1
|
Wang L, Yang B, Zheng W, Liang T, Chen X, Chen Q, Du J, Lu J, Li B, Chen N. Alterations in cortical thickness and volumes of subcortical structures in pediatric patients with complete spinal cord injury. CNS Neurosci Ther 2024; 30:e14810. [PMID: 38887969 PMCID: PMC11183907 DOI: 10.1111/cns.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Weimin Zheng
- Department of Radiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Tengfei Liang
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Qian Chen
- Department of Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baowei Li
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
2
|
Hao Q, Zheng W, Zhang Z, Liu Y, Ding H, OuYang J, Liu Z, Wu G, Liu R. Subthalamic nucleus deep brain stimulation in primary Meige syndrome: motor and non-motor outcomes. Eur J Neurol 2024; 31:e16121. [PMID: 37933887 PMCID: PMC11235968 DOI: 10.1111/ene.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) has emerged as a promising treatment for movement disorders. This prospective study aims to evaluate the effects of bilateral subthalamic nucleus DBS (STN-DBS) on motor and non-motor symptoms in patients with primary Meige syndrome. METHODS Thirty patients who underwent bilateral STN-DBS between April 2017 and June 2020 were included. Standardized and validated scales were utilized to assess the severity of dystonia, health-related quality of life, sleep, cognitive function and mental status at baseline and at 1 year and 3 years after neurostimulation. RESULTS The Burke-Fahn-Marsden Dystonia Rating Scale movement scores showed a mean improvement of 63.0% and 66.8% at 1 year and 3 years, respectively, after neurostimulation. Similarly, the Burke-Fahn-Marsden Dystonia Rating Scale disability scores improved by 60.8% and 63.3% at the same time points. Postoperative quality of life demonstrated a significant and sustained improvement throughout the follow-up period. However, cognitive function, mental status, sleep quality and other neuropsychological functions did not change after 3 years of neurostimulation. Eight adverse events occurred in six patients, but no deaths or permanent sequelae were reported. CONCLUSIONS Bilateral STN-DBS is a safe and effective alternative treatment for primary Meige syndrome, leading to improvements in motor function and quality of life. Nevertheless, it did not yield significant amelioration in cognitive, mental, sleep status and other neuropsychological functions after 3 years of neurostimulation.
Collapse
Affiliation(s)
- Qing‐Pei Hao
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Wen‐Tao Zheng
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Zi‐Hao Zhang
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Ye‐Zu Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Hu Ding
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Jia OuYang
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Functional Neurosurgery Research CenterPeking University Health Science CenterBeijingChina
| | - Zhi Liu
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
| | - Guang‐Yong Wu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
- Department of NeurosurgeryBeijing Shunyi HospitalBeijingChina
| | - Ru‐En Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
| |
Collapse
|
3
|
Brannigan JFM, Fry A, Opie NL, Campbell BCV, Mitchell PJ, Oxley TJ. Endovascular Brain-Computer Interfaces in Poststroke Paralysis. Stroke 2024; 55:474-483. [PMID: 38018832 DOI: 10.1161/strokeaha.123.037719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Stroke is a leading cause of paralysis, most frequently affecting the upper limbs and vocal folds. Despite recent advances in care, stroke recovery invariably reaches a plateau, after which there are permanent neurological impairments. Implantable brain-computer interface devices offer the potential to bypass permanent neurological lesions. They function by (1) recording neural activity, (2) decoding the neural signal occurring in response to volitional motor intentions, and (3) generating digital control signals that may be used to control external devices. While brain-computer interface technology has the potential to revolutionize neurological care, clinical translation has been limited. Endovascular arrays present a novel form of minimally invasive brain-computer interface devices that have been deployed in human subjects during early feasibility studies. This article provides an overview of endovascular brain-computer interface devices and critically evaluates the patient with stroke as an implant candidate. Future opportunities are mapped, along with the challenges arising when decoding neural activity following infarction. Limitations arise when considering intracerebral hemorrhage and motor cortex lesions; however, future directions are outlined that aim to address these challenges.
Collapse
Affiliation(s)
- Jamie F M Brannigan
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (J.F.M.B.)
| | - Adam Fry
- Synchron, Inc, New York, NY (A.F., N.L.O., T.J.O.)
| | - Nicholas L Opie
- Synchron, Inc, New York, NY (A.F., N.L.O., T.J.O.)
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Victoria, Australia (N.L.O., T.J.O.)
| | - Bruce C V Campbell
- Department of Neurology (B.C.V.C.), The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Melbourne Brain Centre (B.C.V.C.), The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Peter J Mitchell
- Department of Radiology (P.J.M.), The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Thomas J Oxley
- Synchron, Inc, New York, NY (A.F., N.L.O., T.J.O.)
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Victoria, Australia (N.L.O., T.J.O.)
| |
Collapse
|
4
|
Wang L, Zheng WM, Liang TF, Yang YH, Yang BN, Chen X, Chen Q, Li XJ, Lu J, Li BW, Chen N. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury. AJNR Am J Neuroradiol 2023; 44:611-617. [PMID: 37080724 PMCID: PMC10171374 DOI: 10.3174/ajnr.a7847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND PURPOSE Currently, there is no effective treatment for pediatric patients with complete spinal cord injury. Motor imagery has been proposed as an alternative to physical training for patients who are unable to move voluntarily. Our aim was to reveal the potential mechanism of motor imagery in the rehabilitation of pediatric complete spinal cord injury. MATERIALS AND METHODS Twenty-six pediatric patients with complete spinal cord injury and 26 age- and sex-matched healthy children as healthy controls were recruited. All participants underwent the motor imagery task-related fMRI scans, and additional motor execution scans were performed only on healthy controls. First, we compared the brain-activation patterns between motor imagery and motor execution in healthy controls. Then, we compared the brain activation of motor imagery between the 2 groups and compared the brain activation of motor imagery in pediatric patients with complete spinal cord injury and that of motor execution in healthy controls. RESULTS In healthy controls, compared with motor execution, motor imagery showed increased activation in the left inferior parietal lobule and decreased activation in the left supplementary motor area, paracentral lobule, middle cingulate cortex, and right insula. In addition, our results revealed that the 2 groups both activated the bilateral supplementary motor area, middle cingulate cortex and left inferior parietal lobule, and supramarginal gyrus during motor imagery. Compared with healthy controls, higher activation in the bilateral paracentral lobule, supplementary motor area, putamen, and cerebellar lobules III-V was detected in pediatric complete spinal cord injury during motor imagery, and the activation of these regions was even higher than that of healthy controls during motor execution. CONCLUSIONS Our study demonstrated that part of the motor imagery network was functionally preserved in pediatric complete spinal cord injury and could be activated through motor imagery. In addition, higher-level activation in sensorimotor-related regions was also found in pediatric complete spinal cord injury during motor imagery. Our findings may provide a theoretic basis for the application of motor imagery training in pediatric complete spinal cord injury.
Collapse
Affiliation(s)
- L Wang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - W M Zheng
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - T F Liang
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - Y H Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B N Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - X Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - Q Chen
- Department of Radiology (Q.C.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - X J Li
- Department of Radiology (X.J.L.), China Rehabilitation Research Center, Beijing, China
| | - J Lu
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B W Li
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - N Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| |
Collapse
|
5
|
Alfalahi H, Dias SB, Khandoker AH, Chaudhuri KR, Hadjileontiadis LJ. A scoping review of neurodegenerative manifestations in explainable digital phenotyping. NPJ Parkinsons Dis 2023; 9:49. [PMID: 36997573 PMCID: PMC10063633 DOI: 10.1038/s41531-023-00494-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.
Collapse
Affiliation(s)
- Hessa Alfalahi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- CIPER, Faculdade de Motricidade Humana, University of Lisbon, Lisbon, Portugal
| | - Ahsan H Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kallol Ray Chaudhuri
- Parkinson Foundation, International Center of Excellence, King's College London, Denmark Hills, London, UK
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Hemihypomimia in Parkinson's disease: an under-recognized clinical sign? J Neurol 2023; 270:548-551. [PMID: 35925399 DOI: 10.1007/s00415-022-11292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
|
7
|
Qi L, Xu C, Wang X, Du J, He Q, Wu D, Wang X, Jin G, Wang Q, Chen J, Wang D, Zhang H, Zhang X, Wei P, Shan Y, Cui Z, Wang Y, Shu Y, Zhao G, Yu T, Ren L. Intracranial direct electrical mapping reveals the functional architecture of the human basal ganglia. Commun Biol 2022; 5:1123. [PMID: 36274105 PMCID: PMC9588773 DOI: 10.1038/s42003-022-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The basal ganglia play a key role in integrating a variety of human behaviors through the cortico–basal ganglia–thalamo–cortical loops. Accordingly, basal ganglia disturbances are implicated in a broad range of debilitating neuropsychiatric disorders. Despite accumulating knowledge of the basal ganglia functional organization, the neural substrates and circuitry subserving functions have not been directly mapped in humans. By direct electrical stimulation of distinct basal ganglia regions in 35 refractory epilepsy patients undergoing stereoelectroencephalography recordings, we here offer currently the most complete overview of basal ganglia functional characterization, extending not only to the expected sensorimotor responses, but also to vestibular sensations, autonomic responses, cognitive and multimodal effects. Specifically, some locations identified responses weren’t predicted by the model derived from large-scale meta-analyses. Our work may mark an important step toward understanding the functional architecture of the human basal ganglia and provide mechanistic explanations of non-motor symptoms in brain circuit disorders. Direct electrical stimulation of the basal ganglia using implanted SEEG electrodes produced a variety of motor and non-motor effects in human participants, providing insight into the functional architecture of this key brain region.
Collapse
|
8
|
Lucas J, Kusyk D, Whiting D. Bilateral pallidal DBS for blepharospasm: A case report and review of the literature. Surg Neurol Int 2022; 13:200. [PMID: 35673639 PMCID: PMC9168297 DOI: 10.25259/sni_1234_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/21/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the treatment of craniocervical dystonia often requires an extended period of stimulation parameter manipulations.
Case Description:
We present a patient suffering from debilitating blepharospasm treated with bilateral DBS of the GPi alongside 7 years of stimulation parameter manipulations and a literature review of comparable patients.
Conclusion:
Our literature review suggests that a patient’s specific dystonic symptoms can guide stimulation parameter manipulations. Further research regarding trends in stimulation parameters being used in the field for different dystonic symptoms may expedite the stimulation parameter manipulation process.
Collapse
Affiliation(s)
- Joshua Lucas
- MD Program, Drexel University College of Medicine, Philadelphia,
| | - Dorian Kusyk
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, United States
| | - Donald Whiting
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
9
|
Fernández-García C, Monje MH, Gómez-Mayordomo V, Foffani G, Herranz R, Catalán MJ, González-Hidalgo M, Matias-Guiu J, Alonso-Frech F. Long-term directional deep brain stimulation: Monopolar review vs. local field potential guided programming. Brain Stimul 2022; 15:727-736. [DOI: 10.1016/j.brs.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 01/16/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022] Open
|
10
|
Pineda-Pardo JA, Sánchez-Ferro Á, Monje MHG, Pavese N, Obeso JA. Onset pattern of nigrostriatal denervation in early Parkinson's disease. Brain 2022; 145:1018-1028. [PMID: 35349639 DOI: 10.1093/brain/awab378] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The striatal dopaminergic deficit in Parkinson's disease exhibits a typical pattern, extending from the caudal and dorsal putamen at onset to its more rostral region as the disease progresses. Clinically, upper-limb onset of cardinal motor features is the rule. Thus, according to current understanding of striatal somatotopy (i.e. the lower limb is dorsal to the upper limb) the assumed pattern of early dorsal striatal dopaminergic denervation in Parkinson's disease does not fit with an upper-limb onset. We have examined the topography of putaminal denervation in a cohort of 23 recently diagnosed de novo Parkinson's disease patients and 19 age-/gender-matched healthy subjects assessed clinically and by 18F-DOPA PET; 15 patients were re-assessed after 2 years. There was a net upper-limb predominance of motor features at onset. Caudal denervation of the putamen was confirmed in both the more- and less-affected hemispheres and corresponding hemibodies. Spatial covariance analysis of the most affected hemisphere revealed a pattern of 18F-DOPA uptake rate deficit that suggested focal dopamine loss starting in the posterolateral and intermediate putamen. Functional MRI group-activation maps during a self-paced motor task were used to represent the somatotopy of the putamen and were then used to characterize the decline in 18F-DOPA uptake rate in the upper- and lower-limb territories. This showed a predominant decrement in both hemispheres, which correlated significantly with severity of bradykinesia. A more detailed spatial analysis revealed a dorsoventral linear gradient of 18F-DOPA uptake rate in Parkinson's disease patients, with the highest putamen denervation in the caudal intermediate subregion (dorsoventral plane) compared to healthy subjects. The latter area coincides with the functional representation of the upper limb. Clinical motor assessment at 2-year follow-up showed modest worsening of parkinsonism in the primarily affected side and more noticeable increases in the upper limb in the less-affected side. Concomitantly, 18F-DOPA uptake rate in the less-affected putamen mimicked that recognized on the most-affected side. Our findings suggest that early dopaminergic denervation in Parkinson's disease follows a somatotopically related pattern, starting with the upper-limb representation in the putamen and progressing over a 2-year period in the less-affected hemisphere. These changes correlate well with the clinical presentation and evolution of motor features. Recognition of a precise somatotopic onset of nigrostriatal denervation may help to better understand the onset and progression of dopaminergic neurodegeneration in Parkinson's disease and eventually monitor the impact of putative therapies.
Collapse
Affiliation(s)
- José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Sánchez-Ferro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mariana H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
12
|
Muthuraman M, Palotai M, Jávor-Duray B, Kelemen A, Koirala N, Halász L, Erőss L, Fekete G, Bognár L, Deuschl G, Tamás G. Frequency-specific network activity predicts bradykinesia severity in Parkinson's disease. Neuroimage Clin 2021; 32:102857. [PMID: 34662779 PMCID: PMC8526781 DOI: 10.1016/j.nicl.2021.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Bradykinesia has been associated with beta and gamma band interactions in the basal ganglia-thalamo-cortical circuit in Parkinson's disease. In this present cross-sectional study, we aimed to search for neural networks with electroencephalography whose frequency-specific actions may predict bradykinesia. METHODS Twenty Parkinsonian patients treated with bilateral subthalamic stimulation were first prescreened while we selected four levels of contralateral stimulation (0: OFF, 1-3: decreasing symptoms to ON state) individually, based on kinematics. In the screening period, we performed 64-channel electroencephalography measurements simultaneously with electromyography and motion detection during a resting state, finger tapping, hand grasping tasks, and pronation-supination of the arm, with the four levels of contralateral stimulation. We analyzed spectral power at the low (13-20 Hz) and high (21-30 Hz) beta frequency bands and low (31-60 Hz) and high (61-100 Hz) gamma frequency bands using the dynamic imaging of coherent sources. Structural equation modelling estimated causal relationships between the slope of changes in network beta and gamma activities and the slope of changes in bradykinesia measures. RESULTS Activity in different subnetworks, including predominantly the primary motor and premotor cortex, the subthalamic nucleus predicted the slopes in amplitude and speed while switching between stimulation levels. These subnetwork dynamics on their preferred frequencies predicted distinct types and parameters of the movement only on the contralateral side. DISCUSSION Concurrent subnetworks affected in bradykinesia and their activity changes in the different frequency bands are specific to the type and parameters of the movement; and the primary motor and premotor cortex are common nodes.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marcell Palotai
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | | | - Andrea Kelemen
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Nabin Koirala
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Haskins Laboratories, New Haven, USA
| | - László Halász
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Gábor Fekete
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Cui Q, Du X, Chang IYM, Pamukcu A, Lilascharoen V, Berceau BL, García D, Hong D, Chon U, Narayanan A, Kim Y, Lim BK, Chan CS. Striatal Direct Pathway Targets Npas1 + Pallidal Neurons. J Neurosci 2021; 41:3966-3987. [PMID: 33731445 PMCID: PMC8176753 DOI: 10.1523/jneurosci.2306-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
The classic basal ganglia circuit model asserts a complete segregation of the two striatal output pathways. Empirical data argue that, in addition to indirect-pathway striatal projection neurons (iSPNs), direct-pathway striatal projection neurons (dSPNs) innervate the external globus pallidus (GPe). However, the functions of the latter were not known. In this study, we interrogated the organization principles of striatopallidal projections and their roles in full-body movement in mice (both males and females). In contrast to the canonical motor-promoting response of dSPNs in the dorsomedial striatum (DMSdSPNs), optogenetic stimulation of dSPNs in the dorsolateral striatum (DLSdSPNs) suppressed locomotion. Circuit analyses revealed that dSPNs selectively target Npas1+ neurons in the GPe. In a chronic 6-hydroxydopamine lesion model of Parkinson's disease, the dSPN-Npas1+ projection was dramatically strengthened. As DLSdSPN-Npas1+ projection suppresses movement, the enhancement of this projection represents a circuit mechanism for the hypokinetic symptoms of Parkinson's disease that has not been previously considered. In sum, our results suggest that dSPN input to the GPe is a critical circuit component that is involved in the regulation of movement in both healthy and parkinsonian states.SIGNIFICANCE STATEMENT In the classic basal ganglia model, the striatum is described as a divergent structure: it controls motor and adaptive functions through two segregated, opposing output streams. However, the experimental results that show the projection from direct-pathway neurons to the external pallidum have been largely ignored. Here, we showed that this striatopallidal subpathway targets a select subset of neurons in the external pallidum and is motor-suppressing. We found that this subpathway undergoes changes in a Parkinson's disease model. In particular, our results suggest that the increase in strength of this subpathway contributes to the slowness or reduced movements observed in Parkinson's disease.
Collapse
Affiliation(s)
- Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Xixun Du
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China, 266071
| | - Isaac Y M Chang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Varoth Lilascharoen
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California, 92093
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Daniela García
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Darius Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Uree Chon
- Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, 16802
| | - Ahana Narayanan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, 16802
| | - Byung Kook Lim
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California, 92093
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| |
Collapse
|
14
|
Cui Q, Pamukcu A, Cherian S, Chang IYM, Berceau BL, Xenias HS, Higgs MH, Rajamanickam S, Chen Y, Du X, Zhang Y, McMorrow H, Abecassis ZA, Boca SM, Justice NJ, Wilson CJ, Chan CS. Dissociable Roles of Pallidal Neuron Subtypes in Regulating Motor Patterns. J Neurosci 2021; 41:4036-4059. [PMID: 33731450 PMCID: PMC8176746 DOI: 10.1523/jneurosci.2210-20.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 01/27/2023] Open
Abstract
We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.
Collapse
Affiliation(s)
- Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Suraj Cherian
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Isaac Y M Chang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas
| | - Shivakumar Rajamanickam
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston 77030, Texas
- Department of Integrative Pharmacology, University of Texas, Houston 77030, Texas
| | - Yi Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison 53706, Wisconsin
| | - Xixun Du
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Yu Zhang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Hayley McMorrow
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Zachary A Abecassis
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington 20057, DC
| | - Nicholas J Justice
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston 77030, Texas
- Department of Integrative Pharmacology, University of Texas, Houston 77030, Texas
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| |
Collapse
|
15
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Somatotopic organization of STN and DBS implications in Parkinson’s disease - A case report of a woman “halved” by DBS stimulation. Brain Stimul 2020; 13:1384-1386. [DOI: 10.1016/j.brs.2020.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
|
17
|
Jiang H, Wang R, Zheng Z, Zhu J. Deep brain stimulation for the treatment of cerebral palsy: A review. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2020.9050002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) has been used as a safe and effective neuromodulation technique for treatment of various diseases. A large number of patients suffering from movement disorders such as dyskinesia may benefit from DBS. Cerebral palsy (CP) is a group of permanent disorders mainly involving motor impairment, and medical interventions are usually unsatisfactory or temporarily active, especially for dyskinetic CP. DBS may be another approach to the treatment of CP. In this review we discuss the targets for DBS and the mechanisms of action for the treatment of CP, and focus on presurgical assessment, efficacy for dystonia and other symptoms, safety, and risks.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
18
|
Asch N, Herschman Y, Maoz R, Auerbach-Asch CR, Valsky D, Abu-Snineh M, Arkadir D, Linetsky E, Eitan R, Marmor O, Bergman H, Israel Z. Independently together: subthalamic theta and beta opposite roles in predicting Parkinson's tremor. Brain Commun 2020; 2:fcaa074. [PMID: 33585815 PMCID: PMC7869429 DOI: 10.1093/braincomms/fcaa074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
Tremor is a core feature of Parkinson’s disease and the most easily recognized Parkinsonian sign. Nonetheless, its pathophysiology remains poorly understood. Here, we show that multispectral spiking activity in the posterior-dorso-lateral oscillatory (motor) region of the subthalamic nucleus distinguishes resting tremor from the other Parkinsonian motor signs and strongly correlates with its severity. We evaluated microelectrode-spiking activity from the subthalamic dorsolateral oscillatory region of 70 Parkinson’s disease patients who underwent deep brain stimulation surgery (114 subthalamic nuclei, 166 electrode trajectories). We then investigated the relationship between patients’ clinical Unified Parkinson’s Disease Rating Scale score and their peak theta (4–7 Hz) and beta (13–30 Hz) powers. We found a positive correlation between resting tremor and theta activity (r = 0.41, P < 0.01) and a non-significant negative correlation with beta activity (r = −0.2, P = 0.5). Hypothesizing that the two neuronal frequencies mask each other’s relationship with resting tremor, we created a non-linear model of their proportional spectral powers and investigated its relationship with resting tremor. As hypothesized, patients’ proportional scores correlated better than either theta or beta alone (r = 0.54, P < 0.001). However, theta and beta oscillations were frequently temporally correlated (38/70 patients manifested significant positive temporal correlations and 1/70 exhibited significant negative correlation between the two frequency bands). When comparing theta and beta temporal relationship (r θ β) to patients’ resting tremor scores, we found a significant negative correlation between the two (r = −0.38, P < 0.01). Patients manifesting a positive correlation between the two bands (i.e. theta and beta were likely to appear simultaneously) were found to have lower resting tremor scores than those with near-zero correlation values (i.e. theta and beta were likely to appear separately). We therefore created a new model incorporating patients’ proportional theta–beta power and r θ βscores to obtain an improved neural correlate of resting tremor (r = 0.62, P < 0.001). We then used the Akaike and Bayesian information criteria for model selection and found the multispectral model, incorporating theta–beta proportional power and their correlation, to be the best fitting model, with 0.96 and 0.89 probabilities, respectively. Here we found that as theta increases, beta decreases and the two appear separately—resting tremor is worsened. Our results therefore show that theta and beta convey information about resting tremor in opposite ways. Furthermore, the finding that theta and beta coactivity is negatively correlated with resting tremor suggests that theta–beta non-linear scale may be a valuable biomarker for Parkinson’s resting tremor in future adaptive deep brain stimulation techniques.
Collapse
Affiliation(s)
- Nir Asch
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Yehuda Herschman
- Functional Neurosurgery Unit, Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rotem Maoz
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Carmel R Auerbach-Asch
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Israel
| | - Dan Valsky
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | | | - David Arkadir
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Eduard Linetsky
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Research and Training Unit, Jerusalem Mental Health Center, Kfar Shaul Eitanim Hospital, Jerusalem, Israel
| | - Odeya Marmor
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Zvi Israel
- Functional Neurosurgery Unit, Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
19
|
Sedrak M, Sabelman E, Pezeshkian P, Duncan J, Bernstein I, Bruce D, Tse V, Khandhar S, Call E, Heit G, Alaminos-Bouza A. Biplanar X-Ray Methods for Stereotactic Intraoperative Localization in Deep Brain Stimulation Surgery. Oper Neurosurg (Hagerstown) 2019; 19:302-312. [PMID: 31858143 DOI: 10.1093/ons/opz397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Efficacy in deep brain stimulation (DBS) is dependent on precise positioning of electrodes within the brain. Intraoperative fluoroscopy, computed tomography (CT), or magnetic resonance imaging are used for stereotactic intraoperative localization (StIL), but the utility of biplanar X-ray has not been evaluated in detail.
OBJECTIVE
To determine if analysis of orthogonal biplanar X-rays using graphical analysis (GA), ray tracing (RT), and/or perspective projection (PP) can be utilized for StIL.
METHODS
A review of electrode tip positions comparing postoperative CT to X-ray methods was performed for DBS operations containing orthogonal biplanar X-ray with referential spheres and pins.
RESULTS
Euclidean (Re) errors for final DBS electrode position on intraoperative X-rays vs postoperative CT using GA, RT, and PP methods averaged 1.58 mm (±0.75), 0.74 mm (±0.45), and 1.07 mm (±0.64), respectively (n = 56). GA was more accurate with a ventriculogram. RT and PP predicted positions that correlated with third ventricular structures on ventriculogram cases. RT was the most stable but required knowledge of the geometric setup. PP was more flexible than RT but required well-distributed reference points. A single case using the O-arm demonstrated Re errors of 0.43 mm and 0.28 mm for RT and PP, respectively. In addition, these techniques could also be used to calculate directional electrode rotation.
CONCLUSION
GA, RT, and PP can be employed for precise StIL during DBS using orthogonal biplanar X-ray. These methods may be generalized to other stereotactic procedures or instances of biplanar imaging such as angiograms, radiosurgery, or injection therapeutics.
Collapse
Affiliation(s)
- Mark Sedrak
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
- Stanford University, Stanford, California
| | - Eric Sabelman
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | | | - John Duncan
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - Ivan Bernstein
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - Diana Bruce
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - Victor Tse
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - Suketu Khandhar
- Kaiser Permanente Sacramento Medical Center and Medical Offices, Sacramento, California
| | - Elena Call
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - Gary Heit
- Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | | |
Collapse
|
20
|
Rat subthalamic stimulation: Evaluating stimulation-induced dyskinesias, choosing stimulation currents and evaluating the anti-akinetic effect in the cylinder test. MethodsX 2019; 6:2384-2395. [PMID: 31681539 PMCID: PMC6818350 DOI: 10.1016/j.mex.2019.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/10/2019] [Indexed: 12/01/2022] Open
Abstract
In experimental deep brain stimulation of the subthalamic nucleus (STN HFS), stimulation currents just below the appearance threshold of stimulation-induced dyskinesias has often been used. The behavioral effect of STN HFS can be measured by the reversal of forelimb use asymmetry produced by hemiparkinsonism can be measured with the cylinder test among other tests. We used 18 Wistar rats with 6-hydroxydopamine induced hemiparkinsonism to test a customized scale to rate the severity of stimulation-induced dyskinesia; we then used these ratings to choose low and high stimulation currents. Subsequent cylinder tests showed that stimulation at the higher current, inducing mild and short-lived dyskinesias, was required for robust improvement in forelimb use, contradicting the use of currents below stimulation-induced dyskinesia threshold. It was also beneficial to separately count both all touches and first touches with the cylinder wall; this provided additional sensitivity and robustness to our results. Scoring stimulation-induced dyskinesias can be used as a quantitative measure of dyskinesias and to choose stimulation currents. Cylinder test scoring separately for both first and all touches can improve both sensitivity and reliability. STN HFS at a current producing short-lived dyskinesias was required for robust improvement in forelimb use asymmetry.
Collapse
|
21
|
Isaacs BR, Trutti AC, Pelzer E, Tittgemeyer M, Temel Y, Forstmann BU, Keuken MC. Cortico-basal white matter alterations occurring in Parkinson's disease. PLoS One 2019; 14:e0214343. [PMID: 31425517 PMCID: PMC6699705 DOI: 10.1371/journal.pone.0214343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging studies typically use standard anatomical atlases for identification and analyses of (patho-)physiological effects on specific brain areas; these atlases often fail to incorporate neuroanatomical alterations that may occur with both age and disease. The present study utilizes Parkinson's disease and age-specific anatomical atlases of the subthalamic nucleus for diffusion tractography, assessing tracts that run between the subthalamic nucleus and a-priori defined cortical areas known to be affected by Parkinson's disease. The results show that the strength of white matter fiber tracts appear to remain structurally unaffected by disease. Contrary to that, Fractional Anisotropy values were shown to decrease in Parkinson's disease patients for connections between the subthalamic nucleus and the pars opercularis of the inferior frontal gyrus, anterior cingulate cortex, the dorsolateral prefrontal cortex and the pre-supplementary motor, collectively involved in preparatory motor control, decision making and task monitoring. While the biological underpinnings of fractional anisotropy alterations remain elusive, they may nonetheless be used as an index of Parkinson's disease. Moreover, we find that failing to account for structural changes occurring in the subthalamic nucleus with age and disease reduce the accuracy and influence the results of tractography, highlighting the importance of using appropriate atlases for tractography.
Collapse
Affiliation(s)
- Bethany. R. Isaacs
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne. C. Trutti
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Cognitive Psychology, University of Leiden, Leiden, the Netherlands
| | - Esther Pelzer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Birte. U. Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| | - Max. C. Keuken
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Caligiore D, Mannella F, Baldassarre G. Different Dopaminergic Dysfunctions Underlying Parkinsonian Akinesia and Tremor. Front Neurosci 2019; 13:550. [PMID: 31191237 PMCID: PMC6549580 DOI: 10.3389/fnins.2019.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022] Open
Abstract
Although the occurrence of Parkinsonian akinesia and tremor is traditionally associated to dopaminergic degeneration, the multifaceted neural processes that cause these impairments are not fully understood. As a consequence, current dopamine medications cannot be tailored to the specific dysfunctions of patients with the result that generic drug therapies produce different effects on akinesia and tremor. This article proposes a computational model focusing on the role of dopamine impairments in the occurrence of akinesia and resting tremor. The model has three key features, to date never integrated in a single computational system: (a) an architecture constrained on the basis of the relevant known system-level anatomy of the basal ganglia-thalamo-cortical loops; (b) spiking neurons with physiologically-constrained parameters; (c) a detailed simulation of the effects of both phasic and tonic dopamine release. The model exhibits a neural dynamics compatible with that recorded in the brain of primates and humans. Moreover, it suggests that akinesia might involve both tonic and phasic dopamine dysregulations whereas resting tremor might be primarily caused by impairments involving tonic dopamine release and the responsiveness of dopamine receptors. These results could lead to develop new therapies based on a system-level view of the Parkinson's disease and targeting phasic and tonic dopamine in differential ways.
Collapse
Affiliation(s)
- Daniele Caligiore
- National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy
| | - Francesco Mannella
- National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy
| | - Gianluca Baldassarre
- National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy
| |
Collapse
|
23
|
Tinkhauser G, Shah SA, Fischer P, Peterman K, Debove I, Nygyuen K, Nowacki A, Torrecillos F, Khawaldeh S, Tan H, Pogosyan A, Schuepbach M, Pollo C, Brown P. Electrophysiological differences between upper and lower limb movements in the human subthalamic nucleus. Clin Neurophysiol 2019; 130:727-738. [PMID: 30903826 PMCID: PMC6487671 DOI: 10.1016/j.clinph.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Functional processes in the brain are segregated in both the spatial and spectral domain. Motivated by findings reported at the cortical level in healthy participants we test the hypothesis in the basal ganglia of Parkinson's disease patients that lower frequency beta band activity relates to motor circuits associated with the upper limb and higher beta frequencies with lower limb movements. METHODS We recorded local field potentials (LFPs) from the subthalamic nucleus using segmented "directional" DBS leads, during which patients performed repetitive upper and lower limb movements. Movement-related spectral changes in the beta and gamma frequency-ranges and their spatial distributions were compared between limbs. RESULTS We found that the beta desynchronization during leg movements is characterised by a strikingly greater involvement of higher beta frequencies (24-31 Hz), regardless of whether this was contralateral or ipsilateral to the limb moved. The spatial distribution of limb-specific movement-related changes was evident at higher gamma frequencies. CONCLUSION Limb processing in the basal ganglia is differentially organised in the spectral and spatial domain and can be captured by directional DBS leads. SIGNIFICANCE These findings may help to refine the use of the subthalamic LFPs as a control signal for adaptive DBS and neuroprosthetic devices.
Collapse
Affiliation(s)
- Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland; MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Syed Ahmar Shah
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Petra Fischer
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Khoa Nygyuen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland; Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saed Khawaldeh
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michael Schuepbach
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Peter Brown
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Abstract
The basal ganglia are a complex subcortical structure that is principally involved in the selection and implementation of purposeful actions in response to external and internal cues. The basal ganglia set the pattern for facilitation of voluntary movements and simultaneous inhibition of competing or interfering movements. In addition, the basal ganglia are involved in the control of a wide variety of non-motor behaviors, spanning emotions, language, decision making, procedural learning, and working memory. This review presents a comparative overview of classic and contemporary models of basal ganglia organization and functional importance, including their increased integration with cortical and cerebellar structures.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamás G, Groppa S. Deep Brain Stimulation and L-DOPA Therapy: Concepts of Action and Clinical Applications in Parkinson's Disease. Front Neurol 2018; 9:711. [PMID: 30210436 PMCID: PMC6119713 DOI: 10.3389/fneur.2018.00711] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
L-DOPA is still the most effective pharmacological therapy for the treatment of motor symptoms in Parkinson's disease (PD) almost four decades after it was first used. Deep brain stimulation (DBS) is a safe and highly effective treatment option in patients with PD. Even though a clear understanding of the mechanisms of both treatment methods is yet to be obtained, the combination of both treatments is the most effective standard evidenced-based therapy to date. Recent studies have demonstrated that DBS is a therapy option even in the early course of the disease, when first complications arise despite a rigorous adjustment of the pharmacological treatment. The unique feature of this therapeutic approach is the ability to preferentially modulate specific brain networks through the choice of stimulation site. The clinical effects have been unequivocally confirmed in recent studies; however, the impact of DBS and the supplementary effect of L-DOPA on the neuronal network are not yet fully understood. In this review, we present emerging data on the presumable mechanisms of DBS in patients with PD and discuss the pathophysiological similarities and differences in the effects of DBS in comparison to dopaminergic medication. Targeted, selective modulation of brain networks by DBS and pharmacodynamic effects of L-DOPA therapy on the central nervous system are presented. Moreover, we outline the perioperative algorithms for PD patients before and directly after the implantation of DBS electrodes and strategies for the reduction of side effects and optimization of motor and non-motor symptoms.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
26
|
Koivu M, Huotarinen A, Scheperjans F, Laakso A, Kivisaari R, Pekkonen E. Motor outcome and electrode location in deep brain stimulation in Parkinson's disease. Brain Behav 2018; 8:e01003. [PMID: 29851316 PMCID: PMC6043715 DOI: 10.1002/brb3.1003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/16/2018] [Accepted: 04/15/2018] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES To evaluate the efficacy and adverse effects of subthalamic deep brain stimulation (STN-DBS) in patients with advanced Parkinson's disease (PD) and the possible correlation between electrode location and clinical outcome. METHODS We retrospectively reviewed 87 PD-related STN-DBS operations at Helsinki University Hospital (HUH) from 2007 to 2014. The changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, Hoehn & Yahr stage, antiparkinson medication, and adverse effects were studied. We estimated the active electrode location in three different coordinate systems: direct visual analysis of MRI correlated to brain atlas, location in relation to the nucleus borders and location in relation to the midcommisural point. RESULTS At 6 months after operation, both levodopa equivalent doses (LEDs; 35%, Wilcoxon signed-rank test = 0.000) and UPDRS part III scores significantly decreased (38%, Wilcoxon signed-rank test = 0.000). Four patients (5%) suffered from moderate DBS-related dysarthria. The generator and electrodes had to be removed in one patient due to infection (1%). Electrode coordinates in the three coordinate systems correlated well with each other. On the left side, more ventral location of the active contact was associated with greater LED decrease. CONCLUSIONS STN-DBS improves motor function and enables the reduction in antiparkinson medication with an acceptable adverse effect profile. More ventral location of the active contact may allow stronger LED reduction. Further research on the correlation between contact location, clinical outcome, and LED reduction is warranted.
Collapse
Affiliation(s)
- Maija Koivu
- Department of Neurology, Meilahti Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Antti Huotarinen
- Department of Neurosurgery, Töölö Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Meilahti Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Töölö Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Töölö Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Meilahti Hospital, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Bichsel O, Gassert R, Stieglitz L, Uhl M, Baumann-Vogel H, Waldvogel D, Baumann CR, Imbach LL. Functionally separated networks for self-paced and externally-cued motor execution in Parkinson's disease: Evidence from deep brain recordings in humans. Neuroimage 2018; 177:20-29. [PMID: 29738912 DOI: 10.1016/j.neuroimage.2018.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022] Open
Abstract
Spatially segregated cortico-basal ganglia networks have been proposed for the control of goal-directed and habitual behavior. In Parkinson's disease, selective loss of dopaminergic neurons regulating sensorimotor (habitual) behavior might therefore predominantly cause deficits in habitual motor control, whereas control of goal-directed movement is relatively preserved. Following this hypothesis, we examined the electrophysiology of cortico-basal ganglia networks in Parkinson patients emulating habitual and goal-directed motor control during self-paced and externally-cued finger tapping, respectively, while simultaneously recording local field potentials in the subthalamic nucleus (STN) and surface EEG. Only externally-cued movements induced a pro-kinetic event-related beta-desynchronization, whereas beta-oscillations were continuously suppressed during self-paced movements. Connectivity analysis revealed higher synchronicity (phase-locking value) between the STN and central electrodes during self-paced and higher STN to frontal phase-locking during externally-cued movements. Our data provide direct electrophysiological support for the existence of functionally segregated cortico-basal ganglia networks controlling motor behavior in Parkinson patients, and corroborate the assumption of Parkinson patients being shifted from habitual towards goal-directed behavior.
Collapse
Affiliation(s)
- Oliver Bichsel
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lennart Stieglitz
- Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland; Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mechtild Uhl
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Heide Baumann-Vogel
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Daniel Waldvogel
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
28
|
Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Struct Funct 2018; 223:2733-2751. [DOI: 10.1007/s00429-018-1654-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|
29
|
Riva D, Taddei M, Bulgheroni S. The neuropsychology of basal ganglia. Eur J Paediatr Neurol 2018; 22:321-326. [PMID: 29396173 DOI: 10.1016/j.ejpn.2018.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
Abstract
Basal ganglia are subcortical structures specialized at very early age, functionally different according to the right or left side. They are part of complex distributed network composed by parallel segregated loops where specific information are processed and open loops where different information are integrated. These loops are connected to specialized cortical areas thus entering into distributed processing of higher order cognitive functions and behaviours. Lesion or malfunction of basal ganglia nuclei cause deficits in different neuropsychological functions and neurobehavioural diseases, such Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder, Tourette syndrome, etc., for the reciprocal connections from and to the limbic system and the frontal system. Basal ganglia have a computational functioning, working by activation and inhibition sequences, coded in time and space and regulated by inhibitory and excitatory mechanisms, with such accuracy to guarantee an effective and elegant product.
Collapse
Affiliation(s)
- Daria Riva
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Via Celoria 11, 20133, Milan, Italy.
| | - Matilde Taddei
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Via Celoria 11, 20133, Milan, Italy
| | - Sara Bulgheroni
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Via Celoria 11, 20133, Milan, Italy
| |
Collapse
|
30
|
Fiore VG, Nolte T, Rigoli F, Smittenaar P, Gu X, Dolan RJ. Value encoding in the globus pallidus: fMRI reveals an interaction effect between reward and dopamine drive. Neuroimage 2018; 173:249-257. [PMID: 29481966 PMCID: PMC5929903 DOI: 10.1016/j.neuroimage.2018.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
The external part of the globus pallidus (GPe) is a core nucleus of the basal ganglia (BG) whose activity is disrupted under conditions of low dopamine release, as in Parkinson's disease. Current models assume decreased dopamine release in the dorsal striatum results in deactivation of dorsal GPe, which in turn affects motor expression via a regulatory effect on other nuclei of the BG. However, recent studies in healthy and pathological animal models have reported neural dynamics that do not match with this view of the GPe as a relay in the BG circuit. Thus, the computational role of the GPe in the BG is still to be determined. We previously proposed a neural model that revisits the functions of the nuclei of the BG, and this model predicts that GPe encodes values which are amplified under a condition of low striatal dopaminergic drive. To test this prediction, we used an fMRI paradigm involving a within-subject placebo-controlled design, using the dopamine antagonist risperidone, wherein healthy volunteers performed a motor selection and maintenance task under low and high reward conditions. ROI-based fMRI analysis revealed an interaction between reward and dopamine drive manipulations, with increased BOLD activity in GPe in a high compared to low reward condition, and under risperidone compared to placebo. These results confirm the core prediction of our computational model, and provide a new perspective on neural dynamics in the BG and their effects on motor selection and cognitive disorders. We investigate the representation of action-state values in the basal ganglia. Value representation is enhanced in the GPe under reduced dopaminergic drive. Value representation is enhanced in the SNr under basal dopaminergic drive. The results validate a proposed neural model of the basal ganglia.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 2200 West Mockingbird Lane, Dallas, TX 75235, USA; Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | - Tobias Nolte
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Francesco Rigoli
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Peter Smittenaar
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Xiaosi Gu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 2200 West Mockingbird Lane, Dallas, TX 75235, USA
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London WC1B 5EH, United Kingdom
| |
Collapse
|
31
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
32
|
Baladron J, Nambu A, Hamker FH. The subthalamic nucleus‐external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro‐computational study. Eur J Neurosci 2017; 49:754-767. [DOI: 10.1111/ejn.13666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Javier Baladron
- Computer Science Chemnitz University of Technology Straße der Nationen 62 Chemnitz Germany
| | - Atsushi Nambu
- Division of System Neurophysiology National Institute for Physiological Sciences Okazaki Japan
- Department of Physiological Sciences SOKENDAI (The Graduate University for Advanced Studies) Okazaki Japan
| | - Fred H. Hamker
- Computer Science Chemnitz University of Technology Straße der Nationen 62 Chemnitz Germany
| |
Collapse
|
33
|
Pötter-Nerger M, Reese R, Steigerwald F, Heiden JA, Herzog J, Moll CKE, Hamel W, Ramirez-Pasos U, Falk D, Mehdorn M, Gerloff C, Deuschl G, Volkmann J. Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task. Front Hum Neurosci 2017; 11:436. [PMID: 28936169 PMCID: PMC5594073 DOI: 10.3389/fnhum.2017.00436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson’s disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans.
Collapse
Affiliation(s)
- Monika Pötter-Nerger
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, University Hamburg-EppendorfHamburg, Germany
| | - Rene Reese
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, University RostockRostock, Germany
| | - Frank Steigerwald
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| | - Jan Arne Heiden
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Jan Herzog
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Christian K E Moll
- Department of Neurophysiology, University Hamburg-EppendorfHamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Hamburg-EppendorfHamburg, Germany
| | - Uri Ramirez-Pasos
- Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| | - Daniela Falk
- Department of Neurosurgery, Christian-Albrechts-UniversityKiel, Germany
| | | | - Christian Gerloff
- Department of Neurology, University Hamburg-EppendorfHamburg, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Jens Volkmann
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| |
Collapse
|
34
|
Morand-Beaulieu S, Leclerc JB, Valois P, Lavoie ME, O'Connor KP, Gauthier B. A Review of the Neuropsychological Dimensions of Tourette Syndrome. Brain Sci 2017; 7:E106. [PMID: 28820427 PMCID: PMC5575626 DOI: 10.3390/brainsci7080106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022] Open
Abstract
Neurocognitive functioning in Tourette syndrome (TS) has been the subject of intensive research in the past 30 years. A variety of impairments, presumably related to frontal and frontostriatal dysfunctions, have been observed. These impairments were found in various domains, such as attention, memory, executive functions, language, motor and visuomotor functions, among others. In line with contemporary research, other neurocognitive domains have recently been explored in TS, bringing evidence of altered social reasoning, for instance. Therefore, the aims of this review are to give an overview of the neuropsychological dimensions of TS, to report how neuropsychological functions evolve from childhood to adulthood, and to explain how various confounding factors can affect TS patients' performance in neuropsychological tasks. Finally, an important contribution of this review is to show how recent research has confirmed or changed our beliefs about neuropsychological functioning in TS.
Collapse
Affiliation(s)
- Simon Morand-Beaulieu
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de neurosciences, Université de Montréal, 2960 Chemin de la Tour, Montréal, QC H3T 1J4, Canada.
| | - Julie B Leclerc
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, QC H2X 3P2, Canada.
| | - Philippe Valois
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, QC H2X 3P2, Canada.
| | - Marc E Lavoie
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de neurosciences, Université de Montréal, 2960 Chemin de la Tour, Montréal, QC H3T 1J4, Canada.
- Département de psychiatrie, Université de Montréal, 2900, boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Kieron P O'Connor
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, QC H2X 3P2, Canada.
- Département de psychiatrie, Université de Montréal, 2900, boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Bruno Gauthier
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université de Montréal, Campus Laval, 1700 rue Jacques-Tétreault, Laval, QC H7N 0B6, Canada.
| |
Collapse
|
35
|
Sakas DE, Leonardos A, Boviatsis E, Gatzonis S, Panourias I, Stathis P, Stavrinou LC. Constant-Current Deep Brain Stimulation of the Globus Pallidus Internus in the Treatment of Primary Dystonia by a Novel 8-Contact (Octrode) Lead. World Neurosurg 2017; 103:45-56. [DOI: 10.1016/j.wneu.2017.03.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
|
36
|
Cif L, Hariz M. Seventy Years with the Globus Pallidus: Pallidal Surgery for Movement Disorders Between 1947 and 2017. Mov Disord 2017; 32:972-982. [PMID: 28590521 DOI: 10.1002/mds.27054] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 12/25/2022] Open
Abstract
The year 2017 marks the 70th anniversary of the birth of human stereotactic neurosurgery. The first procedure was a pallidotomy for Huntington's disease. However, it was for Parkinson's disease that pallidotomy was soon adopted worldwide. Pallidotomy was abandoned in the late 1950s in favor of thalamotomy because of the latter's more striking effect on tremor. The advent of levodopa put a halt to all surgery for PD. In the mid-1980s, Laitinen reintroduced the posteroventral pallidotomy of Leksell, and this procedure spread worldwide thanks to its efficacy on most parkinsonian symptoms including levodopa-induced dyskinesias and thanks to basic scientific work confirming the role of the globus pallidus internus in the pathophysiology of PD. With the advent of deep brain stimulation of the subthalamic nucleus, pallidotomy was again abandoned, and even DBS of the GPi has been overshadowed by STN DBS. The GPi reemerged in the late 1990s as a major stereotactic target for DBS in dystonia and, recently, in Tourette syndrome. Lately, lesioning of the GPI is being proposed to treat refractory status dystonicus or to treat DBS withdrawal syndrome in PD patients. Hence, the pallidum as a stereotactic target for either lesioning or DBS has been the phoenix of functional stereotactic neurosurgery, constantly abandoned and then rising again from its ashes. This review is a tribute to the pallidum on its 70th anniversary as a surgical target for movement disorders, analyzing its ebbs and flows and highlighting its merits, its versatility, and its resilience. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura Cif
- Unités des Pathologies Cérébrales Résistantes, Département de Neurochirurgie, Centre Hospitalier Universitaire, Montpellier, France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA), Institut de Génomique Fonctionnelle, Université Montpellier, Montpellier, France
| | - Marwan Hariz
- Unit of Functional Neurosurgery, University College London-Institute of Neurology, Queen Square, London, UK.,Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Blenkinsop A, Anderson S, Gurney K. Frequency and function in the basal ganglia: the origins of beta and gamma band activity. J Physiol 2017; 595:4525-4548. [PMID: 28334424 DOI: 10.1113/jp273760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/02/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. ABSTRACT Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico.
Collapse
Affiliation(s)
| | - Sean Anderson
- Automatic Control & Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kevin Gurney
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| |
Collapse
|
38
|
Caligiore D, Mannella F, Arbib MA, Baldassarre G. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome. PLoS Comput Biol 2017; 13:e1005395. [PMID: 28358814 PMCID: PMC5373520 DOI: 10.1371/journal.pcbi.1005395] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022] Open
Abstract
Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area. Tourette syndrome is a neuropsychiatric disorder characterized by vocal and motor tics. Tics represent a cardinal symptom traditionally associated with a dysfunction of the basal ganglia leading to an excess of the dopamine neurotransmitter. This view gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and other brain areas. In this respect, recent evidence supports a more articulated framework where cerebellum and cortex are also involved in tic production. Building on these data, we propose a computational model of the basal ganglia-cerebellar-thalamo-cortical network to investigate the specific mechanisms underlying motor tic production. The model reproduces the results of recent experiments and suggests an explanation of the system-level processes underlying tic production. Moreover, it furnishes predictions related to the amount of tics generated when there are dysfunctions in the basal ganglia-cerebellar-thalamo-cortical circuits. These predictions could be important in identifying new brain target areas for future therapies based on a system-level view of Tourette syndrome.
Collapse
Affiliation(s)
- Daniele Caligiore
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council (CNR-ISTC-LOCEN), Roma, Italy
- * E-mail:
| | - Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council (CNR-ISTC-LOCEN), Roma, Italy
| | - Michael A. Arbib
- Neuroscience Program, USC Brain Project, Computer Science Department, University of Southern California, Los Angeles, California, United States of America
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council (CNR-ISTC-LOCEN), Roma, Italy
| |
Collapse
|
39
|
Tankus A, Strauss I, Gurevich T, Mirelman A, Giladi N, Fried I, Hausdorff JM. Subthalamic Neurons Encode Both Single- and Multi-Limb Movements in Parkinson's Disease Patients. Sci Rep 2017; 7:42467. [PMID: 28211850 PMCID: PMC5304178 DOI: 10.1038/srep42467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/11/2017] [Indexed: 11/30/2022] Open
Abstract
The subthalamic nucleus (STN) is the main target for neurosurgical treatment of motor signs of Parkinson’s disease (PD). Despite the therapeutic effect on both upper and lower extremities, its role in motor control and coordination and its changes in Parkinson’s disease are not fully clear. We intraoperatively recorded single unit activity in ten patients with PD who performed repetitive feet or hand movements while undergoing implantation of a deep brain stimulator. We found both distinct and overlapping representations of upper and lower extremity movement kinematics in subthalamic units and observed evidence for re-routing to a multi-limb representation that participates in limb coordination. The well-known subthalamic somatotopy showed a large overlap of feet and hand representations in the PD patients. This overlap and excessive amounts of kinematics or coordination units may reflect pathophysiology or compensatory mechanisms. Our findings thus explain, at the single neuron level, the important subthalamic role in motor control and coordination and indicate the effect of PD on the neuronal representation of movement.
Collapse
Affiliation(s)
- Ariel Tankus
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tanya Gurevich
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel
| | - Anat Mirelman
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Giladi
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Sieratzki Chair in Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey M Hausdorff
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
40
|
Mannella F, Mirolli M, Baldassarre G. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model. Front Behav Neurosci 2016; 10:181. [PMID: 27803652 PMCID: PMC5067467 DOI: 10.3389/fnbeh.2016.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or "action-outcomes", e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior.
Collapse
Affiliation(s)
- Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| |
Collapse
|
41
|
da Silva NM, Ahmadi SA, Tafula SN, Cunha JPS, Bötzel K, Vollmar C, Rozanski VE. A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS. Neuroimage 2016; 144:83-91. [PMID: 27646126 DOI: 10.1016/j.neuroimage.2016.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The GPi (globus pallidus internus) is an important target nucleus for Deep Brain Stimulation (DBS) in medically refractory movement disorders, in particular dystonia and Parkinson's disease. Beneficial clinical outcome critically depends on precise electrode localization. Recent evidence indicates that not only neurons, but also axonal fibre tracts contribute to promoting the clinical effect. Thus, stereotactic planning should, in the future, also take the individual course of fibre tracts into account. OBJECTIVE The aim of this project is to explore the GPi connectivity profile and provide a connectivity-based parcellation of the GPi. METHODS Diffusion MRI sequences were performed in sixteen healthy, right-handed subjects. Connectivity-based parcellation of the GPi was performed applying two independent methods: 1) a hypothesis-driven, seed-to-target approach based on anatomic priors set as connectivity targets and 2) a purely data-driven approach based on k-means clustering of the GPi. RESULTS Applying the hypothesis-driven approach, we obtained five major parcellation clusters, displaying connectivity to the prefrontal cortex, the brainstem, the GPe (globus pallidus externus), the putamen and the thalamus. Parcellation clusters obtained by both methods were similar in their connectivity profile. With the data-driven approach, we obtained three major parcellation clusters. Inter-individual variability was comparable with results obtained in thalamic parcellation. CONCLUSION The three parcellation clusters obtained by the purely data-driven method might reflect GPi subdivision into a sensorimotor, associative and limbic portion. Clinical and physiological studies indicate greatest clinical DBS benefit for electrodes placed in the postero-ventro-lateral GPi, the region displaying connectivity to the thalamus in our study and generally attributed to the sensorimotor system. Clinical studies relating DBS electrode positions to our GPi connectivity map would be needed to complement our findings.
Collapse
Affiliation(s)
- Nadia Moreira da Silva
- INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Seyed-Ahmad Ahmadi
- Department of Neurology, Klinikum Grosshadern, University of Munich, Germany
| | - Sergio Neves Tafula
- INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joao Paulo Silva Cunha
- INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Kai Bötzel
- INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Christian Vollmar
- Department of Neurology, Klinikum Grosshadern, University of Munich, Germany
| | | |
Collapse
|
42
|
Hirschtritt ME, Darrow SM, Illmann C, Osiecki L, Grados M, Sandor P, Dion Y, King RA, Pauls DL, Budman CL, Cath DC, Greenberg E, Lyon GJ, Yu D, McGrath LM, McMahon WM, Lee PC, Delucchi KL, Scharf JM, Mathews CA. Social disinhibition is a heritable subphenotype of tics in Tourette syndrome. Neurology 2016; 87:497-504. [PMID: 27371487 PMCID: PMC4970665 DOI: 10.1212/wnl.0000000000002910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/28/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify heritable symptom-based subtypes of Tourette syndrome (TS). METHODS Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. RESULTS A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10(-18)). CONCLUSIONS Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies.
Collapse
Affiliation(s)
- Matthew E Hirschtritt
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Sabrina M Darrow
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Cornelia Illmann
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Lisa Osiecki
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Marco Grados
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Paul Sandor
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Yves Dion
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Robert A King
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - David L Pauls
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Cathy L Budman
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Danielle C Cath
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Erica Greenberg
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Gholson J Lyon
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Dongmei Yu
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Lauren M McGrath
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - William M McMahon
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Paul C Lee
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Kevin L Delucchi
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | - Jeremiah M Scharf
- From the Department of Psychiatry (M.E.H., S.M.D., K.L.D.), University of California, San Francisco; Psychiatric and Neurodevelopmental Genetics Unit (C.I., L.O., D.L.P., E.G., D.Y., J.M.S.), Center for Human Genetics Research, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry and Behavioral Sciences (M.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Psychiatry (P.S.), University of Toronto and University Health Network, Youthdale Treatment Centers; Department of Psychiatry (Y.D.), University of Montreal, Canada; Yale Child Study Center (R.A.K.), Yale University School of Medicine, New Haven, CT; The Feinstein Institute for Medical Research (C.L.B.), North Shore Long Island Jewish Health System, Manhasset, NY; Faculty of Social and Behavioural Sciences (D.C.C.), Utrecht University and Altrecht Academic Anxiety Center, Utrecht, the Netherlands; Stanley Institute for Cognitive Genomics (G.J.L.), Cold Spring Harbor Laboratory, NY; School of Education (L.M.M.), American University, Washington, DC; Department of Psychiatry (W.M.M.), University of Utah, Salt Lake City; Department of Behavioral Health (P.C.L.), Tripler Army Medical Center, Honolulu, HI; Division of Cognitive and Behavioral Neurology (J.M.S.), Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Neurology (J.M.S.), Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Department of Psychiatry (C.A.M.), University of Florida, Gainesville
| | | |
Collapse
|
43
|
Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Front Neural Circuits 2016; 10:53. [PMID: 27493625 PMCID: PMC4954853 DOI: 10.3389/fncir.2016.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
The brain enables animals to behaviorally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviors are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE), which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and post-synaptic activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson's disease (PD) by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1.
Collapse
Affiliation(s)
- Pierre Berthet
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Mikael Lindahl
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Philip J. Tully
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, UK
| | - Jeanette Hellgren-Kotaleski
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| | - Anders Lansner
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
44
|
Abstract
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination. The term 'disclosed loop' is introduced to describe this organisation: a closed circuit that is open to outside influence at the initial stage of cortical input. The closed circuit component of corticostriatal afferents is newly dubbed 'operative', as it is proposed to establish the bid for action selection on the part of an incipient cortical action plan; the broader set of converging corticostriatal afferents is described as contextual. A corollary of this proposal is that every unit of the striatal volume, including the long, C-shaped tail of the caudate nucleus, should receive a mandatory component of operative input, and hence include at least one area of BG-recipient cortex amongst the sources of its corticostriatal afferents. Individual operative afferents contact twin classes of GABAergic striatal projection neuron (SPN), distinguished by their neurochemical character, and onward circuitry. This is the basis of the classic direct and indirect pathway model of the cortico-BG loop. Each pathway utilises a serial chain of inhibition, with two such links, or three, providing positive and negative feedback, respectively. Operative co-activation of direct and indirect SPNs is, therefore, pictured to simultaneously promote action, and to restrain it. The balance of this rival activity is determined by the contextual inputs, which summarise the external and internal sensory environment, and the state of ongoing behavioural priorities. Notably, the distributed sources of contextual convergence upon a striatal locus mirror the transcortical network harnessed by the origin of the operative input to that locus, thereby capturing a similar set of contingencies relevant to determining action. The disclosed loop formulation of corticostriatal and subsequent BG loop circuitry, as advanced here, refines the operating rationale of the classic model and allows the integration of more recent anatomical and physiological data, some of which can appear at variance with the classic model. Equally, it provides a lucid functional context for continuing cellular studies of SPN biophysics and mechanisms of synaptic plasticity.
Collapse
|
45
|
Schambra UB, Nunley K, Harrison TA, Lewis CN. Consequences of low or moderate prenatal ethanol exposures during gastrulation or neurulation for open field activity and emotionality in mice. Neurotoxicol Teratol 2016; 57:39-53. [PMID: 27296969 DOI: 10.1016/j.ntt.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
In a previous study we used a mouse model for ethanol exposure during gastrulation or neurulation to investigate the effects of modest and occasional human drinking during the 3rd or 4th week of pregnancy (Schambra et al., 2015). Pregnant C57Bl/6J mice were treated by gavage during gastrulation on gestational day (GD) 7 or neurulation on GD8 with 2 doses 4h apart of either 2.4 or 2.9g ethanol/kg body weight, resulting in peak blood ethanol concentrations (BECs) of 104 and 177mg/dl, respectively. We found that mice exposed to the low dose on either day were significantly delayed in their neonatal sensorimotor development. In the present study, we tested the same cohort of mice in an open field as juveniles on postnatal day (PD) 23-25 and as young adults on PD65-67 for prenatal ethanol effects on exploration and emotionality with measures of activity, rearing, grooming and defecation. We evaluated the effects of dose, sex, day of treatment and day of birth by multiple regression analyses. We found that, compared to the respective gavage controls, juvenile mice that had been prenatally exposed to the low BEC on either GD7 or GD8 were significantly hypoactive on the first 2 test days, reared significantly more on the last 2 test days, and groomed and defecated significantly more on all 3 test days. Only mice that had been treated on GD7 remained hypoactive as adults. Juvenile mice prenatally exposed to the moderate BEC on GD7 groomed significantly more, while those exposed on GD8 reared and defecated significantly more. Sex differences were highly significant in adult control mice, with control males less active and more emotional than females. Similar, but smaller, sex differences were also evident in adults exposed to ethanol prenatally. Persistence into later life of a deleterious effect of premature birth (i.e., birth on GD19 rather than GD20) on weight and behavior was not consistently supported by these data. Importantly, mice shown previously to be delayed in sensorimotor development as neonates, in the present study demonstrated hypoactivity and increased emotionality in open field behaviors as juveniles, and those mice exposed during gastrulation remained hypoactive as adults. Thus, we propose that the delayed motor development, hypoactivity and emotionality we observed in mice exposed to a low BEC during gastrulation or neurulation may relate to an attention deficit-activity disorder in humans, possibly the inattentive subtype, or Sluggish Cognitive Tempo (SCT). We further discuss concerns about occasional light or moderate alcohol consumption during the 3rd or 4th week of human pregnancy.
Collapse
Affiliation(s)
- Uta B Schambra
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Kevin Nunley
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theresa A Harrison
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - C Nicole Lewis
- Department of Mathematics & Statistics, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
46
|
Mannella F, Baldassarre G. Selection of cortical dynamics for motor behaviour by the basal ganglia. BIOLOGICAL CYBERNETICS 2015; 109:575-595. [PMID: 26537483 PMCID: PMC4656718 DOI: 10.1007/s00422-015-0662-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The basal ganglia and cortex are strongly implicated in the control of motor preparation and execution. Re-entrant loops between these two brain areas are thought to determine the selection of motor repertoires for instrumental action. The nature of neural encoding and processing in the motor cortex as well as the way in which selection by the basal ganglia acts on them is currently debated. The classic view of the motor cortex implementing a direct mapping of information from perception to muscular responses is challenged by proposals viewing it as a set of dynamical systems controlling muscles. Consequently, the common idea that a competition between relatively segregated cortico-striato-nigro-thalamo-cortical channels selects patterns of activity in the motor cortex is no more sufficient to explain how action selection works. Here, we contribute to develop the dynamical view of the basal ganglia-cortical system by proposing a computational model in which a thalamo-cortical dynamical neural reservoir is modulated by disinhibitory selection of the basal ganglia guided by top-down information, so that it responds with different dynamics to the same bottom-up input. The model shows how different motor trajectories can so be produced by controlling the same set of joint actuators. Furthermore, the model shows how the basal ganglia might modulate cortical dynamics by preserving coarse-grained spatiotemporal information throughout cortico-cortical pathways.
Collapse
Affiliation(s)
- Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council (CNR-ISTC-LOCEN), Via San Martino della Battaglia 44, 00185, Rome, Italy.
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council (CNR-ISTC-LOCEN), Via San Martino della Battaglia 44, 00185, Rome, Italy.
| |
Collapse
|
47
|
Bertolini G, Wicki A, Baumann CR, Straumann D, Palla A. Impaired tilt perception in Parkinson's disease: a central vestibular integration failure. PLoS One 2015; 10:e0124253. [PMID: 25874868 PMCID: PMC4398395 DOI: 10.1371/journal.pone.0124253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Impaired balance control is a hallmark symptom in Parkinson’s disease (PD). Altered sensory-motor integration contributes to the deficiency. We aimed to determine whether impaired vestibular signal processing added to the disorder. We exposed patients (N = 11; 68±6y) and age-matched healthy subjects (hS: N = 19; 65±11y) on a motion platform in complete darkness to two consecutive forward tilt movements (12 series; N = 24; overall 288 trials) and asked them to indicate which tilt was perceived larger. By combing tilt movements with translations we manipulated vestibular sensory input in order to investigate whether putative impairment resulted from a deficiency of the sensory organs (semicircular canals in ‘single-SCC-cue-condition’, otoliths in ‘single-OT-cue-condition’) themselves or to a sensory integration failure (‘multi-cue-condition’). Results Tilt discrimination in the multi-cue-condition was inferior in patients compared to hS (p = 0.02). No significant differences between the two groups were found for both single-cue-conditions. Comparison of multi-cue-condition with a prediction resulting from the combination of both single-cue-conditions by optimal observer theory revealed that patients (p = 0.04), in contrast to hS, failed to efficiently combine SCC and OT information to improve tilt perception. Conclusion We found that PD patients distinguished forward tilts less precise than hS, suggesting impaired vestibular perception. Tilt discrimination in patients, moreover, did not improve as much as in hS in conditions where both SCC and OT information was available compared to conditions where only SCC or OT cues were activated. The latter provides evidence that tilt misperception in PD most likely results from an integration failure of vestibular signals.
Collapse
Affiliation(s)
- Giovanni Bertolini
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
- * E-mail:
| | - Andrea Wicki
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| | | | - Dominik Straumann
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| | - Antonella Palla
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| |
Collapse
|
48
|
New whole-body sensory-motor gradients revealed using phase-locked analysis and verified using multivoxel pattern analysis and functional connectivity. J Neurosci 2015; 35:2845-59. [PMID: 25698725 DOI: 10.1523/jneurosci.4246-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Topographic organization is one of the main principles of organization in the human brain. Specifically, whole-brain topographic mapping using spectral analysis is responsible for one of the greatest advances in vision research. Thus, it is intriguing that although topography is a key feature also in the motor system, whole-body somatosensory-motor mapping using spectral analysis has not been conducted in humans outside M1/SMA. Here, using this method, we were able to map a homunculus in the globus pallidus, a key target area for deep brain stimulation, which has not been mapped noninvasively or in healthy subjects. The analysis clarifies contradictory and partial results regarding somatotopy in the caudal-cingulate zone and rostral-cingulate zone in the medial wall and in the putamen. Most of the results were confirmed at the single-subject level and were found to be compatible with results from animal studies. Using multivoxel pattern analysis, we could predict movements of individual body parts in these homunculi, thus confirming that they contain somatotopic information. Using functional connectivity, we demonstrate interhemispheric functional somatotopic connectivity of these homunculi, such that the somatotopy in one hemisphere could have been found given the connectivity pattern of the corresponding regions of interest in the other hemisphere. When inspecting the somatotopic and nonsomatotopic connectivity patterns, a similarity index indicated that the pattern of connected and nonconnected regions of interest across different homunculi is similar for different body parts and hemispheres. The results show that topographical gradients are even more widespread than previously assumed in the somatosensory-motor system. Spectral analysis can thus potentially serve as a gold standard for defining somatosensory-motor system areas for basic research and clinical applications.
Collapse
|
49
|
Gurney KN, Humphries MD, Redgrave P. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol 2015; 13:e1002034. [PMID: 25562526 PMCID: PMC4285402 DOI: 10.1371/journal.pbio.1002034] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022] Open
Abstract
A computational model yields new insights into the bewildering complexity of cortico-striatal plasticity and its rationale for supporting operant learning. Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem—action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our model shows how striatum acts as the action-reinforcement interface. A key component of survival is the ability to learn which actions, in what contexts, yield useful and rewarding outcomes. Actions are encoded in the brain in the cortex but, as many actions are possible at any one time, there needs to be a mechanism to select which one is to be performed. This problem of action selection is mediated by a set of nuclei known as the basal ganglia, which receive convergent “action requests” from all over the cortex and select the one that is currently most important. Working out which is most important is determined by the strength of the input from each action request: the stronger the connection, the more important that action. Understanding learning thus requires understanding how that strength is changed by the outcome of each action. We built a computational model that demonstrates how the brain's internal signal for outcome (carried by the neurotransmitter dopamine) changes the strength of these cortical connections to learn the selection of rewarded actions, and the suppression of unrewarded ones. Our model shows how several known signals in the brain work together to shape the influence of cortical inputs to the basal ganglia at the interface between our actions and their outcomes.
Collapse
Affiliation(s)
- Kevin N. Gurney
- Department of Psychology, Adaptive Behaviour Research Group, University of Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, United Kingdom
- * E-mail:
| | | | - Peter Redgrave
- Department of Psychology, Adaptive Behaviour Research Group, University of Sheffield, United Kingdom
| |
Collapse
|
50
|
Silkis IG. Mutual influence of serotonin and dopamine on the functioning of the dorsal striatum and motor activity (hypothetical mechanism). NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414030118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|