1
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
3
|
László BR, Kertes E, Ollmann T, Péczely L, Kovács A, Karádi Z, Lénárd L, László K. The Role of Intra-Amygdaloid Neurotensin and Dopamine Interaction in Spatial Learning and Memory. Biomedicines 2022; 10:biomedicines10123138. [PMID: 36551894 PMCID: PMC9775557 DOI: 10.3390/biomedicines10123138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotransmitter and neuromodulator neurotensin (NT) has been proved to facilitate spatial and passive avoidance learning after microinjected into the rat central nucleus of amygdala (CeA). These previous studies of our laboratory also revealed that neurotensin-1 receptor (NTS1) is involved in the mentioned actions of NT. Extensive literature confirms the interaction between neurotensinergic and dopaminergic systems, and our research group also suppose that the mesolimbic dopaminergic system (MLDS) is involved in the spatial learning and memory-facilitating effect of NT in the CeA. In the present work, NT and dopamine (DA) interaction has been examined in the Morris water maze and passive avoidance tests. Rats received 100 ng NT, 5 µg dopamine D2 receptor antagonist sulpiride in itself, sulpiride as a pretreatment before NT or vehicle solution into the CeA. NT microinjection significantly decreased target-finding latency in the Morris water maze test and significantly increased entrance latency in the passive avoidance test, as was expected based on our previous findings. The DA D2 receptor antagonist pretreatment was able to inhibit both effects of NT. The results confirm the facilitatory effect of NT on spatial learning and memory and let us conclude that these actions can be exerted via the DA D2 receptors.
Collapse
Affiliation(s)
- Bettina Réka László
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Szentágothai Research Center, Cellular Bioimpedance Research Group, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Szentágothai Research Center, Cellular Bioimpedance Research Group, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Correspondence:
| |
Collapse
|
4
|
Ollmann T, Lénárd L, Péczely L, Berta B, Kertes E, Zagorácz O, Hormay E, László K, Szabó Á, Gálosi R, Karádi Z, Kállai V. Effect of D1- and D2-like Dopamine Receptor Antagonists on the Rewarding and Anxiolytic Effects of Neurotensin in the Ventral Pallidum. Biomedicines 2022; 10:biomedicines10092104. [PMID: 36140205 PMCID: PMC9495457 DOI: 10.3390/biomedicines10092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. It was shown previously that NT in the ventral pallidum (VP) has rewarding and anxiolytic effects. NT exerts its effect in interaction with dopamine (DA) receptors in numerous brain areas; however, this has not yet been investigated in the VP. The aim of this study was to examine whether the inhibition of D1-like and D2-like DA receptors of the VP can modify the above mentioned effects of NT. Methods: Microinjection cannulas were implanted by means of stereotaxic operations into the VP of male Wistar rats. The rewarding effect of NT was examined by means of a conditioned place preference test. Anxiety was investigated with an elevated plus maze test. To investigate the possible interaction, D1-like DA receptor antagonist SCH23390 or D2-like DA receptor antagonist sulpiride were microinjected prior to NT. All of the drugs were also injected independently to analyze their effects alone. Results: In the present experiments, both the rewarding and anxiolytic effects of NT in the VP were prevented by both D1-like and D2-like DA receptor antagonists. Administered on their own, the antagonists did not influence reward and anxiety. Conclusion: Our present results show that the activity of the D1-like and D2-like DA receptors of the VP is a necessary requirement for both the rewarding and anxiolytic effects of NT.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536000 (ext. 31095)
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Szabó
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
The role of intraamygdaloid neurotensin and dopamine interaction in conditioned place preference. Behav Brain Res 2018; 344:85-90. [DOI: 10.1016/j.bbr.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
|
6
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
7
|
Servonnet A, Minogianis EA, Bouchard C, Bédard AM, Lévesque D, Rompré PP, Samaha AN. Neurotensin in the nucleus accumbens reverses dopamine supersensitivity evoked by antipsychotic treatment. Neuropharmacology 2017; 123:10-21. [DOI: 10.1016/j.neuropharm.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
|
8
|
Potential drug targets and treatment of schizophrenia. Inflammopharmacology 2017; 25:277-292. [DOI: 10.1007/s10787-017-0340-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
|
9
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
10
|
Alburges ME, Hoonakker AJ, Cordova NM, Robson CM, McFadden LM, Martin AL, Hanson GR. Effect of low doses of methamphetamine on rat limbic-related neurotensin systems. Synapse 2015; 69:396-404. [PMID: 25963809 DOI: 10.1002/syn.21829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/16/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
Abstract
Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg). METH at the dose of 0.25 mg kg(-1) in particular, but not 1.00 mg kg(-1), decreased NTLI concentration in all of the LR structures studied, except for the prefrontal cortex; however, these effects were rapid and brief being observed at 5 h but not at 24 h after treatment. In all of the LR areas where NTLI levels were reduced after the low dose of METH, the effect was blocked by pretreatment with either a D1 or a D2 antagonist. Thus, opposite to high doses like those associated with abuse, the therapeutic-like low-dose METH treatment induced reduction in NT tissue levels likely reflected an increase in NT release and a short-term depletion of the levels of this neuropeptide in LR structures, manifesting features comparable to the response of basal ganglia NT systems to similar low doses of METH.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amanda J Hoonakker
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Nathaniel M Cordova
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Christina M Robson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amber L Martin
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry and Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
11
|
Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behav Brain Res 2015; 278:470-5. [DOI: 10.1016/j.bbr.2014.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 12/23/2022]
|
12
|
Responses of the rat basal ganglia neurotensin systems to low doses of methamphetamine. Psychopharmacology (Berl) 2014; 231:2933-40. [PMID: 24522333 PMCID: PMC4102623 DOI: 10.1007/s00213-014-3468-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied. OBJECTIVES The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported. METHODS Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50, or 1.00 mg/kg/subcutaneously (s.c.)). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5-48 h after the last injection. RESULTS METH at doses of 0.25 and 0.50, but not 1.00 mg/kg, rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions. CONCLUSIONS A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed.
Collapse
|
13
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
14
|
Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T, Henneberg M, Gos T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 2014; 5:47. [PMID: 24904434 PMCID: PMC4032934 DOI: 10.3389/fpsyt.2014.00047] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
Dopamine is an inhibitory neurotransmitter involved in the pathology of schizophrenia. The revised dopamine hypothesis states that dopamine abnormalities in the mesolimbic and prefrontal brain regions exist in schizophrenia. However, recent research has indicated that glutamate, GABA, acetylcholine, and serotonin alterations are also involved in the pathology of schizophrenia. This review provides an in-depth analysis of dopamine in animal models of schizophrenia and also focuses on dopamine and cognition. Furthermore, this review provides not only an overview of dopamine receptors and the antipsychotic effects of treatments targeting them but also an outline of dopamine and its interaction with other neurochemical models of schizophrenia. The roles of dopamine in the evolution of the human brain and human mental abilities, which are affected in schizophrenia patients, are also discussed.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Arthur Saniotis
- School of Medical Sciences, The University of Adelaide , Adelaide, SA , Australia ; Centre for Evolutionary Medicine, University of Zurich , Zurich , Switzerland
| | - Rainer Wolf
- Department of Psychiatry and Psychotherapy, Ruhr University Bochum , Bochum , Germany
| | - Hendrik Bielau
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Katharina Braun
- Department of Zoology, Institute of Biology, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
15
|
Hanson GR, Hoonakker AJ, Robson CM, McFadden LM, Frankel PS, Alburges ME. Response of neurotensin basal ganglia systems during extinction of methamphetamine self-administration in rat. J Pharmacol Exp Ther 2013; 346:173-81. [PMID: 23685547 DOI: 10.1124/jpet.113.205310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Because of persistent social problems caused by methamphetamine (METH), new therapeutic strategies need to be developed. Thus, we investigated the response of central nervous system neurotensin (NT) systems to METH self-administration (SA) and their interaction with basal ganglia dopamine (DA) pathways. Neurotensin is a peptide associated with inhibitory feedback pathways to nigrostriatal DA projections. We observed that NT levels decreased in rats during extinction of METH SA when lever pressing resulted in intravenous infusions of saline rather than METH. Thus, 6 h after the first session of extinction, NT levels were 53, 42, and 49% of corresponding controls in the anterior dorsal striatum, posterior dorsal striatum, and globus pallidus, respectively. NT levels were also significantly reduced in corresponding yoked rats in the anterior dorsal striatum (64% of control), but not the other structures examined. The reductions in NT levels in the anterior dorsal striatum particularly correlated with the lever pressing during the first session of extinction (r =s; 0.745). These, and previously reported findings, suggest that the extinction-related reductions in NT levels were mediated by activation of D2 receptors. Finally, administration of the neurotensin receptor 1 (NTR1) agonist [PD149163 [Lys(CH2NH)Lys-Pro,Trp-tert-Leu-Leu-Oet]; 0.25 or 0.5 mg/kg] diminished lever pressing during the first extinction session, whereas the NTR1 antagonist [SR48692 [2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-imethoxyphenyl)pyrazol-3-yl)carbonylamino]tricyclo(3.3.1.1.(3.7))decan-2-carboxylic acid]; 0.3 mg/kg per administration] attenuated the reduction of lever pressing during the second to fourth days of extinction. In summary, these findings support the hypothesis that some of the endogenous basal ganglia NT systems contribute to the elimination of contingent behavior during the early stages of the METH SA extinction process.
Collapse
Affiliation(s)
- Glen R Hanson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M, Yanagisawa M, Shioda S, Sakurai T. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One 2013; 8:e62391. [PMID: 23620827 PMCID: PMC3631195 DOI: 10.1371/journal.pone.0062391] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 03/24/2013] [Indexed: 02/03/2023] Open
Abstract
Both orexin and neurotensin are expressed in the lateral hypothalamic area (LHA) and have been implicated in the regulation of feeding, motor activity and the reward system. A double label immunofluorescence and in situ hybridization studies showed that neurotensin colocalizes with orexin in neurons of the LHA. Pharmacological studies suggested that neurotensin excites orexin-producing neurons (orexin neurons) through activation of neurotensin receptor-2 (NTSR-2) and non-selective cation channels. In situ hybridization study showed that most orexin neurons express neurotensin receptor-2 mRNA but not neurotensin receptor-1 (Ntsr-1) mRNA. Immunohistochemical studies showed that neurotensin-immunoreactive fibers make appositions to orexin neurons. A neurotensin receptor antagonist decreased Fos expression in orexin neurons and wakefulness time in wild type mice when administered intraperitoneally. However, the antagonist did not evoke any effect on these parameters in orexin neuron-ablated mice. These observations suggest the importance of neurotensin in maintaining activity of orexin neurons. The evidence presented here expands our understanding of the regulatory mechanism of orexin neurons.
Collapse
Affiliation(s)
- Naoki Furutani
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mari Hondo
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- Center for Behavioral Molecular Genetics, University of Tsukuba, Tsukuba, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masashi Yanagisawa
- Center for Behavioral Molecular Genetics, University of Tsukuba, Tsukuba, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
17
|
Hanson GR, Hoonakker AJ, Alburges ME, McFadden LM, Robson CM, Frankel PS. Response of limbic neurotensin systems to methamphetamine self-administration. Neuroscience 2012; 203:99-107. [PMID: 22245499 DOI: 10.1016/j.neuroscience.2011.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH) abuse is personally and socially devastating. Although effects of METH on dopamine (DA) systems likely contribute to its highly addictive nature, no medications are approved to treat METH dependence. Thus, we and others have studied the METH-induced responses of neurotensin (NT) systems. NT is associated with inhibitory feedback action on DA projections, and NT levels are elevated in both the nucleus accumbens and dorsal striatum after noncontingent treatment with high doses of METH. In the present study, we used a METH self-administration (SA) model (linked to lever pressing) to demonstrate that substitution of an NT agonist for METH, while not significantly affecting motor activity, dramatically reduced lever pressing but was not self-administered per se. We also found that nucleus accumbens NT levels were elevated via a D1 mechanism after five sessions in rats self-administering METH (SAM), with a lesser effect in corresponding yoked rats. Extended (15 daily sessions) exposure to METH SA manifested similar NT responses; however, more detailed analyses revealed (i) 15 days of METH SA significantly elevated NT levels in the nucleus accumbens shell and dorsal striatum, but not the nucleus accumbens core, with a lesser effect in the corresponding yoked METH rats; (ii) the elevation of NT in both the nucleus accumbens shell and dorsal striatum significantly correlated with the total amount of METH received in the self-administering, but not the corresponding yoked METH rats; and (iii) an NT agonist blocked, but an NT antagonist did not alter, lever-pressing behavior on day 15 in SAM rats. After 5 days in SAM animals, NT levels were also elevated in the ventral tegmental area, but not frontal cortex of rats self-administering METH.
Collapse
Affiliation(s)
- G R Hanson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF. Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm (Vienna) 2009; 116:923-39. [PMID: 19156349 PMCID: PMC2953764 DOI: 10.1007/s00702-008-0174-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/11/2008] [Indexed: 11/26/2022]
Abstract
Receptor-receptor interactions within receptor heterodimers and receptor mosaics formed by different types of GPCRs represent an important integrative mechanism for signaling in brain networks at the level of the plasma membrane. The malfunction of special heterodimers and receptor mosaics in the ventral striatum containing D(2) receptors and 5-HT(2A) receptors in cortical networks may contribute to disturbances of key pathways involving ventral striato-pallidal GABA neurons and mediodorsal thalamic prefrontal glutamate neurons that may lead to the development of schizophrenia. The ventral striatum transmits emotional information to the cerebral cortex through a D(2) regulated accumbal-ventral pallidal-mediodorsal-prefrontal circuit which is of special interest to schizophrenia in view of the reduced number of glutamate mediodorsal-prefrontal projections associated with this disease. This circuit is especially vulnerable to D(2) receptor activity in the nucleus accumbens, since it produces a reduction in the prefrontal glutamate drive from the mediodorsal nucleus. The following D(2) receptor containing heterodimers/receptor mosaics are of special interest to schizophrenia: A(2A)-D(2), mGluR5-D(2), CB(1)-D(2), NTS(1)-D(2) and D(2)-D(3) and are discussed in this review. They may have a differential distribution pattern in the local circuits of the ventral striato-pallidal GABA pathway, predominantly located extrasynaptically. Specifically, trimeric receptor mosaics consisting of A(2A)-D(2)-mGluR5 and CB(1)-D(2)-A(2A) may also exist in these local circuits and are discussed. The integration of receptor signaling within assembled heterodimers/receptor mosaics is brought about by agonists and allosteric modulators. These cause the intramembrane receptor-receptor interactions, via allosteric mechanisms, to produce conformational changes that pass over the receptor interfaces. Exogenous and endogenous cooperativity is discussed as well as the role of the cortical mGluR2-5-HT(2A) heterodimer/receptor mosaic in schizophrenia (Gonzalez-Maeso et al. 2008). Receptor-receptor interactions within receptor heterodimer/receptor mosaics of different receptors in the ventral striatum and cerebral cortex give novel strategies for treatment of schizophrenia involving, e.g., monotherapy with either A(2A), mGluR5, CB(1) or NTS(1) agonists or combined therapies with some of these agonists combined with D(2)-like antagonists that specifically target the ventral striatum. In addition, a combined targeting of receptor mosaics in the ventral striatum and in the cerebral cortex should also be considered.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stober G, Ben-Shachar D, Cardon M, Falkai P, Fonteh AN, Gawlik M, Glenthoj BY, Grunblatt E, Jablensky A, Kim YK, Kornhuber J, McNeil TF, Muller N, Oranje B, Saito T, Saoud M, Schmitt A, Schwartz M, Thome J, Uzbekov M, Durany N, Riederer P. Schizophrenia: from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 2009; 10:127-55. [PMID: 19396704 DOI: 10.1080/15622970902898980] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective. The phenotypic complexity, together with the multifarious nature of the so-called "schizophrenic psychoses", limits our ability to form a simple and logical biologically based hypothesis for the disease group. Biological markers are defined as biochemical, physiological or anatomical traits that are specific to particular conditions. An important aim of biomarker discovery is the detection of disease correlates that can be used as diagnostic tools. Method. A selective review of the WFSBP Task Force on Biological Markers in schizophrenia is provided from the central nervous system to phenotypes, functional brain systems, chromosomal loci with potential genetic markers to the peripheral systems. Results. A number of biological measures have been proposed to be correlated with schizophrenia. At present, not a single biological trait in schizophrenia is available which achieves sufficient specificity, selectivity and is based on causal pathology and predictive validity to be recommended as diagnostic marker. Conclusions. With the emergence of new technologies and rigorous phenotypic subclassification the identification of genetic bases and assessment of dynamic disease related alterations will hopefully come to a new stage in the complex field of psychiatric research.
Collapse
Affiliation(s)
- Gerald Stober
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wurzburg, Wurzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang SW, Rompré PP, Warren RA. Neurotensin modulation of spontaneous EPSCs in the nucleus accumbens of Lewis and Fischer 344 rats. Peptides 2008; 29:1616-9. [PMID: 18556091 DOI: 10.1016/j.peptides.2008.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 01/07/2023]
Abstract
Fischer 344 (F344) and Lewis (LEW) rats are inbred strains that are differentially sensitive to drugs of abuse and that respond differently to the endogenous neuropeptide neurotensin (NT). To understand the mechanisms involved we used whole cell patch clamp recording technique to study the effects of an equimolar concentration of NT and its active analog, d-Tyr[11]neurotensin (d-NT), on the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in nucleus accumbens medium spiny (MS) neurons in brain slices. NT and d-NT produced an increase in the amplitude but not in the frequency of sEPSCs in all neurons tested in both F344 and LEW rats. In LEW rats, NT and d-NT produced an increase in sEPSCs of the same magnitude. In contrast, in F344 rats, d-NT produced an increase in sEPSCs that was 2.4 times larger than that of NT. Moreover, the effect of d-NT in F344 rats was also significantly larger than that measured in LEW rats whereas NT produced an effect of the same magnitude in both strains. These results demonstrate that MS neurons in F344 rats are more responsive to the activation of NT receptors sensitive to d-NT than LEW animals. This finding parallels previous behavioral data and provides additional evidence that the NT circuitry differs in the two strains, in a brain region known to play a key role in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Shou-Wei Yang
- Centre de Recherche Fernand-Seguin, University of Montreal, 7331 Hochelaga Street, Montreal, Quebec, Canada H1N 3V2
| | | | | |
Collapse
|
21
|
McGrath J, Iwazaki T, Eyles D, Burne T, Cui X, Ko P, Matsumoto I. Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency. PLoS One 2008; 3:e2383. [PMID: 18545652 PMCID: PMC2396486 DOI: 10.1371/journal.pone.0002383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency METHODS Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8) were compared to control male (n = 8). 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. RESULTS There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being -1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin) were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. CONCLUSIONS Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency.
Collapse
Affiliation(s)
- John McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Australia.
| | | | | | | | | | | | | |
Collapse
|