1
|
Yang J, Ding J, Lu Z, Zhu B, Lin S. Digestive and Absorptive Properties of the Antarctic Krill Tripeptide Phe-Pro-Phe (FPF) and Its Auxiliary Memory-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8491-8505. [PMID: 38587859 DOI: 10.1021/acs.jafc.3c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jie Ding
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Zhiqiang Lu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| |
Collapse
|
2
|
Niu C, Dong M, Niu Y. Natural polyphenol: Their pathogenesis-targeting therapeutic potential in Alzheimer's disease. Eur J Med Chem 2024; 269:116359. [PMID: 38537514 DOI: 10.1016/j.ejmech.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid β-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aβ/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
3
|
Yang J, Qi Y, Zhu B, Lin S. A Novel Tetrapeptide Ala-Phe-Phe-Pro (AFFP) Derived from Antarctic Krill Prevents Scopolamine-Induced Memory Disorder by Balancing Lipid Metabolism of Mice Hippocampus. Nutrients 2024; 16:1019. [PMID: 38613052 PMCID: PMC11013912 DOI: 10.3390/nu16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Qi
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
| |
Collapse
|
4
|
Lan Y, Lu J, Qiao G, Mao X, Zhao J, Wang G, Tian P, Chen W. Bifidobacterium breve CCFM1025 Improves Sleep Quality via Regulating the Activity of the HPA Axis: A Randomized Clinical Trial. Nutrients 2023; 15:4700. [PMID: 37960353 PMCID: PMC10648101 DOI: 10.3390/nu15214700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Psychobiotics, a newly identified category of probiotics primarily targeting the gut-brain axis, exhibit tremendous potential in improving sleep quality. In this study, the clinical trial was registered in advance (identifier: NO. ChiCTR2300067806). Forty participants who were diagnosed with stress-induced insomnia were chosen and randomly divided into two groups: one received CCFM1025 at a dose of 5 × 109 CFU (n = 20), while the other was administered a placebo (n = 20), over a period of four weeks. The results revealed that compared to the placebo group (pre: M = 10.10, SD = 2.292; post: M = 8.650, SD = 2.793; pre vs. post: F (1, 38) = 15.41, p = 0.4316), the CCFM1025-treated group exhibited a significant decrease in Pittsburgh Sleep Quality Index (PSQI) scores from baseline (pre: M = 11.60, SD = 3.169; post: M = 7.750, SD = 3.697, F (1, 38) = 15.41, p = 0.0007). Furthermore, the administration of CCFM1025 was associated with a more pronounced reduction in stress marker concentrations. This effect could potentially be linked to changes in serum metabolites induced by the probiotic treatment, notably daidzein. In conclusion, B. breve CCFM1025 demonstrates promise as a psychobiotic strain for enhancing sleep quality.
Collapse
Affiliation(s)
- Yuming Lan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (J.Z.); (G.W.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Junjie Lu
- Department of Critical Care Medicine, Yixing People’s Hospital Affiliated Jiangsu University, Yixing 214200, China; (J.L.); (X.M.)
| | - Guohong Qiao
- Department of Clinical Laboratory, Yixing People’s Hospital Affiliated Jiangsu University, Yixing 214200, China;
| | - Xuhua Mao
- Department of Critical Care Medicine, Yixing People’s Hospital Affiliated Jiangsu University, Yixing 214200, China; (J.L.); (X.M.)
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (J.Z.); (G.W.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (J.Z.); (G.W.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (J.Z.); (G.W.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (J.Z.); (G.W.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Ren Y, Qu S. Constituent isoflavones of Puerariae radix as a potential neuroprotector in cognitive impairment: Evidence from preclinical studies. Ageing Res Rev 2023; 90:102040. [PMID: 37619620 DOI: 10.1016/j.arr.2023.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
With the increasing aging population worldwide, the incidence of senile cognitive impairment (CI) is increasing, posing a serious threat to the health of elderly persons. Despite developing new drugs aimed at improving CI, progress in this regard has been insufficient. Natural preparations derived from plants have become an unparalleled resource for developing new drugs. Puerariae radix (PR) has a long history as Chinese herbal medicine. PR is rich in various chemical components such as isoflavones, triterpenes, and saponins. The isoflavones (puerarin, daidzein, formononetin, and genistein) exhibit potential therapeutic effects on CI through multiple mechanisms. Relevant literature was organized from major scientific databases such as PubMed, Elsevier, SpringerLink, ScienceDirect, and Web of Science. Using "Puerariae radix," "Pueraria lobata," "isoflavones," "puerarin," "antioxidant," "daidzein," "formononetin," "genistein," "Alzheimer"s disease," and "vascular cognitive impairment" as keywords, the relevant literature was extracted from the databases mentioned above. We found that isoflavones from PR have neuroprotective effects on multiple models of CI via multiple targets and mechanisms. These isoflavones prevent Aβ aggregation, inhibit tau hyperphosphorylation, increase cholinergic neurotransmitter levels, reduce neuroinflammation and oxidative stress, improve synaptic plasticity, promote nerve regeneration, and prevent apoptosis. PR has been used as traditional Chinese herbal medicine for a long time, and its constituent isoflavones exert significant therapeutic effects on CI through various neuroprotective mechanisms. This review will contribute to the future development of isoflavones present in PR as novel drug candidates for the clinical treatment of CI.
Collapse
Affiliation(s)
- Yaoyao Ren
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao St, Shenyang 110004, PR China.
| |
Collapse
|
6
|
Jamadagni SB, Ghadge PM, Tambe MS, Srinivasan M, Prasad GP, Jamadagni PS, Prasad SB, Pawar SD, Gurav AM, Gaidhani SN, Kumar YRS, Srikanth N. Amelioration of AlCl 3-induced Memory Loss in the Rats by an Aqueous Extract of Guduchi, a Medhya Rasayana. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221145063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background In ayurvedic practice, the Guduchi ( Tinospora cordifolia (Willd.) Miers) stem is used as a Medhya drug for its beneficial effects on memory improvement. Objectives The current study was planned to explore the Medhya properties of the Guduchi stem extract by observing its ameliorating effect on AlCl3-induced neurotoxicity in rats that acted as a chronic model of memory loss. Materials and Methods The aqueous extract of the Guduchi stem was prepared per the Ayurvedic Pharmacopoeia of India and administered to the AlCl3-treated Wistar rats for 42 days. The biochemical assessment of the brain tissues of the treated animals was done by the acetylcholinesterase (AChE) inhibition assay, protein expression, and oxidative stress assays, namely lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase assay. The neurobehavioral assessment was done using the elevated plus maze (EPM) test. Results The EPM test revealed that treatment with Guduchi extract showed marked improvement of memory status in rats along with reduced oxidative stress, and a marked modulation of the AChE inhibition and expression of AChE tubulin proteins. Conclusion The results substantiate the Medhya properties of the Guduchi. Detailed investigations are required to be carried out to explore the precise mechanism of the neuroprotective action of the Guduchi stem extract against the AlCl3-induced neurotoxicity in rats.
Collapse
Affiliation(s)
| | - Pooja M. Ghadge
- Regional Ayurveda Research Institute, Pune, Maharashtra, India
| | - Mukul S. Tambe
- Regional Ayurveda Research Institute, Pune, Maharashtra, India
| | | | | | | | | | - Sharad D. Pawar
- Central Ayurveda Research Institute, Kolkata, West Bengal, India
| | - Arun M. Gurav
- Regional Ayurveda Research Institute, Pune, Maharashtra, India
| | - Sudesh N. Gaidhani
- National Ayurveda Research Institute for Panchakarma, Cheruthuruthy, Kerala, India
| | | | | |
Collapse
|
7
|
Engineering of Microbial Substrate Promiscuous CYP105A5 for Improving the Flavonoid Hydroxylation. Catalysts 2022. [DOI: 10.3390/catal12101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bacterial cytochrome P450 (CYP) enzymes are versatile biocatalysts that are responsible for the biotransformation of diverse endogenous substances. CYP105A5 from Streptomyces sp. showed substrate flexibility with different flavonoids and was able to catalyze O-demethylation of biochanin A, regioselective C3′-hydroxylation of daidzein, genistein, and naringenin, and additional C8-hydroxylation for daidzein using heterologous redox partners putidaredoxin and putidaredoxin reductase. By rational design of substrate-binding pocket based on experimental data, homology modeling, and molecular docking analysis, we enhanced the product formation rate of flavonoids. The double mutant L100A/I302A and L100A/I408N exhibited greatly enhanced in vivo conversion rates for flavonoid hydroxylation. Particularly, the L100A/I302A mutant’s kcat/Km values and in vivo conversion rate increased by 1.68-fold and 2.57-fold, respectively, for naringenin. Overall, our result might facilitate the potential use of CYP105A5 for future modification and application in whole-cell biocatalysts for the production of valuable polyphenols.
Collapse
|
8
|
Vicente-Silva W, Silva-Freitas FR, Beserra-Filho JIA, Cardoso GN, Silva-Martins S, Sarno TA, Silva SP, Soares-Silva B, Dos Santos JR, da Silva RH, Prado CM, Ueno AK, Lago JHG, Ribeiro AM. Sakuranetin exerts anticonvulsant effect in bicuculline-induced seizures. Fundam Clin Pharmacol 2022; 36:663-673. [PMID: 35156229 DOI: 10.1111/fcp.12768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by an abnormal, spontaneous, and synchronized neuronal hyperactivity. Therapeutic approaches for controlling epileptic seizures are associated with pharmacoresistance and side effects burden. Previous studies reported that different natural products may have neuroprotector effects. Sakuranetin (SAK) is a flavanone with antiparasitic, anti-inflammatory, antimutagenic, antiallergic, and antioxidant activity. In the present work, the effect of SAK on seizures in a model of status epilepticus induced by bicuculline (BIC) in mice was evaluated. Male Swiss mice received an intracerebroventricular injection (i.c.v.) of SAK (1, 10, or 20 mg/kg-SAK1, SAK10, or SAK20). Firstly, animals were evaluated in the open field (OF; 20 min), afterwards in the elevated plus maze (EPM) test (5 min). Next, 30 min prior the administration of BIC (1 mg/kg), mice received an injection of SAK (1 or 10 mg/kg, i.c.v.) and were observed in the OF (20 min) for seizures assessment. After behavioral procedures, immunohistochemical analysis of c-Fos was performed. Our main results showed that the lowest doses of SAK (1 and 10 mg/kg) increased the total distance traveled in the OF, moreover protected against seizures and death on the BIC-induced seizures model. Furthermore, SAK treatment reduced neuronal activity on the dentate gyrus of the BIC-treated animals. Taken together, our results suggest an anticonvulsant effect of SAK, which could be used for the development of anticonvulsants based on natural products from herbal source.
Collapse
Affiliation(s)
- Wilson Vicente-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | | | | - Suellen Silva-Martins
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Tamires Alves Sarno
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Beatriz Soares-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | - Regina Helena da Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Anderson Keity Ueno
- Department of Biosciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
8-Hydroxydaidzein (8-OHDe) is a non-natural isoflavone polyphenol isolated from fermented soybean foods. 8-OHDe exhibits a wide range of pharmaceutical activities. However, both the poor solubility and instability of 8-OHDe limit its applications. To resolve the limitations of 8-OHDe, Deinococcus geothermalis amylosucrase (DgAS) has previously been used to glycosylate 8-OHDe to produce soluble and stable 8-OHDe-7-O-α-glucopyranoside (8-OHDe-7-G) in a 0.5 h reaction time. In this study, we aimed to use DgAS and an extended reaction time to produce 8-OHDe diglucosides. At least three 8-OHDe derivatives were produced after a 24 h reaction time, and two major products were successfully purified and identified as new compounds: 8-OHDe-7-O-[α-glucopyranosyl-(1→6)-α-glucopyranoside] (8-OHDe-7-G2) and 8-OHDe-7,4′-O-α-diglucopyranoside (8-OHDe-7-G-4′-G). 8-OHDe-7-G-4′-G showed a 4619-fold greater aqueous solubility than 8-OHDe. In addition, over 92% of the 8-OHDe diglucosides were stable after 96 h, while only 10% of the 8-OHDe could be detected after being subjected to the same conditions. The two stable 8-OHDe diglucoside derivatives have the potential for pharmacological usage in the future.
Collapse
|
10
|
Teymuori M, Yegdaneh A, Rabbani M. Effects of Piper nigrum fruit and Cinnamum zeylanicum bark alcoholic extracts, alone and in combination, on scopolamine-induced memory impairment in mice. Res Pharm Sci 2021; 16:474-481. [PMID: 34522195 PMCID: PMC8407161 DOI: 10.4103/1735-5362.323914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/13/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background and purpose: Alzheimer’s disease is a progressive brain disorder that is thought to be triggered via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, antioxidant phytochemicals with the ability to fortify cholinergic function should help in preventing the progress of the disease. This study aimed at evaluating the combinational effects of two popular herbs one with anticholinesterase activity namely Piper nigrum and the other with antioxidant capacity, Cinnamomum zeylanicum. Experimental approach: In this study, P. nigrum extract (PN) (50, 100 mg/kg, ip) and C. zeylanicum extract (CZ) (100, 200, 400 mg/kg, ip) and their combinations were administered for 8 days before the injection of scopolamine (1 mg/kg, ip). Mice were then tested for their memory using two behavioral models, namely the object recognition test and the passive avoidance task. Findings/Results: Administration of scopolamine significantly impaired memory performance in both memory paradigms. In the passive avoidance test (PAT) model, PN at doses up to 100 mg/kg and CZ at doses up to 400 mg/kg did not significantly alter the memory impairment induced by scopolamine. The combination of these two plant extracts did not change the PAT parameters. In the object recognition test (ORT) model, however, administration of 100 mg/kg CZ alone and a combination of PN (50 mg/kg) with CZ (400 mg/kg), significantly increased the recognition index (P < 0.05). Conclusion and implications: Two plant extracts when administered alone or in combinations affected the memory performance differently in two memory paradigms. In the PAT model, the extracts did not show any memory improvement, in ORT, however, some improvements were observed after plant extracts.
Collapse
Affiliation(s)
- Mohammad Teymuori
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
11
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
12
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
13
|
Wu D, Xu X, Sun N, Li D, Zhu B, Lin S. AGLPM and QMDDQ peptides exert a synergistic action on memory improvement against scopolamine-induced amnesiac mice. Food Funct 2020; 11:10925-10935. [PMID: 33242042 DOI: 10.1039/d0fo02570d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to explore the synergistic action of pentapeptides Gln-Met-Asp-Asp-Gln (QMDDQ) and Ala-Gly-Leu-Pro-Met (AGLPM) on memory improvement against scopolamine-induced impairment in mice compared to those of either peptide alone. In behavioral tests, the codelivery of QMDDQ and AGLPM was superior to the individual supplements of either peptide alone not only in enhancing the memory ability at training trials but also in recovering the memory impairment in scopolamine-induced amnesiac mice in test trials. Furthermore, combination treatment with QMDDQ and AGLPM could significantly reduce the acetylcholinesterase (AChE) level and increase the acetylcholine (ACh) level in the hippocampus, and noticeably improve the pathological morphology of the neuron cells in hippocampal regions CA1 and CA2 and dentate gyrus (DG). The findings indicated that the combination treatment with QMDDQ and AGLPM could improve the memory function by regulating the cholinergic system.
Collapse
Affiliation(s)
- Dan Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43:1128-1143. [DOI: 10.1007/s12272-020-01292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
15
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
16
|
Kim SK, Ko YH, Lee SY, Jang CG. Memory-enhancing effects of 7,3′,4′-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Food Chem Toxicol 2020; 137:111160. [DOI: 10.1016/j.fct.2020.111160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
17
|
Improved Pharmacokinetics and Tissue Uptake of Complexed Daidzein in Rats. Pharmaceutics 2020; 12:pharmaceutics12020162. [PMID: 32079113 PMCID: PMC7076374 DOI: 10.3390/pharmaceutics12020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacokinetic profile and tissue uptake of daidzein (DAI) was determined in rat serum and tissues (lungs, eyes, brain, heart, spleen, fat, liver, kidney, and testes) after intravenous and intraperitoneal administration of DAI in suspension or complexed with ethylenediamine-modified γ-cyclodextrin (GCD-EDA/DAI). The absolute and relative bioavailability of DAI suspended (20 mg/kg i.v. vs. 50 mg/kg i.p.) and complexed (0.54 mg/kg i.v. vs. 1.35 mg/kg i.p.) was determined. After i.p. administration, absorption of DAI complexed with GCD-EDA was more rapid (tmax = 15 min) than that of DAI in suspension (tmax = 45 min) with a ca. 3.6 times higher maximum concentration (Cmax = 615 vs. 173 ng/mL). The i.v. half-life of DAI was longer in GCD-EDA/DAI complex compared with DAI in suspension (t0.5 = 380 min vs. 230 min). The volume of distribution of DAI given i.v. in GCD-EDA/DAI complex was ca. 6 times larger than DAI in suspension (38.6 L/kg vs. 6.2 L/kg). Our data support the concept that the pharmacokinetics of DAI suspended in high doses are nonlinear. Increasing the intravenous dose 34 times resulted in a 5-fold increase in AUC. In turn, increasing the intraperitoneal dose 37 times resulted in a ca. 2-fold increase in AUC. The results of this study suggested that GCD-EDA complex may improve DAI bioavailability after i.p. administration. The absolute bioavailability of DAI in GCD-EDA inclusion complex was ca. 3 times greater (F = 82.4% vs. 28.2%), and the relative bioavailability was ca. 21 times higher than that of DAI in suspension, indicating the need to study DAI bioavailability after administration by routes other than intraperitoneal, e.g., orally, subcutaneously, or intramuscularly. The concentration of DAI released from GCD-EDA/DAI inclusion complex to all the rat tissues studied was higher than after administration of DAI in suspension. The concentration of DAI in brain and lungs was found to be almost 90 and 45 times higher, respectively, when administered in complex compared to the suspended DAI. Given the nonlinear relationship between DAI bioavailability and the dose released from the GCD-EDA complex, complexation of DAI may thus offer an effective approach to improve DAI delivery for treatment purposes, for example in mucopolysaccharidosis (MPS), allowing the reduction of ingested DAI doses.
Collapse
|
18
|
Corpuz HM, Arimura M, Chawalitpong S, Miyazaki K, Sawaguchi M, Nakamura S, Katayama S. Oral Administration of Okara Soybean By-Product Attenuates Cognitive Impairment in a Mouse Model of Accelerated Aging. Nutrients 2019; 11:E2939. [PMID: 31816987 PMCID: PMC6950093 DOI: 10.3390/nu11122939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
The microbiota-gut-brain axis has attracted increasing attention in the last decade. Here, we investigated whether okara, a soybean by-product rich in dietary fiber, can attenuate cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice by altering gut microbial composition. Mice were fed either a standard diet, or a diet containing okara (7.5% or 15%, w/w) for 26 weeks. In the memory test, the 7.5% okara-fed mice showed a longer step-through latency and the 15% okara-fed mice had a short escape latency compared with control mice. The 15% okara-fed mice displayed decreased body weight, increased fecal weight, and altered cecal microbiota composition compared with the control group; however, there was no significant difference in the serum lactic acid and butyric acid levels among these mice groups. The 7.5% okara-fed mice had significantly higher NeuN intensity in the hippocampus compared with control mice. Furthermore, a decrease in inflammatory cytokine TNF- and an increase in brain-derived neurotrophic factor (BDNF) was observed in the 7.5% okara-fed group. The expression of synthesizing enzyme of acetylcholine was increased by the okara diets, and the acetylcholine level in the brain was higher in the 7.5% okara-fed group than in the control. These suggest that oral administration of okara could delay cognitive decline without drastically changing gut microbiota.
Collapse
Affiliation(s)
- Henry M. Corpuz
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (H.M.C.); (S.N.)
- Rice Chemistry and Food Science Division, Philippine Rice Research Institute, Maligaya, Science City of Muñoz, Nueva Ecija 3119, Philippines
| | - Misa Arimura
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (M.A.); (S.C.)
| | - Supatta Chawalitpong
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (M.A.); (S.C.)
| | - Keiko Miyazaki
- Misuzu Corporation Co., Ltd., 1606 Wakasato, Nagano City, Nagano 3800928, Japan; (K.M.); (M.S.)
| | - Makoto Sawaguchi
- Misuzu Corporation Co., Ltd., 1606 Wakasato, Nagano City, Nagano 3800928, Japan; (K.M.); (M.S.)
| | - Soichiro Nakamura
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (H.M.C.); (S.N.)
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (M.A.); (S.C.)
| | - Shigeru Katayama
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (H.M.C.); (S.N.)
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan; (M.A.); (S.C.)
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan
| |
Collapse
|
19
|
Ko YH, Kwon SH, Kim SK, Lee BR, Hur KH, Kim YJ, Kim SE, Lee SY, Jang CG. Protective effects of 6,7,4'-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch Pharm Res 2019; 42:1081-1091. [PMID: 31705299 DOI: 10.1007/s12272-019-01191-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Daidzein, one of the important isoflavones, is extensively metabolized in the human body following consumption. In particular, 6,7,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, has been the focus of recent investigations due to its various health benefits, such as anti-cancer and anti-obesity effects. However, the protective effects of 6,7,4'-THIF have not yet been studied in models of Parkinson's disease (PD). Therefore, the present study aimed to investigate the protective activity of 6,7,4'-THIF on 6-hydroxydopamine (OHDA)-induced neurotoxicity in SH-SY5Y human neuroblastoma cells. Pretreatment of SH-SY5Y cells with 6,7,4'-THIF significantly inhibited 6-OHDA-induced neuronal cell death, lactate dehydrogenase release, and reactive oxygen species production. In addition, 6,7,4'-THIF significantly attenuated reductions in 6-OHDA-induced superoxide dismutase activity and glutathione content. Moreover, 6,7,4'-THIF attenuated alterations in Bax and Bcl-2 expression and caspase-3 activity in 6-OHDA-induced SH-SY5Y cells. Furthermore, 6,7,4'-THIF significantly reduced 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase 1/2. Additionally, 6,7,4'-THIF effectively prevented 6-OHDA-induced loss of tyrosine hydroxylase. Taken together, these results suggest that 6,7,4'-THIF, a major metabolite of daidzein, may be an attractive option for treating and/or preventing neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Eon Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
A novel designer drug, 25N-NBOMe, exhibits abuse potential via the dopaminergic system in rodents. Brain Res Bull 2019; 152:19-26. [DOI: 10.1016/j.brainresbull.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|
21
|
Auti ST, Kulkarni YA. Neuroprotective Effect of Cardamom Oil Against Aluminum Induced Neurotoxicity in Rats. Front Neurol 2019; 10:399. [PMID: 31114535 PMCID: PMC6502995 DOI: 10.3389/fneur.2019.00399] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase (AChE) is an enzyme involved in the progression of Alzheimer's disease (AD). Cardamom oil (CO) has been reported to have acetylcholinesterase inhibitory, antioxidant and anti-anxiety effects. Hence, we studied the effect of cardamom oil in aluminum chloride induced neurotoxicity in rats. AD like symptoms were induced in Wistar rats with aluminum chloride (100 mg/kg, p.o.). Cardamom oil was administered concomitantly by oral route at doses of 100 and 200 mg/kg for 42 days. Behavioral parameters like Morris water maze, elevated plus maze, passive avoidance test and locomotor activity were evaluated on day 21 and 42. AChE activity, oxidative stress parameters, histopathological studies and immunohistochemistry studies were carried out in hippocampus and cortex. Cardamom oil treatment showed significant improvement in behavioral parameters, inhibition of AChE activity (p < 0.001) and reduction in oxidative stress in the brain. Histopathological studies of hippocampus and cortex by hematoxylin & eosin (H. & E.) and congo red stain showed inhibition of neuronal damage and amyloid β plaque formation with cardamom oil treatment. Immunohistochemistry showed, CO treatment inhibited amyloid β expression and upregulated brain-derived neurotrophic factor (BDNF). The present study showed that, cardamom oil has neuroprotective effect in aluminum chloride induced neurotoxicity linked with inhibition of AChE activity and reduction in oxidative damage. This effect of cardamom oil may be useful in management of Alzheimer's disease.
Collapse
Affiliation(s)
- Sandip T Auti
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|