds and inhibits Rnf38. Finally, although Nrep expression was reduced in the OGD/R model neuronal model, it was shown that miR-124-3p administration reduced apoptosis and increased neuronal activity, particularly with regard to axon regeneration-related proteins. CONCLUSION Our studies have shown that miR-124-3p may reduce neuronal injury by preventing Rnf38-mediated effects on the Nrep axis.
Collapse
Affiliation(s)
- Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China; Surgical Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ren
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuohong Tang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Mingjuan Guo
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Fen Situ
- Surgical Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Dan Zhang
- Surgical Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianghua Zhu
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Li Xiao
- Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Guoqing Liu
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| |
Collapse
|
9
|
Wang J, Sun R, Xia L, Zhu X, Zhang Q, Ye Y. Potential Therapeutic Effects of NAMPT-Mediated NAD Biosynthesis in Depression In Vivo. Brain Sci 2022; 12:brainsci12121699. [PMID: 36552159 PMCID: PMC9775136 DOI: 10.3390/brainsci12121699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the potential therapeutic effects of nicotinamide phosphoribosyltransferase (NAMPT)-mediated adenine dinucleotide (NAD) biosynthesis in depression models in vivo. Namptflox/flox mice were used to evaluate the role of NAMPT in depression. NAMPT and NAD levels in the prefrontal cortex (PFC) were measured, and depression-associated behavior, cognitive function, and social interaction were evaluated. The expression levels of BDNF, pCREB, CREB, monoamine neurotransmitters, and corticosterone (CORT) were also detected in the PFC. The contents of NAMPT and NAD decreased in the PFC in Namptflox/flox mice. Namptflox/flox mice showed depression-like behaviors, cognitive function deterioration, decreased social ability, and decreased dominance. Meanwhile, there were decreased expression levels of the pCREB/CREB ratio, but not BDNF, in the PFC. Levels of DA, 5-HT, and NE were decreased, and CORT was activated in the PFC of Namptflox/flox mice. Additionally, the role of NAMPT-NAD was examined in rats treated with nicotinamide riboside (NR) after being exposed to chronic unexpected mild stress (CUMS). NR reversed the decreased NAMPT expression in the PFC and HIP, and the NAD content in the PFC, but not HIP in rats with CUMS-induced depression. NR also improved depressive- and anxiolytic-like behaviors, locomotor activity, and cognitive function. BDNF expression and the pCREB/CREB ratio were significantly increased in both the PFC and HIP after NR treatment. The activation of CORT and decreased content of DA were reversed after NR treatment in the PFC. There was no difference in the 5-HT content among groups in both the PFC and HIP. Taken together, NAD synthesis induced by NAMPT could be associated with depression-like behaviors in mice, and the elevated NAD level by NR improved depression in rats.
Collapse
Affiliation(s)
- Jue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Runxuan Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Linhan Xia
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xinying Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
| | - Qi Zhang
- College of Medicine, Jiaxing University, Jiaxing 314001, China
- Correspondence: (Q.Z.); (Y.Y.)
| | - Yilu Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Correspondence: (Q.Z.); (Y.Y.)
| |
Collapse
|
10
|
Differential Regulation of the BDNF Gene in Cortical and Hippocampal Neurons. J Neurosci 2022; 42:9110-9128. [PMID: 36316156 PMCID: PMC9761680 DOI: 10.1523/jneurosci.2535-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin that supports the survival, differentiation, and signaling of various neuronal populations. Although it has been well described that expression of BDNF is strongly regulated by neuronal activity, little is known whether regulation of BDNF expression is similar in different brain regions. Here, we focused on this fundamental question using neuronal populations obtained from rat cerebral cortices and hippocampi of both sexes. First, we thoroughly characterized the role of the best-described regulators of BDNF gene - cAMP response element binding protein (CREB) family transcription factors, and show that activity-dependent BDNF expression depends more on CREB and the coactivators CREB binding protein (CBP) and CREB-regulated transcriptional coactivator 1 (CRTC1) in cortical than in hippocampal neurons. Our data also reveal an important role of CREB in the early induction of BDNF mRNA expression after neuronal activity and only modest contribution after prolonged neuronal activity. We further corroborated our findings at BDNF protein level. To determine the transcription factors regulating BDNF expression in these rat brain regions in addition to CREB family, we used in vitro DNA pulldown assay coupled with mass spectrometry, chromatin immunoprecipitation (ChIP), and bioinformatics, and propose a number of neurodevelopmentally important transcription factors, such as FOXP1, SATB2, RAI1, BCL11A, and TCF4 as brain region-specific regulators of BDNF expression. Together, our data reveal complicated brain region-specific fine-tuning of BDNF expression.SIGNIFICANCE STATEMENT To date, majority of the research has focused on the regulation of brain-derived neurotrophic factor (BDNF) in the brain but much less is known whether the regulation of BDNF expression is universal in different brain regions and neuronal populations. Here, we report that the best described regulators of BDNF gene from the cAMP-response element binding protein (CREB) transcription factor family have a more profound role in the activity-dependent regulation of BDNF in cortex than in hippocampus. Our results indicate a brain region-specific fine tuning of BDNF expression. Moreover, we have used unbiased determination of novel regulators of the BDNF gene and report a number of neurodevelopmentally important transcription factors as novel potential regulators of the BDNF expression.
Collapse
|
11
|
Kawazoe K, McGlynn R, Felix W, Sevilla R, Liao S, Kulkarni P, Ferris CF. Dose-dependent effects of esketamine on brain activity in awake mice: A BOLD phMRI study. Pharmacol Res Perspect 2022; 10:e01035. [PMID: 36504448 PMCID: PMC9743060 DOI: 10.1002/prp2.1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) is a noninvasive method used to evaluate neural circuitry involved in the behavioral effects of drugs like ketamine, independent of their specific biochemical mechanism. The study was designed to evaluate the immediate effect of esketamine, the S-isomer of (±) ketamine on brain activity in awake mice using blood oxygenation level dependent (BOLD) imaging. It was hypothesized the prefrontal cortex, hippocampus, and brain areas associated with reward and motivation would show a dose-dependent increase in brain activity. Mice were given vehicle, 1.0, 3.3, or 10 mg/kg esketamine I.P. and imaged for 10 min post-treatment. Data for each treatment were registered to a 3D MRI mouse brain atlas providing site-specific information on 134 different brain areas. There was a global change in brain activity for both positive and negative BOLD signal affecting over 50 brain areas. Many areas showed a dose-dependent decrease in positive BOLD signal, for example, cortex, hippocampus, and thalamus. The most common profile when comparing the three doses was a U-shape with the 3.3 dose having the lowest change in signal. At 1.0 mg/kg there was a significant increase in positive BOLD in forebrain areas and hippocampus. The anticipated dose-dependent increase in BOLD was not realized; instead, the lowest dose of 1.0 mg/kg had the greatest effect on brain activity. The prefrontal cortex and hippocampus were significantly activated corroborating previous imaging studies in humans and animals. The unexpected sensitivity to the 1.0 mg/kg dose of esketamine could be explained by imaging in fully awake mice without the confound of anesthesia and/or its greater affinity for the N-methyl-d-aspartate receptor (NMDAR) receptor than (±) ketamine.
Collapse
Affiliation(s)
- Kyrsten Kawazoe
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Ryan McGlynn
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Wilder Felix
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Raquel Sevilla
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Siyang Liao
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Praveen Kulkarni
- Center for Translational NeuroimagingNortheastern UniversityMassachusettsBostonUSA
| | - Craig F. Ferris
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
- Center for Translational NeuroimagingNortheastern UniversityMassachusettsBostonUSA
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
12
|
Zhao XP, Li H, Dai RP. Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry 2022; 12:379-392. [PMID: 35433323 PMCID: PMC8968497 DOI: 10.5498/wjp.v12.i3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/22/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mood disorders are the most common mental disorders, affecting approximately 350 million people globally. Recent studies have shown that neuroimmune interaction regulates mood disorders. Brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF, are involved in the neuroimmune crosstalk during the development of mood disorders. BDNF is implicated in the pathophysiology of psychiatric and neurological disorders especially in antidepressant pharmacotherapy. In this review, we describe the functions of BDNF/pro-BDNF signaling in the central nervous system in the context of mood disorders. In addition, we summarize the developments for BDNF and pro-BDNF functions in mood disorders. This review aims to provide new insights into the impact of neuroimmune interaction on mood disorders and reveal a new basis for further development of diagnostic targets and mood disorders.
Collapse
Affiliation(s)
- Xiao-Pei Zhao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
13
|
Joshi A, Akhtar A, Saroj P, Kuhad A, Sah SP. Antidepressant-like effect of sodium orthovanadate in a mouse model of chronic unpredictable mild stress. Eur J Pharmacol 2022; 919:174798. [DOI: 10.1016/j.ejphar.2022.174798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
|
14
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|
15
|
Ellis SN, Honeycutt JA. Sex Differences in Affective Dysfunction and Alterations in Parvalbumin in Rodent Models of Early Life Adversity. Front Behav Neurosci 2021; 15:741454. [PMID: 34803622 PMCID: PMC8600234 DOI: 10.3389/fnbeh.2021.741454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
The early life environment markedly influences brain and behavioral development, with adverse experiences associated with increased risk of anxiety and depressive phenotypes, particularly in females. Indeed, early life adversity (ELA) in humans (i.e., caregiver deprivation, maltreatment) and rodents (i.e., maternal separation, resource scarcity) is associated with sex-specific emergence of anxious and depressive behaviors. Although these disorders show clear sex differences in humans, little attention has been paid toward evaluating sex as a biological variable in models of affective dysfunction; however, recent rodent work suggests sex-specific effects. Two widely used rodent models of ELA approximate caregiver deprivation (i.e., maternal separation) and resource scarcity (i.e., limited bedding). While these approaches model aspects of ELA experienced in humans, they span different portions of the pre-weaning developmental period and may therefore differentially contribute to underlying mechanistic risk. This is borne out in the literature, where evidence suggests differences in trajectories of behavior depending on the type of ELA and/or sex; however, the neural underpinning of these differences is not well understood. Because anxiety and depression are thought to involve dysregulation in the balance of excitatory and inhibitory signaling in ELA-vulnerable brain regions (e.g., prefrontal cortex, amygdala, hippocampus), outcomes are likely driven by alterations in local and/or circuit-specific inhibitory activity. The most abundant GABAergic subtypes in the brain, accounting for approximately 40% of inhibitory neurons, contain the calcium-binding protein Parvalbumin (PV). As PV-expressing neurons have perisomatic and proximal dendritic targets on pyramidal neurons, they are well-positioned to regulate excitatory/inhibitory balance. Recent evidence suggests that PV outcomes following ELA are sex, age, and region-specific and may be influenced by the type and timing of ELA. Here, we suggest the possibility of a combined role of PV and sex hormones driving differences in behavioral outcomes associated with affective dysfunction following ELA. This review evaluates the literature across models of ELA to characterize neural (PV) and behavioral (anxiety- and depressive-like) outcomes as a function of sex and age. Additionally, we detail a putative mechanistic role of PV on ELA-related outcomes and discuss evidence suggesting hormone influences on PV expression/function which may help to explain sex differences in ELA outcomes.
Collapse
Affiliation(s)
- Seneca N Ellis
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Jennifer A Honeycutt
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States.,Department of Psychology, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
16
|
Huang P, Wei S, Luo M, Tang Z, Lin Q, Wang X, Luo M, He Y, Wang C, Wei D, Xia C, Xu J. MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1594. [PMID: 34790800 PMCID: PMC8576692 DOI: 10.21037/atm-21-5149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Background Phosphodiesterase 4D (PDE4D) inhibitor is commonly used to treat depression, but side effects seriously decrease its efficacy. PDE4D was a downstream target mRNA of miR-139-5p. Therefore, we examined the effects of hippocampal miR-139-5p gain- and loss-of-function on depression-like behaviors, the expression level of PDE4D, and hippocampus neurogenesis. Methods Bioinformatic analyses were carried out to to screen differential genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay were used to confirm the relationship between miR-139-5p and PDE4D. MiR-139-5p mimics, miR-139-5p inhibitor, or miR-NC were used to explore the function of miR-139-5p in HT-22 cells. We further explored the role of miR-139-5p in vivo using AAV-injection. Elisa, western blotting, and fluorescence in situ hybridization (FISH) were used to detect the expression of miR-139-5p and PDE4D in CRC tissues. Results Here, we showed that PDE4D messenger RNA (mRNA) was a direct target of microRNA (miR)-139-5p, which was downregulated in a chronic ultra-mild stress (CUMS)-induced depression mouse model. Moreover, in experiments in vitro, miR-139-5p mimic repressed PDE4D expression in HT-22 cells, but promoted phosphorylated cyclic-AMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) expression. Interestingly, adeno-associated virus (AAV)-miR-139-5p downregulated susceptibility to stress-induced depression-like behaviors in mice. AAV-miR-139-5p suppressed PDE4D in mouse hippocampal cells, increasing expression level of cyclic adenosine monophosphate (cAMP), p-CREB, and BDNF, and stimulating mouse hippocampal neurogenesis. Conclusions Our findings suggested that miR-139-5p acted like an antidepressant by targeting PDE4D, thereby regulating the cAMP/protein kinase A (PKA)/CREB/BDNF pathway to improve depression.
Collapse
Affiliation(s)
- Peng Huang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuohong Tang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Qingmei Lin
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xing Wang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Mi Luo
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Yanjun He
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chuan Wang
- Department of Biliary Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Dezhan Wei
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chenglai Xia
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Yan W, Dong Z, Zhao D, Li J, Zeng T, Mo C, Gao L, Lv Z. Xiaoyaosan Exerts Antidepressant Effect by Downregulating RAGE Expression in Cingulate Gyrus of Depressive-Like Mice. Front Pharmacol 2021; 12:703965. [PMID: 34557092 PMCID: PMC8452939 DOI: 10.3389/fphar.2021.703965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Xiaoyaosan (XYS), as a classic Chinese medicine compound, has been proven to have antidepressant effect in many studies, but its mechanism has not been clarified. In our previous studies, we found that chronic stress can induce depressive-like behavior and lead to emotion-related cingulate gyrus (Cg) dysfunction, as well as the decrease of neurotrophic factors and the increase of inflammatory-related proteins. Therefore, we speculated that XYS may play an antidepressant role by regulating the inflammation-related receptor of advanced glycation protein end product (RAGE) to affect the functional connectivity (FC) signal of the Cg and improve the depressive-like behavior. In order to verify this hypothesis, we analyzed the FC and RAGE expression in the Cg of depressive-like mice induced by chronic unpredictable mild stress (CUMS) and verified it with RAGE knockout mice. At the same time, we detected the effect of XYS on the depressive-like behavior, expression of RAGE, and the FC of the Cg of mice. The results showed that the FC of the Cg of depressive-like mice induced by CUMS was weakened, and the expression of RAGE was upregulated. The antidepressant effect of XYS is similar to that of fluoxetine hydrochloride, which can significantly reduce the depressive-like behavior of mice and inhibit the expression of the RAGE protein and mRNA in the Cg, and increase the FC of the Cg in mice. In conclusion, XYS may play an antidepressant role by downregulating the expression of RAGE in the Cg of depressive-like mice induced by CUMS, thereby affecting the functional signal and improving the depressive-like behavior.
Collapse
Affiliation(s)
- Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Li Y, He Y, Fan H, Wang Z, Huang J, Wen G, Wang X, Xie Q, Qiu P. Brain-derived neurotrophic factor upregulates synaptic GluA1 in the amygdala to promote depression in response to psychological stress. Biochem Pharmacol 2021; 192:114740. [PMID: 34419429 DOI: 10.1016/j.bcp.2021.114740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Psychological stress impairs neuronal structure and function and leads to emotional disorders, but the underlying mechanisms have not yet been fully elucidated. The amygdala is closely correlated with emotional regulation. In the present study, we analyzed whether the amygdala plasticity is regulated by psychological stress and explored their regulatory mechanism. We established a mouse psychological stress model using an improved communication box, wherein mice were exposed to chronic fear and avoided physical stress interference. After the 14-day psychological stress paradigm, mice exhibited significantly increased depressive behaviors (decreased sucrose consumption in the sucrose preference test and longer immobility time in the forced swimming test). HPLC, ELISA, and molecular and morphological evidences showed that psychological stress increased the content of glutamate and the expression of glutamatergic neurons, upregulated the content of the stress hormone corticosterone, and activated the CREB/BDNF pathway in the amygdala. Furthermore, psychological stress induced an increased density of dendritic spines and LTD impairment in the amygdala. Importantly, virus-mediated silencing of BDNF in the basolateral amygdala (BLA) nuclei reversed the depression-like behaviors and the increase of synaptic GluA1 and its phosphorylation at Ser831 and Ser845 sites in psychologically stressed mice. This process was likely achieved through mTOR signaling activation. Finally, we treated primary amygdala neurons with corticosterone to mimic psychological stress; corticosterone-induced upregulation of GluA1 was prevented by BDNF and mTOR antagonists. Thus, activation of the CREB/BDNF pathway in the amygdala following psychological stress upregulates synaptic GluA1 via mTOR signaling, which dysregulates synaptic plasticity of the amygdala, eventually promoting depression.
Collapse
Affiliation(s)
- Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China; Department of Forensic Medicine, School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China; School of Basic Medicine and Life Science, Hainan Medical University, Haikou, PR China
| | - Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
19
|
Fan L, Yang L, Li X, Teng T, Xiang Y, Liu X, Jiang Y, Zhu Y, Zhou X, Xie P. Proteomic and metabolomic characterization of amygdala in chronic social defeat stress rats. Behav Brain Res 2021; 412:113407. [PMID: 34111472 DOI: 10.1016/j.bbr.2021.113407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Depression is a leading cause of disability worldwide. There is increasing evidence showing that depression is associated with the pathophysiology in amygdala; however, the underlying mechanism remains poorly understood. METHOD We established a rat model of chronic social defeat stress (CSDS) and conducted a series of behavior tests to observe behavioral changes. Then liquid chromatography mass spectrometry (LC-MS)-based metabolomics and isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics were employed to detect metabolomes and proteomes in the amygdala, respectively. Ingenuity pathway analysis (IPA) and other bioinformatic analyses were used to analyze differentially expressed metabolites and proteins. RESULTS The significantly lower sucrose preference index in the sucrose preference test and longer immobile time in the forced swim test were observed in the CSDS rats compared with control rats. In the multi-omics analysis, thirty-seven significantly differentially expressed metabolites and 123 significant proteins were identified. Integrated analysis of differentially expressed metabolites and proteins by IPA revealed molecular changes mainly associated with synaptic plasticity, phospholipase c signaling, and glutamine degradation I. We compared the metabolites in the amygdala with those in the hippocampus and prefrontal cortex from our previous studies and found two common metabolites: arachidonic acid and N-acetyl-l-aspartic acid among these three brain regions. CONCLUSION Our study revealed the presence of depressive-like behaviors and molecular changes of amygdala in the CSDS rat model, which may provide further insights into the pathogenesis of depression, and help to identify potential targets for antidepressants.
Collapse
Affiliation(s)
- Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lining Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yinglin Zhu
- School of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, Joplin, MO, 64801, United States
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
张 竞, 刘 恺, 曾 善, 陈 纯, 邓 燕, 靖 林, 文 戈. [Energy metabolism disorder and functional magnetic resonance imaging of the medial prefrontal cortex in mice with chronic unpredictable mild stress]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:521-528. [PMID: 33963710 PMCID: PMC8110447 DOI: 10.12122/j.issn.1673-4254.2021.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze spontaneous activities and energy metabolism in the medial prefrontal cortex (mPFC) of mice with chronic unpredictable mild stress (CUMS) and explore the correlation of these changes with the mTORC1 signaling pathway. OBJECTIVE Normal C57Bl/6 mice were randomly divided into control group (n=16) and depression model group (n= 16), and the mice in the latter group were subjected to 8 weeks of modeling with CUMS. Behavioral tests including open field test, sucrose consumption test, tail suspension test and forced swimming test were performed, and the changes in prefrontal gray matter volume and the amplitude of low frequency fluctuation (ALFF) in the mice were detected with functional magnetic resonance imaging. The CUMS mice were then randomized into two groups for treatment with ketamine (n=8) or saline (n=8). The mPFC tissues of the mice were collected for detecting the phosphorylation levels of mTORC1-related proteins with Western blotting and ATP level and NADP +/NADPH ratio with ELISA in the 3 groups. OBJECTIVE Compared with the control mice, CUMS mice exhibited a distinct depressive phenotype with significantly decreased sucrose preference (P < 0.05) and shortened total distances (P < 0.01) and central exercise distances (P < 0.05) in the open field test without obvious changes of immobile time in tail suspension test and forced swimming test (P>0.05). Prefrontal gray matter volume and mALFF increased (P < 0.01), and the phosphorylation level of mTORC1- related proteins, ATP level and NADP +/NADPH ratio all decreased significantly (P < 0.05) in CUMS mice. After ketamine treatment, the phosphorylation level of mTORC1-related proteins and ATP level increased significantly in CUMS mice (P < 0.05), but the increase of NADP +/NADPH ratio was not statistically significant. OBJECTIVE The mPFC of CUMS mice shows increased spontaneous activities but lowered productivity efficiency, indicating the presence of energy metabolism disorder in the mPFC, which is related with reduced mTORC1 phosphorylation and can be alleviated by activating the mTORC1 pathway with ketamine.
Collapse
Affiliation(s)
- 竞予 张
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 恺 刘
- 徐州医科大学附属医院影像科,江苏 徐州 221006Department of Medical Imaging, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - 善美 曾
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 纯辉 陈
- 广州中医药大学第二附属医院大院脾胃病科,广东 广州 510120Department of Spleen and Stomach Diseases, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - 燕佳 邓
- 徐州医科大学医学影像学院,江苏 徐州 221006School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - 林林 靖
- 南方医科大学中西医结合医院手术室,广东 广州 510315Operating Theater, TCM Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - 戈 文
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Zhang M, Li A, Yang Q, Li J, Wang L, Liu X, Huang Y, Liu L. Beneficial Effect of Alkaloids From Sophora alopecuroides L. on CUMS-Induced Depression Model Mice via Modulating Gut Microbiota. Front Cell Infect Microbiol 2021; 11:665159. [PMID: 33954123 PMCID: PMC8089385 DOI: 10.3389/fcimb.2021.665159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
It was recently shown that the gut microbiota of both depression patients and depression model animals is significantly altered, suggesting that gut microbes are closely related to depression. Here, we investigated the effects of Sophora alopecuroides L.-derived alkaloids on the gut microbiota of mice with depression-like behaviors. We first established a mouse model of depression via chronic unpredictable mild stress (CUMS) and detected changes in depression-like behaviors and depression-related indicators. Simultaneously, 16S rRNA sequencing was performed to investigate gut microbiota changes. Sophora alopecuroides L.-derived alkaloids improved depression-like behaviors and depression-related indicators in mice. The alkaloids decreased the gut microbiota diversity of CUMS mice and depleted intestinal differentially abundant "harmful" microbiota genera. Spearman analysis showed that there is a certain correlation between the differential microbiota (Lactobacillus, Helicobacter, Oscillospira, Odoribacter, Mucispirillum, Ruminococcus), depression-like behaviors, and depression-related indicators. Combined with the predictive analysis of gut microbiota function, these results indicate that alkaloids improve depression in mice through modulating gut microbiota.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Qifang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Jingyi Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiuxian Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
22
|
Tramonti Fantozzi MP, Lazzarini G, De Cicco V, Briganti A, Argento S, De Cicco D, Barresi M, Cataldo E, Bruschini L, d'Ascanio P, Pirone A, Lenzi C, Vannozzi I, Miragliotta V, Faraguna U, Manzoni D. The path from trigeminal asymmetry to cognitive impairment: a behavioral and molecular study. Sci Rep 2021; 11:4744. [PMID: 33637775 PMCID: PMC7910455 DOI: 10.1038/s41598-021-82265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
Trigeminal input exerts acute and chronic effects on the brain, modulating cognitive functions. Here, new data from humans and animals suggest that these effects are caused by trigeminal influences on the Locus Coeruleus (LC). In humans subjects clenching with masseter asymmetric activity, occlusal correction improved cognition, alongside with reductions in pupil size and anisocoria, proxies of LC activity and asymmetry, respectively. Notably, reductions in pupil size at rest on the hypertonic side predicted cognitive improvements. In adult rats, a distal unilateral section of the trigeminal mandibular branch reduced, on the contralateral side, the expression of c-Fos (brainstem) and BDNF (brainstem, hippocampus, frontal cortex). This counterintuitive finding can be explained by the following model: teeth contact perception loss on the lesioned side results in an increased occlusal effort, which enhances afferent inputs from muscle spindles and posterior periodontal receptors, spared by the distal lesion. Such effort leads to a reduced engagement of the intact side, with a corresponding reduction in the afferent inputs to the LC and in c-Fos and BDNF gene expression. In conclusion, acute effects of malocclusion on performance seem mediated by the LC, which could also contribute to the chronic trophic dysfunction induced by loss of trigeminal input.
Collapse
Affiliation(s)
- Maria Paola Tramonti Fantozzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy
| | - Angela Briganti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Serena Argento
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy
| | - Davide De Cicco
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Massimo Barresi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy
| | | | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and CriticalCare Medicine, University of Pisa, Pisa, Italy
| | - Paola d'Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Carla Lenzi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Iacopo Vannozzi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via San Zeno 31, 56127, Pisa, Italy.
| |
Collapse
|
23
|
Brain areas associated with resilience to depression in high-risk young women. Brain Struct Funct 2021; 226:875-888. [PMID: 33458784 DOI: 10.1007/s00429-021-02215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Previous structural brain-imaging studies in first-degree relatives of depressed patients showed alterations that are generally accepted as vulnerability markers for depression. However, only half of the relatives had depression at follow-up, while the other half did not. The aim of this study was to identify the brain areas associated with resilience to depression in high-risk subjects with familial depression. We recruited 59 young women with a history of depressed mothers. Twenty-nine of them (high-risk group [HRG]) had no depression history, while 30 (depressive group) had at least 1 depressive episode in adolescence. The brain structures of the groups were compared through voxel-based morphometry and analysis of cortical thickness. Individual amygdala nuclei and hippocampal subfield volumes were measured. The analysis showed larger amygdala volume, thicker subcallosal cortex and bilateral insula in the women in the HRG compared with those in the depressive group. In addition, we detected more gray matter in the left temporal pole in the HRG. The larger gray matter volume and increased cortical thickness in the key hub regions of the salience network (amygdala and insula) and structurally connected regions in the limbic network (subcallosal area and temporal pole) might prevent women in the HRG from converting to depression.
Collapse
|
24
|
Liu X, Zhou J, Zhang T, Chen K, Xu M, Wu L, Liu J, Huang Y, Nie B, Shen X, Ren P, Huang X. Meranzin hydrate elicits antidepressant effects and restores reward circuitry. Behav Brain Res 2020; 398:112898. [PMID: 32905810 DOI: 10.1016/j.bbr.2020.112898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
The burden of depression is enormous, and numerous studies have found that major depressive disorder (MDD) induces cardiovascular disorders (CVD) and functional dyspepsia (FD). Excitingly, meranzin hydrate (MH), an absorbed bioactive compound of Aurantii Fructus Immaturus, reverses psychosocial stress-induced mood disorders, gastrointestinal dysfunction and cardiac disease. Pharmacological methods have repeatedly failed in antidepressant development over the past few decades, but repairing aberrant neural circuits might be a reasonable strategy. This article aimed to explore antidepressant-like effects and potential mechanisms of MH in a rat model of unpredictable chronic mild stress (UCMS). Utilizing blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we sought to find reliable neurocircuits or a dominant brain region revealing the multiple effects of MH. The results show that compared with UCMS rats, MH (10 mg/kg/day for 1 week i.g.)-treated rats exhibited decreased depression-like behaviour; increased expression of brain-derived neurotrophic factor (BDNF) in the hippocampal dentate gyrus; and normalized levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), and acylated ghrelin (AG). Additionally, the UCMS-induced rise in BOLD activation in the reward system was attenuated after MH treatment. A literature search shown that nucleus accumbens (NAc) and hypothalamus of the reward system might reveal multiple effects of MH on MDD-FD-CVD comorbidity. Further research will focus on the role of these two brain regions in treating depression associated with comorbidities.
Collapse
Affiliation(s)
- XiangFei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - JiaLing Zhou
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tian Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ken Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Min Xu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Lei Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jin Liu
- Department of Traditional Chinese Medicine, Xiamen University, China.
| | - YunKe Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China; Master Degree Candidate at Department of Gynaecology and Obstetrics, Fudan University Medical School, China.
| | - BinBin Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xu Shen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, China.
| | - Ping Ren
- Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
25
|
El-Khatib YA, Sayed RH, Sallam NA, Zaki HF, Khattab MM. 17β-Estradiol augments the neuroprotective effect of agomelatine in depressive- and anxiety-like behaviors in ovariectomized rats. Psychopharmacology (Berl) 2020; 237:2873-2886. [PMID: 32535690 DOI: 10.1007/s00213-020-05580-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVE Estradiol decline has been associated with depression and anxiety in post-menopausal women. Agomelatine (Ago) is an agonist of the melatonergic MT1/MT2 receptors and an antagonist of the serotonergic 5-HT2c receptors. The present study aimed to evaluate the effects of combining Ago with 17β-estradiol (E2) on ovariectomy (OVX)-induced depressive- and anxiety-like behaviors in young adult female rats. METHODS OVX rats were treated with Ago (40 mg/kg/day, p.o.) for 10 days starting 1 week after surgery alone or combined with two doses of E2 (40 μg/kg/day, s.c.) given before behavioral testing. RESULTS Co-administration of E2 enhanced the anti-depressant and anxiolytics effects of Ago as evidenced by decreased immobility time in the forced swimming test, as well as increased time spent in the open arms and number of entries to open arms in the elevated plus-maze. In parallel, Ago increased hippocampal norepinephrine, dopamine, melatonin, and brain-derived neurotrophic factor (BDNF). Meanwhile, Ago-treated rats exhibited reduced hippocampal nuclear factor kappa beta (NF-kB) P65 expression and pro-inflammatory cytokine level. Ago upregulated estrogen receptor (ER α and β) mRNA expression in the hippocampus of OVX rats and elevated serum estradiol levels. Co-administration of E2 with Ago synergistically decreased NF-kB P65 expression and pro-inflammatory cytokines, and increased BDNF levels. CONCLUSION E2 augmented the neuroprotective effect of Ago in OVX rats via its anti-inflammatory and neurotrophic effects. The combined treatment of E2 and Ago should be further investigated as a treatment of choice for depression, anxiety, and sleep disturbances associated with menopause.
Collapse
Affiliation(s)
- Yasmine A El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
26
|
Savic I. MRS Shows Regionally Increased Glutamate Levels among Patients with Exhaustion Syndrome Due to Occupational Stress. Cereb Cortex 2020; 30:3759-3770. [PMID: 32195540 DOI: 10.1093/cercor/bhz340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the rapid increase of reports of exhaustion syndrome (ES) due to daily occupational stress, the mechanisms underlying ES are unknown. We used voxel-based 1H-MR spectroscopy to examine the potential role of glutamate in this condition. The levels of glutamate were found to be elevated among ES patients (n = 30, 16 females) compared with controls (n = 31, 15 females). Notably, this increase was detected only in the anterior cingulate and mesial prefrontal cortex (ACC/mPFC), and the glutamate levels were linearly correlated with the degree of perceived stress. Furthermore, there was a sex by group interaction, as the glutamate elevation was present only in female patients. Female but not male ES patients also showed an increase in N-acetyl aspartate (NAA) levels in the amygdala. No group differences were detected in glutamine concentration (also measured). These data show the key role of glutamate in stress-related neuronal signaling and the specific roles of the amygdala and ACC/mPFC. The data extend previous reports about the neurochemical basis of stress and identify a potential neural marker and mediator of ES due to occupational stress. The observation of specific sex differences provides a tentative explanation to the well-known female predominance in stress-related psychopathology.
Collapse
Affiliation(s)
- Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.,Department of Neurology, UCLA, Los Angeles, CA 90095-1769, USA
| |
Collapse
|
27
|
Lorenzetti V, Costafreda SG, Rimmer RM, Rasenick MM, Marangell LB, Fu CHY. Brain-derived neurotrophic factor association with amygdala response in major depressive disorder. J Affect Disord 2020; 267:103-106. [PMID: 32063560 PMCID: PMC8020847 DOI: 10.1016/j.jad.2020.01.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has an essential role in synaptic plasticity and neurogenesis. BDNF mediates amygdala-dependent learning for both aversive and appetitive emotional memories. The expression of BDNF in limbic regions is posited to contribute the development of depression, and amygdala responsivity is a potential marker of depressive state. METHODS The present study examined the relationship between platelet BDNF levels and amygdala volume and function in major depressive disorder (MDD). Participants were 23 MDD (mean age 38.9 years) and 23 healthy controls (mean age 38.8 years). All participants were recruited from the community. MDD participants were in a current depressive episode of moderate severity and medication-free. Amygdala responses were acquired during a functional MRI task of implicit emotional processing with sad facial expressions. RESULTS Significant correlation was observed between platelet BDNF levels and left amygdala responses, but no significant correlations were found with right amygdala responses or with amygdala volumes. LIMITATIONS Interactions with neuroprotective as well as neurotoxic metabolites in the kyneurenine pathway were not examined. CONCLUSIONS Relationship between BDNF levels and amygdala responsivity to emotionally salient stimuli in MDD could reflect the importance of BDNF in amygdala-dependent learning with clinical implications for potential pathways for treatment.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Australia; Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, United Kingdom
| | - Sergi G Costafreda
- Department of Psychiatry, University College London, London, United Kingdom
| | | | | | | | - Cynthia H Y Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
28
|
Dong Z, Liu Z, Liu Y, Zhang R, Mo H, Gao L, Shi Y. Physical exercise rectifies CUMS-induced aberrant regional homogeneity in mice accompanied by the adjustment of skeletal muscle PGC-1a/IDO1 signals and hippocampal function. Behav Brain Res 2020; 383:112516. [DOI: 10.1016/j.bbr.2020.112516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
|
29
|
Fang JL, Luo Y, Jin SH, Yuan K, Guo Y. Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep 2019; 47:753-770. [PMID: 31612411 DOI: 10.1007/s11033-019-05129-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is considered a serious public health issue that adversely impacts an individual's quality of life and contributes significantly to the global burden of disease. The clinical heterogeneity that exists among patients limits the ability of MDD to be accurately diagnosed and currently, a symptom-based approach is utilized in many cases. Due to the complex nature of this disorder, and lack of precise knowledge regarding the pathophysiology, effective management is challenging. The aetiology and pathophysiology of MDD remain largely unknown given the complex genetic and environmental interactions that are involved. Nonetheless, the aetiology and pathophysiology of MDD have been the subject of extensive research, and there is a vast body of literature that exists. Here we overview the key hypotheses that have been proposed for the neurobiology of MDD and highlight the need for a unified model, as many of these pathways are integrated. Key pathways discussed include neurotransmission, neuroinflammation, clock gene machinery pathways, oxidative stress, role of neurotrophins, stress response pathways, the endocannabinoid and endovanilloid systems, and the endogenous opioid system. We also describe the current management of MDD, and emerging novel therapies, with particular focus on patients with treatment-resistant depression (TRD).
Collapse
|
31
|
Storace A, Daniels S, Zhou Y, Kalisch B, Parker L, Rock E, Limebeer C, Lapointe T, Leri F. A study of limbic brain derived neurotrophic factor gene expression in male Sprague-Dawley rats trained on a learned helplessness task. Behav Brain Res 2019; 376:112174. [PMID: 31449911 DOI: 10.1016/j.bbr.2019.112174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain derived neurotrophic factor (BDNF) has been linked to the etiology and pathology of Major Depressive Disorder (MDD). Here, the relationship between learned helplessness (LH), a cognitive/motivational state relevant to MDD, and BDNF mRNA in various limbic regions, was investigated. METHODS In Sprague-Dawley male rats, LH was induced by escape training, using a triadic design of stressor controllability involving exposure to no shocks (NS), escapable shocks (ES) or yoked inescapable shocks (IES). LH was subsequently assessed in an active avoidance task, and levels of BDNF mRNA in limbic brain regions were compared across the triad following testing. RESULTS Although the IES group displayed greater LH, BDNF mRNA levels were lower in the hippocampus and higher in the nucleus accumbens of both IES and ES groups. In contrast, BDNF mRNA in the basolateral amygdala was elevated only in rats exposed to IES. CONCLUSION These results suggest that the inability to control an aversive stimulus can lead to a LH behavioural phenotype that is associated with region-specific alterations of BDNF gene expression in limbic nuclei.
Collapse
Affiliation(s)
- Alexandra Storace
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Daniels
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Yan Zhou
- Laboratory of the Biology of Addictive Disease, Rockefeller University, New York, NY, United States.
| | - Bettina Kalisch
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Linda Parker
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Erin Rock
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Cheryl Limebeer
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas Lapointe
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
32
|
Huang CCY, Muszynski KJ, Bolshakov VY, Balu DT. Deletion of Dtnbp1 in mice impairs threat memory consolidation and is associated with enhanced inhibitory drive in the amygdala. Transl Psychiatry 2019; 9:132. [PMID: 30967545 PMCID: PMC6456574 DOI: 10.1038/s41398-019-0465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 11/19/2022] Open
Abstract
Schizophrenia is a severe and highly heritable disorder. Dystrobrevin-binding protein 1 (DTNBP1), also known as dysbindin-1, has been implicated in the pathophysiology of schizophrenia. Specifically, dysbindin-1 mRNA and protein expression are decreased in the brains of subjects with this disorder. Mice lacking dysbinidn-1 also display behavioral phenotypes similar to those observed in schizophrenic patients. However, it remains unknown whether deletion of dysbindin-1 impacts functions of the amygdala, a brain region that is critical for emotional processing, which is disrupted in patients with schizophrenia. Here, we show that dysbindin-1 is expressed in both excitatory and inhibitory neurons of the basolateral amygdala (BLA). Deletion of dysbindin-1 in male mice (Dys-/-) impaired cued and context-dependent threat memory, without changes in measures of anxiety. The behavioral deficits observed in Dys-/- mice were associated with perturbations in the BLA, including the enhancement of GABAergic inhibition of pyramidal neurons, increased numbers of parvalbumin interneurons, and morphological abnormalities of dendritic spines on pyramidal neurons. Our findings highlight an important role for dysbindin-1 in the regulation of amygdalar function and indicate that enhanced inhibition of BLA pyramidal neuron activity may contribute to the weakened threat memory expression observed in Dys-/- mice.
Collapse
Affiliation(s)
- Cathy C Y Huang
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry laboratory, McLean Hospital, Belmont, MA, USA.
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Kevin J Muszynski
- Translational Psychiatry laboratory, McLean Hospital, Belmont, MA, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Cellular Neurobiology laboratory, McLean Hospital, Belmont, MA, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
33
|
Manno FAM, Isla AG, Manno SHC, Ahmed I, Cheng SH, Barrios FA, Lau C. Early Stage Alterations in White Matter and Decreased Functional Interhemispheric Hippocampal Connectivity in the 3xTg Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2019; 11:39. [PMID: 30967770 PMCID: PMC6440287 DOI: 10.3389/fnagi.2019.00039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized in the late stages by amyloid-β (Aβ) plaques and neurofibrillary tangles. Nevertheless, recent evidence has indicated that early changes in cerebral connectivity could compromise cognitive functions even before the appearance of the classical neuropathological features. Diffusion tensor imaging (DTI), resting-state functional magnetic resonance imaging (rs-fMRI) and volumetry were performed in the triple transgenic mouse model of AD (3xTg-AD) at 2 months of age, prior to the development of intraneuronal plaque accumulation. We found the 3xTg-AD had significant fractional anisotropy (FA) increase and radial diffusivity (RD) decrease in the cortex compared with wild-type controls, while axial diffusivity (AD) and mean diffusivity (MD) were similar. Interhemispheric hippocampal connectivity was decreased in the 3xTg-AD while connectivity in the caudate putamen (CPu) was similar to controls. Most surprising, ventricular volume in the 3xTg-AD was four times larger than controls. The results obtained in this study characterize the early stage changes in interhemispheric hippocampal connectivity in the 3xTg-AD mouse that could represent a translational biomarker to human models in preclinical stages of the AD.
Collapse
Affiliation(s)
- Francis A M Manno
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Arturo G Isla
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Sinai H C Manno
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Irfan Ahmed
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,Electrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
34
|
Bi Y, Huang P, Dong Z, Gao T, Huang S, Gao L, Lv Z. Modified Xiaoyaosan reverses aberrant brain regional homogeneity to exert antidepressive effects in mice. Neuropathology 2019; 39:85-96. [DOI: 10.1111/neup.12540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yanmeng Bi
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Peng Huang
- Foshan Maternal and Child Health Research InstituteAffiliated Hospital of Southern Medical University Foshan China
| | - Zhaoyang Dong
- School of NursingGuangzhou University of Chinese Medicine Guangzhou China
| | - Tingting Gao
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Shaohui Huang
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Lei Gao
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Zhiping Lv
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| |
Collapse
|
35
|
Gao L, Huang P, Dong Z, Gao T, Huang S, Zhou C, Lai Y, Deng G, Liu B, Wen G, Lv Z. Modified Xiaoyaosan (MXYS) Exerts Anti-depressive Effects by Rectifying the Brain Blood Oxygen Level-Dependent fMRI Signals and Improving Hippocampal Neurogenesis in Mice. Front Pharmacol 2018; 9:1098. [PMID: 30323763 PMCID: PMC6173122 DOI: 10.3389/fphar.2018.01098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
As the traditional Chinese herbal formula, Xiaoyaosan and its modified formula have been described in many previous studies with definite anti-depressive effects, but its underlying mechanism remains mystery. Previous work in our lab has demonstrated that depression induced by chronic stress could generate brain blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals disorder, accompanied by the impairment of hippocampal neuronal plasticity, decrease of brain-derived neurotrophic factor, and reduction of the number and complexity of adult neurons in the dentate gyrus. We hypothesized that herbal formula based on Xiaoyaosan could exert anti-depressive effects through restoring these neurobiological dysfunctions and rectifying BOLD-fMRI signals. To test this hypothesis, we examined the effect of modified Xiaoyaosan (MXYS) on depressive-like behaviors, as well as hippocampal neurogenesis and BOLD signals in a mice model of chronic unpredictable mild stress (CUMS)-induced depression. MXYS exerted anti-depressant effects on CUMS-induced depression that were similar to the effects of classical antidepressants drug (fluoxetine hydrochloride), with a significant alleviation of depressive-like behaviors, an improvement of hippocampal neurogenesis, and a reversal of activation of BOLD in the limbic system, particularly in the hippocampus. These results suggested that MXYS attenuated CUMS-induced depressive behaviors by rectifying the BOLD signals in the mice hippocampus. These novel results demonstrated that MXYS had anti-depressive effects accompanied by improving BOLD signals and hippocampal neurogenesis, which suggested that BOLD-fMRI signals in brain regions could be a key component for the evaluation of novel antidepressant drugs.
Collapse
Affiliation(s)
- Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peng Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuling Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ge Wen
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|