1
|
Reilly EE, Wierenga CE, Grange DL. Testing the role of associative learning in evidence-based treatments for anorexia nervosa. Int J Eat Disord 2024; 57:1088-1095. [PMID: 38323377 PMCID: PMC11093706 DOI: 10.1002/eat.24161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Treatments for anorexia nervosa (AN) remain ineffective for many patients. Processes that can account for differential treatment outcomes remain mostly unknown. We propose that the field test the role of associative learning in current psychological treatments. We hold that this line of research could yield actionable information for understanding non-response and improving long-term outcomes. To make this argument, we define associative learning and outline its proposed role in understanding psychiatric disorders and their treatment. We then briefly review data exploring associative learning in AN. We argue that associative learning processes are implicitly implicated in existing treatments; by this rationale, baseline differences in learning may interfere with treatment response. Finally, we outline future research to test our hypotheses. Altogether, future research aimed at better understanding how associative learning may contribute to AN symptom persistence has the potential to inform novel directions in intervention research. PUBLIC SIGNIFICANCE: There is a pressing need to improve outcomes in treatments for anorexia nervosa (AN). We propose that individual differences in associative learning-the ability to form and update associations between cues, contexts, behaviors, and outcomes-may account for differential response to existing treatments. Undertaking this research could provide an understanding of how current treatments work and inform new approaches for those who may be at risk of poor outcomes.
Collapse
Affiliation(s)
- Erin E. Reilly
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA
| | | | - Daniel Le Grange
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA
- Department of Psychiatry & Behavioral Neuroscience (Emeritus), The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Hearne LJ, Breakspear M, Harrison BJ, Hall CV, Savage HS, Robinson C, Sonkusare S, Savage E, Nott Z, Marcus L, Naze S, Burgher B, Zalesky A, Cocchi L. Revisiting deficits in threat and safety appraisal in obsessive-compulsive disorder. Hum Brain Mapp 2023; 44:6418-6428. [PMID: 37853935 PMCID: PMC10681637 DOI: 10.1002/hbm.26518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Current behavioural treatment of obsessive-compulsive disorder (OCD) is informed by fear conditioning and involves iteratively re-evaluating previously threatening stimuli as safe. However, there is limited research investigating the neurobiological response to conditioning and reversal of threatening stimuli in individuals with OCD. A clinical sample of individuals with OCD (N = 45) and matched healthy controls (N = 45) underwent functional magnetic resonance imaging. While in the scanner, participants completed a well-validated fear reversal task and a resting-state scan. We found no evidence for group differences in task-evoked brain activation or functional connectivity in OCD. Multivariate analyses encompassing all participants in the clinical and control groups suggested that subjective appraisal of threatening and safe stimuli were associated with a larger difference in brain activity than the contribution of OCD symptoms. In particular, we observed a brain-behaviour continuum whereby heightened affective appraisal was related to increased bilateral insula activation during the task (r = 0.39, pFWE = .001). These findings suggest that changes in conditioned threat-related processes may not be a core neurobiological feature of OCD and encourage further research on the role of subjective experience in fear conditioning.
Collapse
Affiliation(s)
- Luke J. Hearne
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Michael Breakspear
- College of Engineering Science and Environment, College of Health and MedicineUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Ben J. Harrison
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneVictoriaAustralia
| | - Caitlin V. Hall
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Hannah S. Savage
- College of Engineering Science and Environment, College of Health and MedicineUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Conor Robinson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | - Emma Savage
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Zoie Nott
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Leo Marcus
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sebastien Naze
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Bjorn Burgher
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneVictoriaAustralia
| | - Luca Cocchi
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| |
Collapse
|
3
|
Diniz JB, Bazán PR, Pereira CADB, Saraiva EF, Ramos PRC, de Oliveira AR, Reimer AE, Hoexter MQ, Miguel EC, Shavitt RG, Batistuzzo MC. Brain activation during fear extinction recall in unmedicated patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2023; 336:111733. [PMID: 37913655 DOI: 10.1016/j.pscychresns.2023.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/03/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Specific brain activation patterns during fear conditioning and the recall of previously extinguished fear responses have been associated with obsessive-compulsive disorder (OCD). However, further replication studies are necessary. We measured skin-conductance response and blood oxygenation level-dependent responses in unmedicated adult patients with OCD (n = 27) and healthy participants (n = 22) submitted to a two-day fear-conditioning experiment comprising fear conditioning, extinction (day 1) and extinction recall (day 2). During conditioning, groups differed regarding the skin conductance reactivity to the aversive stimulus (shock) and regarding the activation of the right opercular cortex, insular cortex, putamen, and lingual gyrus in response to conditioned stimuli. During extinction recall, patients with OCD had higher responses to stimuli and smaller differences between responses to conditioned and neutral stimuli. For the entire sample, the higher the response delta between conditioned and neutral stimuli, the greater the dACC activation for the same contrast during early extinction recall. While activation of the dACC predicted the average difference between responses to stimuli for the entire sample, groups did not differ regarding the activation of the dACC during extinction recall. Larger unmedicated samples might be necessary to replicate the previous findings reported in patients with OCD.
Collapse
Affiliation(s)
- Juliana Belo Diniz
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
| | - Paulo Rodrigo Bazán
- Radiology Institute, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 75, 05403-010, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, 05652-900 São Paulo, SP, Brazil
| | | | - Erlandson Ferreira Saraiva
- Institute of Applied Mathematics, Universidade Federal do Mato grosso do Sul, Cidade Universitária, Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Paula Roberta Camargo Ramos
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos, Rod. Washington Luis, km 235, Caixa Postal: 676, 13565-905, São Carlos, SP, Brazil; Institute of Neuroscience and Behavior (INeC), Av. do Café, 2450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Adriano Edgar Reimer
- Department of Psychology, Federal University of São Carlos, Rod. Washington Luis, km 235, Caixa Postal: 676, 13565-905, São Carlos, SP, Brazil; Institute of Neuroscience and Behavior (INeC), Av. do Café, 2450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Marcelo Queiroz Hoexter
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Roseli Gedanke Shavitt
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Marcelo Camargo Batistuzzo
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil; Department of Methods and Techniques in Psychology, Pontifical Catholic University, Rua Monte Alegre, 984, 05014-901, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Picó-Pérez M, Fullana MA, Albajes-Eizagirre A, Vega D, Marco-Pallarés J, Vilar A, Chamorro J, Felmingham KL, Harrison BJ, Radua J, Soriano-Mas C. Neural predictors of cognitive-behavior therapy outcome in anxiety-related disorders: a meta-analysis of task-based fMRI studies. Psychol Med 2023; 53:3387-3395. [PMID: 35916600 DOI: 10.1017/s0033291721005444] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive-behavior therapy (CBT) is a well-established first-line intervention for anxiety-related disorders, including specific phobia, social anxiety disorder, panic disorder/agoraphobia, generalized anxiety disorder, obsessive-compulsive disorder, and posttraumatic stress disorder. Several neural predictors of CBT outcome for anxiety-related disorders have been proposed, but previous results are inconsistent. METHODS We conducted a systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) studies investigating whole-brain predictors of CBT outcome in anxiety-related disorders (17 studies, n = 442). RESULTS Across different tasks, we observed that brain response in a network of regions involved in salience and interoception processing, encompassing fronto-insular (the right inferior frontal gyrus-anterior insular cortex) and fronto-limbic (the dorsomedial prefrontal cortex-dorsal anterior cingulate cortex) cortices was strongly associated with a positive CBT outcome. CONCLUSIONS Our results suggest that there are robust neural predictors of CBT outcome in anxiety-related disorders that may eventually lead (probably in combination with other data) to develop personalized approaches for the treatment of these mental disorders.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Opticks Security, Barcelona, Spain
| | - Daniel Vega
- Psychiatry and Mental Health Department, Consorci Sanitari de l'Anoia & Fundació Sanitària d'Igualada, Igualada, Barcelona, Spain
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal & Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Ana Vilar
- Institut de Neuropsiquiatria i Addiccions, Hospital de Dia Infanto Juvenil Litoral Mar, Parc de Salut Mar, Barcelona, Spain
| | - Jacobo Chamorro
- Anxiety Unit, Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain
| | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Ben J Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Cognitive Neuroscience of Obsessive-Compulsive Disorder. Psychiatr Clin North Am 2023; 46:53-67. [PMID: 36740355 DOI: 10.1016/j.psc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cognitive neuroscientific research has the ability to yield important insights into the complex neurobiological processes underlying obsessive-compulsive disorder (OCD). This article provides an updated review of neuroimaging studies in seven neurocognitive domains. Findings from the literature are discussed in the context of obsessive-compulsive phenomenology and treatment. Expanding our knowledge of the neural mechanisms involved in OCD could help optimize treatment outcomes and guide the development of novel interventions.
Collapse
|
6
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|