1
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Liu F, Huang S, Guo D, Li X, Han Y. Deep brain stimulation of ventromedial prefrontal cortex reverses depressive-like behaviors via BDNF/TrkB signaling pathway in rats. Life Sci 2023; 334:122222. [PMID: 38084673 DOI: 10.1016/j.lfs.2023.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
AIM Deep brain stimulation (DBS) is currently under investigation as a potential therapeutic approach for managing major depressive disorder (MDD) and ventromedial prefrontal cortex (vmPFC) is recognized as a promising target region. Therefore, the present study aimed to investigate a preclinical paradigm of bilateral vmPFC DBS and examine the molecular mechanisms underlying its antidepressant-like effects using chronic unpredictable stress (CUS) model in rats. MAIN METHODS Male rats were subjected to stereotaxic surgery and deep brain stimulation paradigm in non-stressed and CUS rats respectively, and the therapeutic effect of DBS were assessed by a series of behavioral tests including sucrose preference test, open field test, elevated plus maze test, and forced swim test. The potential involvement of the BDNF/TrkB signaling pathway and its downstream effects in this process were also investigated using western blot. KEY FINDINGS We identified that a stimulation protocol consisting of 130 Hz, 200 μA, 90 μs pulses administered for 5 h per day over a period of 7 days effectively mitigated CUS-induced depressive-like and anxiety-like behaviors in rats. These therapeutic effects were associated with the enhancement of the BDNF/TrkB signaling pathway and its downstream ERK1/2 activity. SIGNIFICANCE These findings provide valuable insights into the potential clinical utility of vmPFC DBS as an approach of improving the symptoms experienced by individuals with MDD. This evidence contributes to our understanding of the neurobiological basis of depression and offers promise for the development of more effective treatments.
Collapse
Affiliation(s)
- Fanglin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dan Guo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Campos ACP, Pople C, Silk E, Surendrakumar S, Rabelo TK, Meng Y, Gouveia FV, Lipsman N, Giacobbe P, Hamani C. Neurochemical mechanisms of deep brain stimulation for depression in animal models. Eur Neuropsychopharmacol 2023; 68:11-26. [PMID: 36640729 DOI: 10.1016/j.euroneuro.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Christopher Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Esther Silk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Flavia Venetucci Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
4
|
Réboli LA, Maciel RM, de Oliveira JC, Moraes MFD, Tilelli CQ, Cota VR. Persistence of neural function in animals submitted to seizure-suppressing scale-free nonperiodic electrical stimulation applied to the amygdala. Behav Brain Res 2022; 426:113843. [PMID: 35304185 DOI: 10.1016/j.bbr.2022.113843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
Based on the rationale that neural hypersynchronization underlies epileptic phenomena, nonperiodic stimulation (NPS) was designed and successfully tested as an electrical stimulus with robust anticonvulsant action. Considering the scale-free temporal structure of NPS mimics natural-like activity, here we hypothesized its application to the amygdala would induce minor to none impairment of neural function in treated animals. Wistar rats underwent gold-standard behavioral tests such as open field (OF), elevated plus-maze (EPM), novel object recognition, and social interaction test in order to evaluate the functions of base-level anxiety, motor function, episodic memory, and sociability. We also performed daily (8 days, 6 h per day) electrophysiological recordings (local field potential/LFP and electromyography) to assess global forebrain dynamics and the sleep-wake cycle architecture and integrity. All animals displayed an increased proportion of time exploring new objects, spent more time in the closed arms of the EPM and in the periphery of the OF arena, with similar numbers of crossing between quadrants and no significant changes of social behaviors. In the sleep-wake cycle electrophysiology experiments, we found no differences regarding duration and proportion of sleep stages and the number of transitions between stages. Finally, the power spectrum of LFP recordings and neurodynamics were also unaltered. We concluded that NPS did not impair neural functions evaluated and thus, it may be safe for clinical studies. Additionally, results corroborate the notion that NPS may exert an on-demand only desynchronization effect by efficiently competing with epileptiform activity for the physiological and healthy recruitment of neural circuitry. Considering the very dynamical nature of circuit activation and functional activity underlying neural function in general (including cognition, processing of emotion, memory acquisition, and sensorimotor integration) and its corruption leading to disorder, such mechanism of action may have important implications in the investigation of neuropsychological phenomena and also in the development of rehabilitation neurotechnology.
Collapse
Affiliation(s)
- Larissa Altoé Réboli
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Federal University of São João Del-Rei. Pça. Frei Orlando, 170 - Centro, São João Del-Rei, MG 36302-357, Brazil
| | - Renato Marciano Maciel
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Federal University of São João Del-Rei. Pça. Frei Orlando, 170 - Centro, São João Del-Rei, MG 36302-357, Brazil; Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Jasiara Carla de Oliveira
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Federal University of São João Del-Rei. Pça. Frei Orlando, 170 - Centro, São João Del-Rei, MG 36302-357, Brazil; UNIPTAN - Centro Universitário Presidente Tancredo de Almeida Neves, Av. Leite de Castro, 1101 - Fábricas, São João Del Rei, MG 36301-182, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Cristiane Queixa Tilelli
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400 - Belvedere, Divinópolis, MG, 35.501-296, Brazil
| | - Vinícius Rosa Cota
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Federal University of São João Del-Rei. Pça. Frei Orlando, 170 - Centro, São João Del-Rei, MG 36302-357, Brazil.
| |
Collapse
|
5
|
Grembecka B, Glac W, Listowska M, Jerzemowska G, Plucińska K, Majkutewicz I, Badtke P, Wrona D. Subthalamic Deep Brain Stimulation Affects Plasma Corticosterone Concentration and Peripheral Immunity Changes in Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2021; 16:454-469. [PMID: 32648088 PMCID: PMC8087570 DOI: 10.1007/s11481-020-09934-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (DBS-STN) is an effective treatment for advanced motor symptoms of Parkinson's disease (PD). Recently, a connection between the limbic part of the STN and side effects of DBS-STN has been increasingly recognized. Animal studies have shown that DBS-STN influences behavior and provokes neurochemical changes in regions of the limbic system. Some of these regions, which are activated during DBS-STN, are involved in neuroimmunomodulation. The therapeutic effects of DBS-STN in PD treatment are clear, but the influence of DBS-STN on peripheral immunity has not been reported so far. In this study, we examined the effects of unilateral DBS-STN applied in male Wistar rats with 6-hydroxydopamine PD model (DBS-6OHDA) and rats without nigral dopamine depletion (DBS) on corticosterone (CORT) plasma concentration, blood natural killer cell cytotoxicity (NKCC), leukocyte numbers, lymphocyte population and apoptosis numbers, plasma interferon gamma (IFN-γ), interleukin 6 (IL-6), and tumor necrosis factor (TNF-α) concentration. The same peripheral immune parameters we measured also in non-stimulated rats with PD model (6OHDA). We observed peripheral immunity changes related to PD model. The NKCC and percentage of T cytotoxic lymphocytes were enhanced, while the level of lymphocyte apoptosis was down regulated in 6OHDA and DBS-6OHDA groups. After DBS-STN (DBS-6OHDA and DBS groups), the plasma CORT and TNF-α were elevated, the number of NK cells and percentage of apoptosis were increased, while the number of B lymphocytes was decreased. We also found, changes in plasma IFN-γ and IL-6 levels in all the groups. These results suggest potential peripheral immunomodulative effects of DBS-STN in the rat model of PD. However, further studies are necessary to explain these findings and their clinical implication. Graphical Abstract Influence of deep brain stimulation of the subthalamic nucleus on peripheral immunity in rat model of Parkinson's disease.
Collapse
Affiliation(s)
- Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland.
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Magdalena Listowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Grażyna Jerzemowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Karolina Plucińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Piotr Badtke
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
| | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| |
Collapse
|
6
|
Vachez YM, Creed MC. Deep Brain Stimulation of the Subthalamic Nucleus Modulates Reward-Related Behavior: A Systematic Review. Front Hum Neurosci 2020; 14:578564. [PMID: 33328933 PMCID: PMC7714911 DOI: 10.3389/fnhum.2020.578564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for the motor symptoms of movement disorders including Parkinson's Disease (PD). Despite its therapeutic benefits, STN-DBS has been associated with adverse effects on mood and cognition. Specifically, apathy, which is defined as a loss of motivation, has been reported to emerge or to worsen following STN-DBS. However, it is often challenging to disentangle the effects of STN-DBS per se from concurrent reduction of dopamine replacement therapy, from underlying PD pathology or from disease progression. To this end, pre-clinical models allow for the dissociation of each of these factors, and to establish neural substrates underlying the emergence of motivational symptoms following STN-DBS. Here, we performed a systematic analysis of rodent studies assessing the effects of STN-DBS on reward seeking, reward motivation and reward consumption across a variety of behavioral paradigms. We find that STN-DBS decreases reward seeking in the majority of experiments, and we outline how design of the behavioral task and DBS parameters can influence experimental outcomes. While an early hypothesis posited that DBS acts as a "functional lesion," an analysis of lesions and inhibition of the STN revealed no consistent pattern on reward-related behavior. Thus, we discuss alternative mechanisms that could contribute to the amotivational effects of STN-DBS. We also argue that optogenetic-assisted circuit dissection could yield important insight into the effects of the STN on motivated behavior in health and disease. Understanding the mechanisms underlying the effects of STN-DBS on motivated behavior-will be critical for optimizing the clinical application of STN-DBS.
Collapse
Affiliation(s)
- Yvan M Vachez
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Meaghan C Creed
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States.,Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Khairuddin S, Ngo FY, Lim WL, Aquili L, Khan NA, Fung ML, Chan YS, Temel Y, Lim LW. A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. J Clin Med 2020; 9:jcm9103260. [PMID: 33053848 PMCID: PMC7601903 DOI: 10.3390/jcm9103260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depression contributes significantly to the global disability burden. Since the first clinical study of deep brain stimulation (DBS), over 446 patients with depression have now undergone this neuromodulation therapy, and 29 animal studies have investigated the efficacy of subgenual cingulate DBS for depression. In this review, we aim to provide a comprehensive overview of the progress of DBS of the subcallosal cingulate in humans and the medial prefrontal cortex, its rodent homolog. For preclinical animal studies, we discuss the various antidepressant-like behaviors induced by medial prefrontal cortex DBS and examine the possible mechanisms including neuroplasticity-dependent/independent cellular and molecular changes. Interestingly, the response rate of subcallosal cingulate Deep brain stimulation marks a milestone in the treatment of depression. DBS achieved response and remission rates of 64–76% and 37–63%, respectively, from clinical studies monitoring patients from 6–24 months. Although some studies showed its stimulation efficacy was limited, it still holds great promise as a therapy for patients with treatment-resistant depression. Overall, further research is still needed, including more credible clinical research, preclinical mechanistic studies, precise selection of patients, and customized electrical stimulation paradigms.
Collapse
Affiliation(s)
- Sharafuddin Khairuddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Fung Yin Ngo
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Wei Ling Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Luca Aquili
- School of Psychological and Clinical Sciences, Charles Darwin University, NT0815 Darwin, Australia;
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, UAE;
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, 6229ER Maastricht, The Netherlands;
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Upadhyayula PS, Rennert RC, Martin JR, Yue JK, Yang J, Gillis-Buck EM, Sidhu N, Cheung CK, Lee AT, Hoshide RR, Ciacci JD. Basal impulses: findings from the last twenty years on impulsivity and reward pathways using deep brain stimulation. J Neurosurg Sci 2020; 64:544-551. [PMID: 32972108 DOI: 10.23736/s0390-5616.20.04906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an important treatment modality for movement disorders. Its role in tasks and processes of higher cortical function continues to increase in importance and relevance. This systematic review investigates the impact of DBS on measures of impulsivity. EVIDENCE ACQUISITION A total of 45 studies were collated from PubMed (30 prospective, 8 animal, 4 questionnaire-based, and 3 computational models), excluding case reports and review articles. Two areas extensively studied are the subthalamic nucleus (STN) and nucleus accumbens (NAc). EVIDENCE SYNTHESIS While both are part of the basal ganglia, the STN and NAc have extensive connections to the prefrontal cortex, cingulate cortex, and limbic system. Therefore, understanding cause and treatment of impulsivity requires understanding motor pathways, learning, memory, and emotional processing. DBS of the STN and NAc shell can increase objective measures of impulsivity, as measured by reaction times or reward-based learning, independent from patient insight. The ability for DBS to treat impulse control disorders, and also cause and/or worsen impulsivity in Parkinson's disease, may be explained by the affected closely-related neuroanatomical areas with discrete and sometimes opposing functions. CONCLUSIONS As newer, more refined DBS technology emerges, large-scale prospective studies specifically aimed at treatment of impulsivity disorders are needed.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Robert C Rennert
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Joel R Martin
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason Yang
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Eva M Gillis-Buck
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nikki Sidhu
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Christopher K Cheung
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anthony T Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Reid R Hoshide
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Joseph D Ciacci
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA -
| |
Collapse
|
9
|
Vachez Y, Carcenac C, Magnard R, Kerkerian‐Le Goff L, Salin P, Savasta M, Carnicella S, Boulet S. Subthalamic Nucleus Stimulation Impairs Motivation: Implication for Apathy in Parkinson's Disease. Mov Disord 2020; 35:616-628. [DOI: 10.1002/mds.27953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yvan Vachez
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Carole Carcenac
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Robin Magnard
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | | | | | - Marc Savasta
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Sebastien Carnicella
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| | - Sabrina Boulet
- Inserm U1216 Grenoble France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN Grenoble France
| |
Collapse
|
10
|
Jakobs M, Pitzer C, Sartorius A, Unterberg A, Kiening K. Acute 5 Hz deep brain stimulation of the lateral habenula is associated with depressive-like behavior in male wild-type Wistar rats. Brain Res 2019; 1721:146283. [PMID: 31170383 DOI: 10.1016/j.brainres.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic high frequency Deep Brain Stimulation (DBS) of the Lateral Habenula (LHb) has been applied in clinical case studies to treat patients with treatment resistant depression. LHb neurons in models of depression were found to have a preferred firing frequency in the theta band. The aim of this study was to determine differential behavioral effects of acute high- and theta band-frequency DBS and whether bilateral DBS electrode insertion may be associated with a lesional effect. METHODS Adult male Wistar rats were implanted with bilateral LHb DBS electrodes and randomly assigned to 100 Hz, 5 Hz or sham stimulation (n = 8 per group). Rats were tested against a control group (n = 8) in a battery of behavioral paradigms. RESULTS No differences between groups were found with regards to locomotor activity in the open field test or anhedonia-like behavior in the novelty suppressed feeding paradigm. 100 Hz stimulation was associated with increased exploratory behavior in the elevated plus maze. In the forced swim test, 5 Hz stimulation was associated with significantly decreased latency to and increased duration of immobility, whereas 100 Hz stimulation significantly increased latency to immobility. No significant behavioral differences between sham stimulation and control group animals were detected. CONCLUSION Acute theta band frequency DBS in the LHb is associated with depressive-like behavior in wild-type male Wistar rats. This was likely not mediated by a general decrease in locomotor activity or a lesional effect after electrode implantation.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Hashtjini MM, Jahromi GP, Sadr SS, Meftahi GH, Hatef B, Javidnazar D. Deep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:370-375. [PMID: 29796219 PMCID: PMC5960752 DOI: 10.22038/ijbms.2018.27482.6705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities. Materials and Methods: Forty Male Wistar rats (220–250 g) were divided into 5 groups (n=8) and underwent stereotactic surgery to implant electrodes in the right basolateral nucleus of the amygdala (BLn). After 7 days, some animals received a foot shock, followed by another 7-day treatment schedule (DBS treatment). Next, freezing behavior was measured as a predicted response in the absence of the foot shock (re-exposure time). Blood serum corticosterone levels and amygdala c-Fos protein expression were assessed using Enzyme-linked immunosorbent assay (ELISA) and Western blot, respectively. Furthermore, freezing behaviors by re-exposure time test and general anxiety by elevated plus-maze (EPM) were evaluated. Results: PTSD decreased serum corticosterone levels and increased both amygdala c-Fos expression and freezing behaviors. Therefore, DBS treatment significantly (P<0.001) enhanced serum corticosterone levels and could significantly (P<0.001) reduce both c-Fos protein expression and freezing behaviors’ duration. However, DBS treatment has no effect on the general anxiety in PTSD rats. Conclusion: We argue that these outcomes might demonstrate the mechanism of DBS treatment, a complete therapeutic strategy, in PTSD patients.
Collapse
Affiliation(s)
- Mina Mokhtari Hashtjini
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Boshra Hatef
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Danial Javidnazar
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 2018; 23:1094-1112. [PMID: 29483673 DOI: 10.1038/mp.2018.2] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Although deep brain stimulation (DBS) is an established treatment choice for Parkinson's disease (PD), essential tremor and movement disorders, its effectiveness for the management of treatment-resistant depression (TRD) remains unclear. Herein, we conducted an integrative review on major neuroanatomical targets of DBS pursued for the treatment of intractable TRD. The aim of this review article is to provide a critical discussion of possible underlying mechanisms for DBS-generated antidepressant effects identified in preclinical studies and clinical trials, and to determine which brain target(s) elicited the most promising outcomes considering acute and maintenance treatment of TRD. Major electronic databases were searched to identify preclinical and clinical studies that have investigated the effects of DBS on depression-related outcomes. Overall, 92 references met inclusion criteria, and have evaluated six unique DBS targets namely the subcallosal cingulate gyrus (SCG), nucleus accumbens (NAc), ventral capsule/ventral striatum or anterior limb of internal capsule (ALIC), medial forebrain bundle (MFB), lateral habenula (LHb) and inferior thalamic peduncle for the treatment of unrelenting TRD. Electrical stimulation of these pertinent brain regions displayed differential effects on mood transition in patients with TRD. In addition, 47 unique references provided preclinical evidence for putative neurobiological mechanisms underlying antidepressant effects of DBS applied to the ventromedial prefrontal cortex, NAc, MFB, LHb and subthalamic nucleus. Preclinical studies suggest that stimulation parameters and neuroanatomical locations could influence DBS-related antidepressant effects, and also pointed that modulatory effects on monoamine neurotransmitters in target regions or interconnected brain networks following DBS could have a role in the antidepressant effects of DBS. Among several neuromodulatory targets that have been investigated, DBS in the neuroanatomical framework of the SCG, ALIC and MFB yielded more consistent antidepressant response rates in samples with TRD. Nevertheless, more well-designed randomized double-blind, controlled trials are warranted to further assess the efficacy, safety and tolerability of these more promising DBS targets for the management of TRD as therapeutic effects have been inconsistent across some controlled studies.
Collapse
Affiliation(s)
- M P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - J C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
13
|
Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Curr Opin Neurobiol 2018. [PMID: 29524847 DOI: 10.1016/j.conb.2018.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuromodulation therapies such as deep brain stimulation or transcranial magnetic stimulation have shown promise in reducing symptoms of addiction when applied to the prefontal cortex, nucleus accumbens or subthalamic nucleus. Pre-clinical investigations implicate modulation of the cortico-basal ganglia network in these therapeutic effects, and this mechanistic understanding is necessary to optimize stimulation paradigms. Recently, the principle that neuromodulation can reverse drug-evoked synaptic plasticity and reduce behavioral symptoms of addiction has inspired novel stimulation paradigms that have long-term effects in animal models. Pre-clinical studies have also raised the possibility that tailoring neuromodulation protocols can modulate distinct symptoms of addiction. Combining mechanistic knowledge of circuit dysfunction with emerging technologies for non-invasive neuromodulation holds promise for developing therapies for addiction and related disorders.
Collapse
Affiliation(s)
- Meaghan Creed
- University of Maryland School of Medicine, Department of Pharmacology, 655 West Baltimore Street, Bressler Research Building, 4-021, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Chagraoui A, Boukhzar L, Thibaut F, Anouar Y, Maltête D. The pathophysiological mechanisms of motivational deficits in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:138-152. [PMID: 29097256 DOI: 10.1016/j.pnpbp.2017.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a progressive degenerative disorder that leads to disabling motor symptoms and a wide variety of neuropsychiatric symptoms. Apathy is the most common psychiatric disorder in the early stages of untreated PD and can be defined as a hypodopaminergic syndrome, which also includes anxiety and depression. Apathy is also considered the core feature of the parkinsonian triad (apathy, anxiety and depression) of behavioural non-motor signs, including a motivational deficit. Moreover, apathy is recognised as a distinct chronic neuropsychiatric behavioural disorder based on specific diagnostic criteria. Given the prevalence of apathy in approximately 40% of the general Parkinson's disease population, this appears to be a contributing factor to dementia in PD; also, apathy symptoms are factors that potentially contribute to morbidity, leading to a major impairment of health-related quality of life, thus stressing the importance of understanding the pathophysiology of this disease. Several studies have clearly established a prominent role for DA-mediated signals in PD apathy. However, synergistic interaction between dopaminergic impairment resulting from the neurodegenerative process and deep brain stimulation of the subthalamic nucleus may cause or exacerbate apathy. Furthermore, serotoninergic mechanism signalling is also likely to be of importance in this pathophysiology.
Collapse
Affiliation(s)
- A Chagraoui
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France.; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - L Boukhzar
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| | - Y Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
| | - D Maltête
- Department of Neurology, Rouen University Hospital, Rouen, France
| |
Collapse
|
15
|
Hamani C, Florence G, Heinsen H, Plantinga BR, Temel Y, Uludag K, Alho E, Teixeira MJ, Amaro E, Fonoff ET. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eNeuro 2017; 4:ENEURO.0140-17.2017. [PMID: 28966978 PMCID: PMC5617209 DOI: 10.1523/eneuro.0140-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, extensive basic and clinical knowledge has been acquired on the use of subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease (PD). It is now clear that mechanisms involved in the effects of this therapy are far more complex than previously anticipated. At frequencies commonly used in clinical practice, neural elements may be excited or inhibited and novel dynamic states of equilibrium are reached. Electrode contacts used for chronic DBS in PD are placed near the dorsal border of the nucleus, a highly cellular region. DBS may thus exert its effects by modulating these cells, hyperdirect projections from motor cortical areas, afferent and efferent fibers to the motor STN. Advancements in neuroimaging techniques may allow us to identify these structures optimizing surgical targeting. In this review, we provide an update on mechanisms and the neural elements modulated by STN DBS.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Neuroimaging, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Gerson Florence
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Helmut Heinsen
- Department of Radiology, University of São Paulo Medical School, São Paulo, Brazil
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Clinic of Würzburg, Würzburg, Germany
| | - Birgit R. Plantinga
- Department of Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kamil Uludag
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Eduardo Alho
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Manoel J. Teixeira
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Erich T. Fonoff
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
16
|
Dandekar MP, Luse D, Hoffmann C, Cotton P, Peery T, Ruiz C, Hussey C, Giridharan VV, Soares JC, Quevedo J, Fenoy AJ. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle. J Affect Disord 2017; 217:80-88. [PMID: 28395208 DOI: 10.1016/j.jad.2017.03.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. METHODS Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). RESULTS Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. LIMITATIONS This study was not performed on an animal model of TRD. CONCLUSION MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Dustin Luse
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Carson Hoffmann
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Patrick Cotton
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Travis Peery
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Christian Ruiz
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA
| | - Caroline Hussey
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Albert J Fenoy
- The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Department of Neurosurgery, Houston, TX, USA.
| |
Collapse
|
17
|
Testing different paradigms to optimize antidepressant deep brain stimulation in different rat models of depression. J Psychiatr Res 2016; 81:36-45. [PMID: 27367210 DOI: 10.1016/j.jpsychires.2016.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/12/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022]
Abstract
Deep brain stimulation (DBS) of several targets induces beneficial responses in approximately 60% of patients suffering from treatment-resistant depression (TRD). The remaining 40% indicate that these stimulation sites do not bear therapeutic relevance for all TRD patients and consequently DBS-targets should be selected according to individual symptom profiles. We here used two animal models of depression known to have different genetic backgrounds and behavioral responses: the therapy-responsive Flinders sensitive line (FSL) and the therapy-refractory congenitally learned helpless rats (cLH) to study symptom-specific DBS effects i) of different brain sites ii) at different stimulation parameters, and iii) at different expressions of the disease. Sham-stimulation/DBS was applied chronic-intermittently or chronic-continuously to either the ventromedial prefrontal cortex (vmPFC, rodent equivalent to subgenual cingulate), nucleus accumbens (Nacc) or subthalamic nucleus (STN), and effects were studied on different depression-associated behaviors, i.e. anhedonia, immobility/behavioral despair and learned helplessness. Biochemical substrates of behaviorally effective versus ineffective DBS were analyzed using in-vivo microdialysis and post-mortem high-performance liquid chromatography (HPLC). We found that i) vmPFC-DBS outperforms Nacc-DBS, ii) STN-DBS increases depressive states, iii) chronic-continuous DBS does not add benefits compared to chronic-intermittent DBS, iv) DBS-efficacy depends on the disease expression modeled and iv) antidepressant DBS is associated with an increase in serotonin turnover alongside site-specific reductions in serotonin contents. The reported limited effectiveness of vmPFC DBS suggests that future research may consider the specific disease expression, investigation of different DBS-targets and alternative parameter settings.
Collapse
|
18
|
Moshe H, Gal R, Barnea-Ygael N, Gulevsky T, Alyagon U, Zangen A. Prelimbic Stimulation Ameliorates Depressive-Like Behaviors and Increases Regional BDNF Expression in a Novel Drug-Resistant Animal Model of Depression. Brain Stimul 2015; 9:243-50. [PMID: 26655599 DOI: 10.1016/j.brs.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/28/2015] [Accepted: 10/23/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Approximately one third of all major depression patients fail to respond to conventional pharmacological antidepressants, and brain stimulation methods pose a promising alternative for this population. Recently, based on repeated multifactorial selective inbreeding of rats for depressive-like behaviors, we introduced a novel animal model for MDD. Rats from this Depressive Rat Line (DRL) exhibit inherent depressive-like behaviors, which are correlated with lower levels of brain-derived neurotrophic factor (BDNF) in specific brain regions. In addition, DRL rats do not respond to antidepressant medication but respond to electroconvulsive treatment, and they can thus be utilized to test the effectiveness of brain stimulation on hereditary, medication-resistant depressive-like behaviors. OBJECTIVE To test the effect of sub-convulsive electrical stimulation (SCES) of the prelimbic cortex, using TMS-like temporal pattern of stimulation, on depressive-like behaviors and regional BDNF levels in DRL rats. METHODS SCES sessions were administered daily for 10 days through chronically implanted electrodes. Temporal stimulation parameters were similar to those used in TMS for major depression in human patients. Depressive-like behaviors were assayed after treatment, followed by brain extraction and regional BDNF measurements. RESULTS SCES normalized both the depressive-like behaviors and the reduced BDNF levels observed in DRL rats. Correlation analyses suggest that changes in specific behaviors are mediated, at least in part, by BDNF expression in reward-related brain regions. CONCLUSIONS Brain stimulation is effective in a drug-resistant, inherited animal model for depression. BDNF alterations in specific regions may mediate different antidepressant effects.
Collapse
Affiliation(s)
- Hagar Moshe
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ram Gal
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Noam Barnea-Ygael
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tatiana Gulevsky
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uri Alyagon
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abraham Zangen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
19
|
Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 2015; 133:27-49. [DOI: 10.1016/j.pneurobio.2015.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 12/19/2022]
|
20
|
High-Frequency Stimulation of the Rat Entopeduncular Nucleus Does Not Provide Functional or Morphological Neuroprotection from 6-Hydroxydopamine. PLoS One 2015. [PMID: 26222442 PMCID: PMC4519335 DOI: 10.1371/journal.pone.0133957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Deep brain stimulation (DBS) is the most common neurosurgical treatment for Parkinson’s disease (PD). Whereas the globus pallidus interna (GPi) has been less commonly targeted than the subthalamic nucleus (STN), a recent clinical trial suggests that GPi DBS may provide better outcomes for patients with psychiatric comorbidities. Several laboratories have demonstrated that DBS of the STN provides neuroprotection of substantia nigra pars compacta (SNpc) dopamine neurons in preclinical neurotoxin models of PD and increases brain-derived neurotrophic factor (BDNF). However, whether DBS of the entopeduncular nucleus (EP), the homologous structure to the GPi in the rat, has similar neuroprotective potential in preclinical models has not been investigated. We investigated the impact of EP DBS on forelimb use asymmetry and SNpc degeneration induced by 6-hydroxydopamine (6-OHDA) and on BDNF levels. EP DBS in male rats received unilateral, intrastriatal 6-OHDA and ACTIVE or INACTIVE stimulation continuously for two weeks. Outcome measures included quantification of contralateral forelimb use, stereological assessment of SNpc neurons and BDNF levels. EP DBS 1) did not ameliorate forelimb impairments induced by 6-OHDA, 2) did not provide neuroprotection for SNpc neurons and 3) did not significantly increase BDNF levels in any of the structures examined. These results are in sharp contrast to the functional improvement, neuroprotection and BDNF-enhancing effects of STN DBS under identical experimental parameters in the rat. The lack of functional response to EP DBS suggests that stimulation of the rat EP may not represent an accurate model of clinical GPi stimulation.
Collapse
|
21
|
Zimnik AJ, Nora GJ, Desmurget M, Turner RS. Movement-related discharge in the macaque globus pallidus during high-frequency stimulation of the subthalamic nucleus. J Neurosci 2015; 35:3978-89. [PMID: 25740526 PMCID: PMC4348192 DOI: 10.1523/jneurosci.4899-14.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an "informational lesion," whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism.
Collapse
Affiliation(s)
- Andrew J Zimnik
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Gerald J Nora
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Michel Desmurget
- Centre for Cognitive Neuroscience, UMR5229, CNRS, 67 Boulevard Pinel 69500 Bron, France
| | - Robert S Turner
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| |
Collapse
|
22
|
Hamani C, Amorim BO, Wheeler AL, Diwan M, Driesslein K, Covolan L, Butson CR, Nobrega JN. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol Dis 2014; 71:205-14. [PMID: 25131446 PMCID: PMC5756089 DOI: 10.1016/j.nbd.2014.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023] Open
Abstract
Recent studies in patients with treatment-resistant depression have shown similar results with the use of deep brain stimulation (DBS) in the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (Acb). As these brain regions are interconnected, one hypothesis is that by stimulating these targets one would just be influencing different relays in the same circuitry. We investigate behavioral, immediate early gene expression, and functional connectivity changes in rats given DBS in homologous regions, namely the ventromedial prefrontal cortex (vmPFC), white matter fibers of the frontal region (WMF) and nucleus accumbens. We found that DBS delivered to the vmPFC, Acb but not WMF induced significant antidepressant-like effects in the FST (31%, 44%, and 17% reduction in immobility compared to controls). Despite these findings, stimulation applied to these three targets induced distinct patterns of regional activity and functional connectivity. While animals given vmPFC DBS had increased cortical zif268 expression, changes after Acb stimulation were primarily observed in subcortical structures. In animals receiving WMF DBS, both cortical and subcortical structures at a distance from the target were influenced by stimulation. In regard to functional connectivity, DBS in all targets decreased intercorrelations among cortical areas. This is in contrast to the clear differences observed in subcortical connectivity, which was reduced after vmPFC DBS but increased in rats receiving Acb or WMF stimulation. In conclusion, results from our study suggest that, despite similar antidepressant-like effects, stimulation of the vmPFC, WMF and Acb induces distinct changes in regional brain activity and functional connectivity.
Collapse
Affiliation(s)
- Clement Hamani
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.
| | - Beatriz O Amorim
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anne L Wheeler
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mustansir Diwan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Klaus Driesslein
- Department of Neurology, Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Luciene Covolan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Christopher R Butson
- Department of Neurology, Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - José N Nobrega
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|