1
|
Laakso I, Nissi J, Kangasmaa O. Vestibular involvement in transcranial electrical stimulation: Body sway as a marker of unintended stimulation. Brain Stimul 2024; 18:34-36. [PMID: 39719171 DOI: 10.1016/j.brs.2024.12.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo 02150, Finland.
| | - Janita Nissi
- Department of Electrical Engineering and Automation, Aalto University, Espoo 02150, Finland
| | - Otto Kangasmaa
- Department of Electrical Engineering and Automation, Aalto University, Espoo 02150, Finland
| |
Collapse
|
2
|
He X, Bao M. Neuroimaging evidence of visual-vestibular interaction accounting for perceptual mislocalization induced by head rotation. NEUROPHOTONICS 2024; 11:015005. [PMID: 38298609 PMCID: PMC10828893 DOI: 10.1117/1.nph.11.1.015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Significance A fleeting flash aligned vertically with an object remaining stationary in the head-centered space would be perceived as lagging behind the object during the observer's horizontal head rotation. This perceptual mislocalization is an illusion named head-rotation-induced flash-lag effect (hFLE). While many studies have investigated the neural mechanism of the classical visual FLE, the hFLE has been hardly investigated. Aim We measured the cortical activity corresponding to the hFLE on participants experiencing passive head rotations using functional near-infrared spectroscopy. Approach Participants were asked to judge the relative position of a flash to a fixed reference while being horizontally rotated or staying static in a swivel chair. Meanwhile, functional near-infrared spectroscopy signals were recorded in temporal-parietal areas. The flash duration was manipulated to provide control conditions. Results Brain activity specific to the hFLE was found around the right middle/inferior temporal gyri, and bilateral supramarginal gyri and superior temporal gyri areas. The activation was positively correlated with the rotation velocity of the participant around the supramarginal gyrus and negatively related to the hFLE intensity around the middle temporal gyrus. Conclusions These results suggest that the mechanism underlying the hFLE involves multiple aspects of visual-vestibular interactions including the processing of multisensory conflicts mediated by the temporoparietal junction and the modulation of vestibular signals on object position perception in the human middle temporal complex.
Collapse
Affiliation(s)
- Xin He
- Chinese Academy of Sciences, Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, China
| | - Min Bao
- Chinese Academy of Sciences, Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
3
|
Rossi S, Cinti A, Viberti F, Benelli A, Neri F, De Monte D, Giannotta A, Romanella S, Smeralda C, Donniacuo A, Prattichizzo D, Pasqualetti P, Santarnecchi E, Mandalà M. Frequency-dependent tuning of the human vestibular "sixth sense" by transcranial oscillatory currents. Clin Neurophysiol 2023; 153:123-132. [PMID: 37481873 DOI: 10.1016/j.clinph.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The vestibular cortex is a multisensory associative region that, in neuroimaging investigations, is activated by slow-frequency (1-2 Hz) galvanic stimulation of peripheral receptors. We aimed to directly activate the vestibular cortex with biophysically modeled transcranial oscillatory current stimulation (tACS) in the same frequency range. METHODS Thirty healthy subjects and one rare patient with chronic bilateral vestibular deafferentation underwent, in a randomized, double-blind, controlled trial, to tACS at slow (1 or 2 Hz) or higher (10 Hz) frequency and sham stimulations, over the Parieto-Insular Vestibular Cortex (PIVC), while standing on a stabilometric platform. Subjective symptoms of motion sickness were scored by Simulator Sickness Questionnaire and subjects' postural sways were monitored on the platform. RESULTS tACS at 1 and 2 Hz induced symptoms of motion sickness, oscillopsia and postural instability, that were supported by posturographic sway recordings. Both 10 Hz-tACS and sham stimulation on the vestibular cortex did not affect vestibular function. As these effects persisted in a rare patient with bilateral peripheral vestibular areflexia documented by the absence of the Vestibular-Ocular Reflex, the possibility of a current spread toward peripheral afferents is unlikely. Conversely, the 10 Hz-tACS significantly reduced his chronic vestibular symptoms in this patient. CONCLUSIONS Weak electrical oscillations in a frequency range corresponding to the physiological cortical activity of the vestibular system may generate motion sickness and postural sways, both in healthy subjects and in the case of bilateral vestibular deafferentation. SIGNIFICANCE This should be taken into account as a new side effect of tACS in future studies addressing cognitive functions. Higher frequencies of stimulation applied to the vestibular cortex may represent a new interventional option to reduce motion sickness in different scenarios.
Collapse
Affiliation(s)
- Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy.
| | - Alessandra Cinti
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesca Viberti
- Otolaryngology, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Alberto Benelli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesco Neri
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy
| | - David De Monte
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Alessandro Giannotta
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Sara Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Carmelo Smeralda
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Aniello Donniacuo
- Otolaryngology, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Domenico Prattichizzo
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy; Siena Robotics and Systems (SiRS) Lab, Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | | | - Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Mandalà
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy; Otolaryngology, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| |
Collapse
|
4
|
Factors influencing clinical outcome in vestibular neuritis - A focussed review and reanalysis of prospective data. J Neurol Sci 2023; 446:120579. [PMID: 36807973 DOI: 10.1016/j.jns.2023.120579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Following vestibular neuritis (VN), long term prognosis is not dependent on the magnitude of the residual peripheral function as measured with either caloric or the video head-impulse test. Rather, recovery is determined by a combination of visuo-vestibular (visual dependence), psychological (anxiety) and vestibular perceptual factors. Our recent research in healthy individuals has also revealed a strong association between the degree of lateralisation of vestibulo-cortical processing and gating of vestibular signals, anxiety and visual dependence. In the context of several functional brain changes occurring in the interaction between visual, vestibular and emotional cortices, which underpin the aforementioned psycho-physiological features in patients with VN, we re-examined our previously published findings focusing on additional factors impacting long term clinical outcome and function. These included: (i) the role of concomitant neuro-otological dysfunction (i.e. migraine and benign paroxysmal positional vertigo (BPPV)) and (ii) the degree to which brain lateralisation of vestibulo-cortical processing influences gating of vestibular function in the acute stage. We found that migraine and BPPV interfere with symptomatic recovery following VN. That is, dizziness handicap at short-term recovery stage was significantly predicted by migraine (r = 0.523, n = 28, p = .002), BPPV (r = 0.658, n = 31, p < .001) and acute visual dependency (r = 0.504, n = 28, p = .003). Moreover, dizziness handicap in the long-term recovery stage continued to be predicted by migraine (r = 0.640, n = 22, p = .001), BPPV (r = 0.626, n = 24, p = .001) and acute visual dependency (r = 0.667, n = 22, p < .001). Furthermore, surrogate measures of vestibulo-cortical lateralisation were predictive of the amount of cortical suppression exerted over vestibular thresholds. That is, in right-sided VN patients, we observed a positive correlation between visual dependence and acute ipsilesional oculomotor thresholds (R2 0.497; p < .001), but not contralateral thresholds (R2 0.017: p > .05). In left-sided VN patients, we observed a negative correlation between visual dependence and ipsilesional oculomotor thresholds (R2 0.459; p < .001), but not for contralateral thresholds (R2 0.013; p > .05). To surmise, our findings illustrate that in VN, neuro-otological co-morbidities retard recovery, and that measures of the peripheral vestibular system are an aggregate of residual function and cortically mediated gating of vestibular input.
Collapse
|
5
|
Unilateral cathodal transcranial direct current stimulation over the parietal area modulates postural control depending with eyes open and closed. PLoS One 2022; 17:e0269145. [PMID: 36137124 PMCID: PMC9499265 DOI: 10.1371/journal.pone.0269145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Cathodal transcranial direct current stimulation (C-tDCS) is generally assumed to inhibit cortical excitability. The parietal cortex contributes to multisensory information processing in the postural control system, and this processing is proposed to be different between the right and left hemispheres and sensory modality. However, previous studies did not clarify whether the effects of unilateral C-tDCS of the parietal cortex on the postural control system differ depending on the hemisphere. We investigated the changes in static postural stability after unilateral C-tDCS of the parietal cortex. Methods Ten healthy right-handed participants were recruited for right- and left-hemisphere tDCS and sham stimulation, respectively. The cathodal electrode was placed on either the right or left parietal area, whereas the anodal electrode was placed over the contralateral orbit. tDCS was applied at 1.5 mA for 15 min. We evaluated static standing balance by measuring the sway path length (SPL), mediolateral sway path length (ML-SPL), anteroposterior sway path length (AP-SPL), sway area, and the SPL per unit area (L/A) after 15-minute C-tDCS under eyes open (EO) and closed (EC) conditions. To evaluate the effects of C-tDCS on pre- and post-offline trials, each parameter was compared using two-way repeated-measures analysis of variance (ANOVA) with factors of intervention and time. A post-hoc evaluation was performed using a paired t-test. The effect sizes were evaluated according to standardized size-effect indices of partial eta-squared (ηp2) and Cohen’s d. The power analysis was calculated (1-β). Results A significant interaction was observed between intervention and time for SPL (F (2, 27) = 4.740, p = 0.017, ηp2 = 0.260), ML-SPL (F (2, 27) = 4.926, p = 0.015, ηp2 = 0.267), and sway area (F (2, 27) = 9.624, p = 0.001, ηp2 = 0.416) in the EO condition. C-tDCS over the right hemisphere significantly increased the SPL (p < 0.01, d = 0.51), ML-SPL (p < 0.01, d = 0.52), and sway area (p < 0.05, d = 0.83) in the EO condition. In contrast, C-tDCS over the left hemisphere significantly increased the L/A in both the EC and EO condition (EO; p < 0.05, d = 0.67, EC; p < 0.05, d = 0.57). Conclusion These results suggest that the right parietal region contributes to static standing balance through chiefly visual information processing during the EO condition. On the other hand, L/A increase during EC and EO by tDCS over the left parietal region depends more on somatosensory information to maintain static standing balance during the EC condition.
Collapse
|
6
|
Arshad Q, Saman Y, Sharif M, Kaski D, Staab JP. Magnitude Estimates Orchestrate Hierarchal Construction of Context-Dependent Representational Maps for Vestibular Space and Time: Theoretical Implications for Functional Dizziness. Front Integr Neurosci 2022; 15:806940. [PMID: 35185485 PMCID: PMC8855482 DOI: 10.3389/fnint.2021.806940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Maintaining balance necessitates an accurate perceptual map of the external world. Neuro-physiological mechanisms of locomotor control, sensory perception, and anxiety systems have been viewed as separate entities that can on occasion affect each other (i.e., walking on ice). Emerging models are more integrated, that envision sensory perception and threat assessment as a fundamental component of balance. Here we present an empirically based theoretical argument that vestibular cortical areas construct magnitude estimates of our environment via neural integration of incoming sensory signals. In turn, these cortically derived magnitude estimates, construct context-dependent vestibulo-spatial and vestibulo-temporal, representational maps of the external world, and ensure an appropriate online scaling factor for associated action-perceptual risk. Thus, threat signals are able to exert continuous influence on planning movements, predicting outcomes of motion of self and surrounding objects, and adjusting tolerances for discrepancies between predicted and actual estimates. Such a process affects the degree of conscious attention directed to spatial and temporal aspects of motion stimuli, implying that maintaining balance may follow a Bayesian approach in which the relative weighting of vestibulo-spatial and vestibulo-temporal signals and tolerance for discrepancies are adjusted in accordance with the level of threat assessment. Here, we seek to mechanistically explain this process with our novel empirical concept of a Brainstem Cortical Scaling Metric (BCSM), which we developed from a series of neurophysiological studies illustrating the central role of interhemispheric vestibulo-cortical asymmetries for balance control. We conclude by using the BCSM to derive theoretical predictions of how a dysfunctional BCSM can mechanistically account for functional dizziness.
Collapse
Affiliation(s)
- Qadeer Arshad
- Neuro-Otology Unit, Department of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
- inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
- Department of Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Yougan Saman
- inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Mishaal Sharif
- inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Diego Kaski
- Department of Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Jeffrey P. Staab
- Departments of Psychiatry and Psychology and Otorhinolaryngology – Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Castro Abarca P, Hussain S, Mohamed OG, Kaski D, Arshad Q, Bronstein AM, Kheradmand A. Visuospatial orientation: Differential effects of head and body positions. Neurosci Lett 2022; 775:136548. [PMID: 35227775 PMCID: PMC8930610 DOI: 10.1016/j.neulet.2022.136548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
Abstract
To orientate in space, the brain must integrate sensory information that encodes the position of the body with the visual cues from the surrounding environment. In this process, the extent of reliance on visual information is known as the visual dependence. Here, we asked whether the relative positions of the head and body can modulate such visual dependence (VD). We used the effect of optokinetic stimulation (30°/s) on subjective visual vertical (SVV) to quantify VD as the average optokinetic-induced SVV bias in clockwise and counter-clockwise directions. The VD bias was measured in eight subjects with a head-on-body tilt (HBT) where only the head was tilted on the body, and also with a whole-body tilt (WBT) where the head and body were tilted together. The VD bias with HBT of 20° was in the same direction of the head tilt position (left tilt VD -1.35 ± 0.1.2°; right VD 1.60 ± 0.9°), whereas the VD bias with WBT of 20° was in a direction away from the body tilt position (left tilt VD 2.5 ± 1.1°; right tilt VD -2.1 ± 0.9°). These findings show differential effects of relative head and body positions on visual cue integration, a process which could facilitate optimal interaction with the surrounding environment for spatial orientation.
Collapse
|
8
|
Sakai H, Harada T, Larroque SK, Demertzi A, Sugawara T, Ito T, Wada Y, Fukunaga M, Sadato N, Laureys S. Left parietal involvement in motion sickness susceptibility revealed by multimodal magnetic resonance imaging. Hum Brain Mapp 2021; 43:1103-1111. [PMID: 34783415 PMCID: PMC8764490 DOI: 10.1002/hbm.25710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/08/2022] Open
Abstract
Susceptibility to motion sickness varies greatly across individuals. However, the neural mechanisms underlying this susceptibility remain largely unclear. To address this gap, the current study aimed to identify the neural correlates of motion sickness susceptibility using multimodal MRI. First, we compared resting-state functional connectivity between healthy individuals who were highly susceptible to motion sickness (N = 36) and age/sex-matched controls who showed low susceptibility (N = 36). Seed-based analysis revealed between-group differences in functional connectivity of core vestibular regions in the left posterior Sylvian fissure. A data-driven approach using intrinsic connectivity contrast found greater network centrality of the left intraparietal sulcus in high- rather than in low-susceptible individuals. Moreover, exploratory structural connectivity analysis uncovered an association between motion sickness susceptibility and white matter integrity in the left inferior fronto-occipital fasciculus. Taken together, our data indicate left parietal involvement in motion sickness susceptibility.
Collapse
Affiliation(s)
| | | | - Stephen K Larroque
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Taeko Ito
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Yoshiro Wada
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
McCarthy J, Castro P, Cottier R, Buttell J, Arshad Q, Kheradmand A, Kaski D. Multisensory contribution in visuospatial orientation: an interaction between neck and trunk proprioception. Exp Brain Res 2021; 239:2501-2508. [PMID: 34120203 PMCID: PMC8354892 DOI: 10.1007/s00221-021-06146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/29/2021] [Indexed: 10/28/2022]
Abstract
A coherent perception of spatial orientation is key in maintaining postural control. To achieve this the brain must access sensory inputs encoding both the body and the head position and integrate them with incoming visual information. Here we isolated the contribution of proprioception to verticality perception and further investigated whether changing the body position without moving the head can modulate visual dependence-the extent to which an individual relies on visual cues for spatial orientation. Spatial orientation was measured in ten healthy individuals [6 female; 25-47 years (SD 7.8 years)] using a virtual reality based subjective visual vertical (SVV) task. Individuals aligned an arrow to their perceived gravitational vertical, initially against a static black background (10 trials), and then in other conditions with clockwise and counterclockwise background rotations (each 10 trials). In all conditions, subjects were seated first in the upright position, then with trunk tilted 20° to the right, followed by 20° to the left while the head was always aligned vertically. The SVV error was modulated by the trunk position, and it was greater when the trunk was tilted to the left compared to right or upright trunk positions (p < 0.001). Likewise, background rotation had an effect on SVV errors as these were greater with counterclockwise visual rotation compared to static background and clockwise roll motion (p < 0.001). Our results show that the interaction between neck and trunk proprioception can modulate how visual inputs affect spatial orientation.
Collapse
Affiliation(s)
- Jason McCarthy
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Patricia Castro
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, London, UK.,Department of Clinical and Movement Neurosciences, Centre for Vestibular and Behavioural Neuroscience, University College London, London, UK.,Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rachael Cottier
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Joseph Buttell
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Qadeer Arshad
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, London, UK.,inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Amir Kheradmand
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, Centre for Vestibular and Behavioural Neuroscience, University College London, London, UK.
| |
Collapse
|
10
|
Dalong G, Jiyuan L, Yubin Z, Yufei Q, Jinghua Y, Cong W, Hongbo J. Cathodal Transcranial Direct Current Stimulation Over the Right Temporoparietal Junction Suppresses Its Functional Connectivity and Reduces Contralateral Spatial and Temporal Perception. Front Neurosci 2021; 15:629331. [PMID: 33679309 PMCID: PMC7925883 DOI: 10.3389/fnins.2021.629331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The temporoparietal junction plays key roles in vestibular function, motor-sensory ability, and attitude stability. Conventional approaches to studying the temporoparietal junction have drawbacks, and previous studies have focused on self-motion rather than on vestibular spatial perception. Using transcranial direct current stimulation, we explored the temporoparietal junction’s effects on vestibular-guided orientation for self-motion and vestibular spatial perception. Twenty participants underwent position, motion, and time tasks, as well as functional magnetic resonance imaging scans. In the position task, cathodal transcranial direct current stimulation yielded a significantly lower response in the −6, −7, −8, −9, −10, −11, and −12 stimulus conditions for leftward rotations (P < 0.05). In the time task, the temporal bias for real transcranial direct current stimulation significantly differed from that for sham stimulation (P < 0.01). Functional magnetic resonance imaging showed that cathodal transcranial direct current stimulation suppressed functional connectivity between the temporoparietal junction, right insular cortex, and right supplementary motor area. Moreover, the change in connectivity between the right temporoparietal junction seed and the right insular cortex was positively correlated with temporal bias under stimulation. The above mentioned results show that cathodal transcranial direct current stimulation induces immediate and extended vestibular effects, which could suppress the functional connectivity of the temporoparietal junction and in turn reduce contralateral spatial and temporal perception. The consistent variation in temporal and spatial bias suggested that the temporoparietal junction may be the cortical temporal integrator for the internal model. Moreover, transcranial direct current stimulation could modulate the integration process and may thus have potential clinical applications in vestibular disorders caused by temporoparietal junction dysfunction.
Collapse
Affiliation(s)
- Guo Dalong
- Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Li Jiyuan
- Beijing Shijitan Hospital, Beijing, China
| | - Zhou Yubin
- Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Qin Yufei
- Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Yang Jinghua
- Department of Basic, Air Force Engineering University, Xi'an, China
| | - Wang Cong
- Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Jia Hongbo
- Air Force Medical Center, Air Force Medical University, Beijing, China
| |
Collapse
|
11
|
Vestibular rehabilitation therapy in combination with transcranial direct current stimulation (tDCS) for treatment of chronic vestibular dysfunction in the elderly: a double-blind randomized controlled trial. Braz J Otorhinolaryngol 2020; 88:758-766. [PMID: 33339758 PMCID: PMC9483938 DOI: 10.1016/j.bjorl.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Dizziness and imbalance are common dysfunctions in the elderly. Vestibular rehabilitation therapy is an effective method to alleviate chronic dizziness in patients with vestibular dysfunction. Transcranial direct current stimulation has reportedly improved balance function in patients with vestibular dysfunction. Objective This study was conducted to investigate the therapeutic efficacy of vestibular rehabilitation combined with transcranial direct current stimulation in elderly patients with vestibular dysfunction. Methods In a double-blinded randomized controlled trial, 36 elderly patients with chronic vestibular dysfunction were randomly assigned to either vestibular rehabilitation and transcranial direct current stimulation (n = 18) or vestibular rehabilitation alone (n = 18) group. The transcranial stimulation protocol consisted of multisession bifrontal electrical stimulation of the dorsolateral prefrontal cortex (2 mA intensity and 20 min duration), followed by rehabilitation exercises. The vestibular rehabilitation protocol consisted of habituation and adaptation exercises combined with gait exercises during a three week period. The primary outcome of this study was the dizziness handicap inventory score, and the secondary outcomes were activities-specific balance confidence and Beck anxiety inventory scores. Results For the dizziness handicap score, the repeated-measures analysis of variance showed a significant main effect of “time”, “stimulation” and stimulation × time interaction effect. There was a significant reduction in the overall dizziness handicap score with “time” for both the groups, which was more pronounced in the vestibular rehabilitation and electrical stimulation group. In terms of activities-specific balance confidence change scores, we found a significant main effect of “time” and “stimulation” main factors, but this effect for stimulation × time interaction was not significant. For the Beck anxiety score, we observed a significant main effect of “time”, but no evidence for the main effect of the “stimulation” factor. Conclusion Bifrontal transcranial direct current stimulation in combination with vestibular rehabilitation therapy is a promising approach to improve chronic vestibular symptoms in the elderly.
Collapse
|
12
|
Ertl M, Boegle R. Investigating the vestibular system using modern imaging techniques-A review on the available stimulation and imaging methods. J Neurosci Methods 2019; 326:108363. [PMID: 31351972 DOI: 10.1016/j.jneumeth.2019.108363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
The vestibular organs, located in the inner ear, sense linear and rotational acceleration of the head and its position relative to the gravitational field of the earth. These signals are essential for many fundamental skills such as the coordination of eye and head movements in the three-dimensional space or the bipedal locomotion of humans. Furthermore, the vestibular signals have been shown to contribute to higher cognitive functions such as navigation. As the main aim of the vestibular system is the sensation of motion it is a challenging system to be studied in combination with modern imaging methods. Over the last years various different methods were used for stimulating the vestibular system. These methods range from artificial approaches like galvanic or caloric vestibular stimulation to passive full body accelerations using hexapod motion platforms, or rotatory chairs. In the first section of this review we provide an overview over all methods used in vestibular stimulation in combination with imaging methods (fMRI, PET, E/MEG, fNIRS). The advantages and disadvantages of every method are discussed, and we summarize typical settings and parameters used in previous studies. In the second section the role of the four imaging techniques are discussed in the context of vestibular research and their potential strengths and interactions with the presented stimulation methods are outlined.
Collapse
Affiliation(s)
- Matthias Ertl
- Department of Psychology, University of Bern, Switzerland; Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital (Inselspital) Bern, Switzerland.
| | - Rainer Boegle
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders, IFB-LMU, Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|
13
|
Castro P, Kaski D, Al-Fazly H, Ak D, Oktay L, Bronstein A, Arshad Q. Body sway during postural perturbations is mediated by the degree of vestibulo-cortical dominance. Brain Stimul 2019; 12:1098-1100. [PMID: 31105028 DOI: 10.1016/j.brs.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Patricia Castro
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK; Escuela de Fonoaudiología, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Diego Kaski
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK
| | - Hussein Al-Fazly
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK
| | - Deniz Ak
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK
| | - Liam Oktay
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK
| | - Adolfo Bronstein
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK
| | - Qadeer Arshad
- Academic Department of Neuro-Otology, Division of Brain Sciences, Department of Medicine, Charing Cross Hospital Campus, Imperial College London, London, W6 8RF, UK; Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
14
|
Arshad Q, Ortega MC, Goga U, Lobo R, Siddiqui S, Mediratta S, Bednarczuk NF, Kaski D, Bronstein AM. Interhemispheric control of sensory cue integration and self-motion perception. Neuroscience 2019; 408:378-387. [PMID: 31026563 DOI: 10.1016/j.neuroscience.2019.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
Spatial orientation necessitates the integration of visual and vestibular sensory cues, in-turn facilitating self-motion perception. However, the neural mechanisms underpinning sensory integration remain unknown. Recently we have illustrated that spatial orientation and vestibular thresholds are influenced by interhemispheric asymmetries associated with the posterior parietal cortices (PPC) that predominantly house the vestibulo-cortical network. Given that sensory integration is a prerequisite to both spatial orientation and motion perception, we hypothesized that sensory integration is similarly subject to interhemispheric influences. Accordingly, we explored the relationship between vestibulo-cortical dominance - assessed using a biomarker, the degree of vestibular-nystagmus suppression following transcranial direct current stimulation over the PPC - with visual dependence measures obtained during performance of a sensory integration task (the rod-and-disk task). We observed that the degree of visual dependence was correlated with vestibulo-cortical dominance. Specifically, individuals with greater right hemispheric vestibulo-cortical dominance had reduced visual dependence. We proceeded to assess the significance of such dominance on behavior by correlating measures of visual dependence with self-motion perception in healthy subjects. We observed that right-handed individuals experienced illusionary self-motion (vection) quicker than left-handers and that the degree of vestibular cortical dominance was correlated with the time taken to experience vection, only during conditions that induced interhemispheric conflict. To conclude, we demonstrate that interhemispheric asymmetries associated with vestibulo-cortical processing in the PPC functionally and mechanistically link sensory integration and self-motion perception, facilitating spatial orientation. Our findings highlight the importance of dynamic interhemispheric competition upon control of vestibular behavior in humans.
Collapse
Affiliation(s)
- Qadeer Arshad
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK; Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Marta Casanovas Ortega
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| | - Usman Goga
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| | - Rhannon Lobo
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| | - Shuaib Siddiqui
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| | - Saniya Mediratta
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| | - Nadja F Bednarczuk
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| | - Diego Kaski
- Department of Neuro-otology, Royal National Throat Nose and Ear Hospital, University College London, London, WC1X 8DA, UK
| | - Adolfo M Bronstein
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
| |
Collapse
|
15
|
Edwards AE, Guven O, Furman MD, Arshad Q, Bronstein AM. Electroencephalographic Correlates of Continuous Postural Tasks of Increasing Difficulty. Neuroscience 2018; 395:35-48. [DOI: 10.1016/j.neuroscience.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
|
16
|
Winnick A, Sadeghpour S, Otero-Millan J, Chang TP, Kheradmand A. Errors of Upright Perception in Patients With Vestibular Migraine. Front Neurol 2018; 9:892. [PMID: 30425678 PMCID: PMC6218433 DOI: 10.3389/fneur.2018.00892] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with vestibular migraine (VM) often report dizziness with changes in the head or body position. Such symptoms raise the possibility of dysfunction in neural mechanisms underlying spatial orientation in these patients. Here we addressed this issue by investigating the effect of static head tilts on errors of upright perception in a group of 27 VM patients in comparison with a group of 27 healthy controls. Perception of upright was measured in a dark room using a subjective visual vertical (SVV) paradigm at three head tilt positions (upright, ±20°). VM patients were also surveyed about the quality of their dizziness and spatial symptoms during daily activities. In the upright head position, SVV errors were within the normal range for VM patients and healthy controls (within 2° from true vertical). During the static head tilts of 20° to the right, VM patients showed larger SVV errors consistent with overestimation of the tilt magnitude (i.e., as if they felt further tilted toward the right side) (VM: −3.21° ± 0.93 vs. Control: 0.52° ± 0.70; p = 0.002). During the head tilt to the left, SVV errors in VM patients did not differ significantly from controls (VM: 0.77° ± 1.05 vs. Control: −0.04° ± 0.68; p = 0.52). There was no significant difference in SVV precision between the VM patients and healthy controls at any head tilt position. Consistent with the direction of the SVV errors in VM patients, they largely reported spatial symptoms toward the right side. These findings suggest an abnormal sensory integration for spatial orientation in vestibular migraine, related to daily dizziness in these patients.
Collapse
Affiliation(s)
- Ariel Winnick
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shirin Sadeghpour
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jorge Otero-Millan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tzu-Pu Chang
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Neuro-medical Scientific Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,Department of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Amir Kheradmand
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Bednarczuk NF, Casanovas Ortega M, Fluri AS, Arshad Q. Vestibulo-cortical hemispheric dominance: The link between anxiety and the vestibular system? Eur J Neurosci 2018; 47:1517-1524. [PMID: 29768682 PMCID: PMC6099323 DOI: 10.1111/ejn.13948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 11/29/2022]
Abstract
Vestibular processing and anxiety networks are functionally intertwined, as demonstrated by reports of reciprocal influences upon each other. Yet whether there is an underlying link between these two systems remains unknown. Previous findings have highlighted the involvement of hemispheric lateralisation in processing of both anxiety and vestibular signals. Accordingly, we explored the interaction between vestibular cortical processing and anxiety by assessing the relationship between anxiety levels and the degree of hemispheric lateralisation of vestibulo-cortical processing in 64 right-handed, healthy individuals. Vestibulo-cortical hemispheric lateralisation was determined by gaging the degree of caloric-induced nystagmus suppression following modulation of cortical excitability using trans-cranial direct current stimulation targeted over the posterior parietal cortex, an area implicated in the processing of vestibular signals. The degree of nystagmus suppression yields an objective biomarker, allowing the quantification of the degree of right vestibulo-cortical hemisphere dominance. Anxiety levels were quantified using the Trait component of the Spielberger State-Trait Anxiety Questionnaire. Our findings demonstrate that the degree of an individual's vestibulo-cortical hemispheric dominance correlates with their anxiety levels. That is, those individuals with greater right hemispheric vestibulo-cortical dominance exhibited lower levels of anxiety. By extension, our results support the notion that hemispheric lateralisation determines an individual's emotional processing, thereby linking cortical circuits involved in processing anxiety and vestibular signals, respectively.
Collapse
Affiliation(s)
- Nadja F Bednarczuk
- Division of Brain Sciences, Academic Department of Neuro-Otology, Department of Medicine, Imperial College London, London, UK
| | - Marta Casanovas Ortega
- Division of Brain Sciences, Academic Department of Neuro-Otology, Department of Medicine, Imperial College London, London, UK
| | - Anne-Sophie Fluri
- Division of Brain Sciences, Academic Department of Neuro-Otology, Department of Medicine, Imperial College London, London, UK
| | - Qadeer Arshad
- Division of Brain Sciences, Academic Department of Neuro-Otology, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Arshad Q, Nigmatullina Y, Siddiqui S, Franka M, Mediratta S, Ramachandaran S, Lobo R, Malhotra PA, Roberts RE, Bronstein AM. Influence of biases in numerical magnitude allocation on human prosocial decision making. J Neurophysiol 2017; 118:3007-3013. [PMID: 28904100 DOI: 10.1152/jn.00372.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022] Open
Abstract
Over the past decade neuroscientific research has attempted to probe the neurobiological underpinnings of human prosocial decision making. Such research has almost ubiquitously employed tasks such as the dictator game or similar variations (i.e., ultimatum game). Considering the explicit numerical nature of such tasks, it is surprising that the influence of numerical cognition on decision making during task performance remains unknown. While performing these tasks, participants typically tend to anchor on a 50:50 split that necessitates an explicit numerical judgement (i.e., number-pair bisection). Accordingly, we hypothesize that the decision-making process during the dictator game recruits overlapping cognitive processes to those known to be engaged during number-pair bisection. We observed that biases in numerical magnitude allocation correlated with the formulation of decisions during the dictator game. That is, intrinsic biases toward smaller numerical magnitudes were associated with the formulation of less favorable decisions, whereas biases toward larger magnitudes were associated with more favorable choices. We proceeded to corroborate this relationship by subliminally and systematically inducing biases in numerical magnitude toward either higher or lower numbers using a visuo-vestibular stimulation paradigm. Such subliminal alterations in numerical magnitude allocation led to proportional and corresponding changes to an individual's decision making during the dictator game. Critically, no relationship was observed between neither intrinsic nor induced biases in numerical magnitude on decision making when assessed using a nonnumerical-based prosocial questionnaire. Our findings demonstrate numerical influences on decisions formulated during the dictator game and highlight the necessity to control for confounds associated with numerical cognition in human decision-making paradigms.NEW & NOTEWORTHY We demonstrate that intrinsic biases in numerical magnitude can directly predict the amount of money donated by an individual to an anonymous stranger during the dictator game. Furthermore, subliminally inducing perceptual biases in numerical-magnitude allocation can actively drive prosocial choices in the corresponding direction. Our findings provide evidence for numerical influences on decision making during performance of the dictator game. Accordingly, without the implementation of an adequate control for numerical influences, the dictator game and other tasks with an inherent numerical component (i.e., ultimatum game) should be employed with caution in the assessment of human behavior.
Collapse
Affiliation(s)
- Qadeer Arshad
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Yuliya Nigmatullina
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Shuaib Siddiqui
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Mustafa Franka
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Saniya Mediratta
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Sanjeev Ramachandaran
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Rhannon Lobo
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Paresh A Malhotra
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - R E Roberts
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| | - Adolfo M Bronstein
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, Fulham, London, United Kingdom
| |
Collapse
|
19
|
Bednarczuk NF, Casanovas Ortega M, Fluri AS, Bronstein AM, Arshad Q. Inter-hemispheric control of vestibular thresholds. Brain Stimul 2017; 10:988-991. [DOI: 10.1016/j.brs.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022] Open
|
20
|
Arshad Q. Dynamic interhemispheric competition and vestibulo-cortical control in humans; A theoretical proposition. Neuroscience 2017; 353:26-41. [DOI: 10.1016/j.neuroscience.2017.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
21
|
Gerretsen P, Pothier DD, Falls C, Armstrong M, Balakumar T, Uchida H, Mamo DC, Pollock BG, Graff-Guerrero A. Vestibular stimulation improves insight into illness in schizophrenia spectrum disorders. Psychiatry Res 2017; 251:333-341. [PMID: 28237912 PMCID: PMC5720160 DOI: 10.1016/j.psychres.2017.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022]
Abstract
Impaired insight into illness (IMP-INS) is common among individuals with schizophrenia spectrum disorders (SSD), contributing to medication nonadherence and poor clinical outcomes. Caloric vestibular simulation (CVS) is typically used to assess peripheral vestibular system function. Left cold CVS is also a transiently effective treatment for IMP-INS and hemineglect secondary to right brain hemisphere stroke, and possibly for IMP-INS and mood stabilization in patients with SSD. Participants with SSD and moderate-to-severe IMP-INS participated in an exploratory double blind, crossover, randomized controlled study of the effects of CVS on IMP-INS. Participants sequentially received all experimental conditions-left cold (4°C), right cold, and body temperature/sham CVS-in a random order. Repeated measures ANOVA were performed to compare changes in IMP-INS, mood and positive symptom severity pre and 30min post CVS. A significant interaction was found between CVS condition, time, and body temperature nystagmus peak slow phase velocity (PSPV) for IMP-INS, indicating that single session left cold CVS transiently improved IMP-INS while right cold CVS may have worsened IMP-INS, particularly in participants with greater vestibular reactivity (i.e. higher PSPV) to body temperature CVS. The procedure's effectiveness is attributed to stimulation of underactive right hemisphere circuits via vestibular nuclei projections to the contralateral hemisphere.
Collapse
Affiliation(s)
- Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Research Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - David D Pothier
- Department of Otolaryngology - Head and Neck Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Centre for Advanced Hearing and Balance Testing, Toronto General Hospital, Toronto, Ontario, Canada
| | - Carolyn Falls
- Centre for Advanced Hearing and Balance Testing, Toronto General Hospital, Toronto, Ontario, Canada
| | - Maxine Armstrong
- Centre for Advanced Hearing and Balance Testing, Toronto General Hospital, Toronto, Ontario, Canada
| | - Thushanthi Balakumar
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Hiroyuki Uchida
- Geriatric Mental Health Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - David C Mamo
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculties of Medicine and Health Science, University of Malta, Msida, Malta
| | - Bruce G Pollock
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Research Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Research Program, Centre for Addiction & Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Van Ombergen A, Heine L, Jillings S, Roberts RE, Jeurissen B, Van Rompaey V, Mucci V, Vanhecke S, Sijbers J, Vanhevel F, Sunaert S, Bahri MA, Parizel PM, Van de Heyning PH, Laureys S, Wuyts FL. Altered functional brain connectivity in patients with visually induced dizziness. NEUROIMAGE-CLINICAL 2017; 14:538-545. [PMID: 28331800 PMCID: PMC5345975 DOI: 10.1016/j.nicl.2017.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Background Vestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visually induced dizziness (VID). These patients therefore experience dizziness, discomfort, disorientation and postural unsteadiness. The underlying pathophysiology of VID is still poorly understood. Objective The aim of the current explorative study was to gain a first insight in the underlying neural aspects of VID. Methods We included 10 VID patients and 10 healthy matched controls, all of which underwent a resting state fMRI scan session. Changes in functional connectivity were explored by means of the intrinsic connectivity contrast (ICC). Seed-based analysis was subsequently performed in visual and vestibular seeds. Results We found a decreased functional connectivity in the right central operculum (superior temporal gyrus), as well as increased functional connectivity in the occipital pole in VID patients as compared to controls in a hypothesis-free analysis. A weaker functional connectivity between the thalamus and most of the right putamen was measured in VID patients in comparison to controls in a seed-based analysis. Furthermore, also by means of a seed-based analysis, a decreased functional connectivity between the visual associative area and the left parahippocampal gyrus was found in VID patients. Additionally, we found increased functional connectivity between thalamus and occipital and cerebellar areas in the VID patients, as well as between the associative visual cortex and both middle frontal gyrus and precuneus. Conclusions We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment. Visually-induced patients present decreased functional connectivity of vestibular-related brain regions. Visually-induced dizziness patients present increased functional connectivity of visual and cerebellar brain regions. These findings might underlie typically seen symptoms in visually-induced dizziness, i.e. an overreliance on visual cues. This is the first exploratory study investigating the underlying neural aspects of visually-induced dizziness. These preliminary findings should be extended by larger sample sizes and by supplementing rsfMRI with task-based paradigms.
Collapse
|
23
|
Roberts RE, Ahmad H, Arshad Q, Patel M, Dima D, Leech R, Seemungal BM, Sharp DJ, Bronstein AM. Functional neuroimaging of visuo-vestibular interaction. Brain Struct Funct 2016; 222:2329-2343. [PMID: 27942855 PMCID: PMC5504268 DOI: 10.1007/s00429-016-1344-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/19/2016] [Indexed: 12/21/2022]
Abstract
The brain combines visual, vestibular and proprioceptive information to distinguish between self- and world motion. Often these signals are complementary and indicate that the individual is moving or stationary with respect to the surroundings. However, conflicting visual motion and vestibular cues can lead to ambiguous or false sensations of motion. In this study, we used functional magnetic resonance imaging to explore human brain activation when visual and vestibular cues were either complementary or in conflict. We combined a horizontally moving optokinetic stimulus with caloric irrigation of the right ear to produce conditions where the vestibular activation and visual motion indicated the same (congruent) or opposite directions of self-motion (incongruent). Visuo-vestibular conflict was associated with increased activation in a network of brain regions including posterior insular and transverse temporal areas, cerebellar tonsil, cingulate and medial frontal gyri. In the congruent condition, there was increased activation in primary and secondary visual cortex. These findings suggest that when sensory information regarding self-motion is contradictory, there is preferential activation of multisensory vestibular areas to resolve this ambiguity. When cues are congruent, there is a bias towards visual cortical activation. The data support the view that a network of brain areas including the posterior insular cortex may play an important role in integrating and disambiguating visual and vestibular cues.
Collapse
Affiliation(s)
- R E Roberts
- Neuro-otology Unit, Division of Brain Sciences, Charing Cross Hospital, Imperial College London, London, UK.
| | - H Ahmad
- Neuro-otology Unit, Division of Brain Sciences, Charing Cross Hospital, Imperial College London, London, UK
| | - Q Arshad
- Neuro-otology Unit, Division of Brain Sciences, Charing Cross Hospital, Imperial College London, London, UK
| | - M Patel
- Neuro-otology Unit, Division of Brain Sciences, Charing Cross Hospital, Imperial College London, London, UK
| | - D Dima
- Department of Psychology, City, University of London, London, UK.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Leech
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - B M Seemungal
- Neuro-otology Unit, Division of Brain Sciences, Charing Cross Hospital, Imperial College London, London, UK
| | - D J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - A M Bronstein
- Neuro-otology Unit, Division of Brain Sciences, Charing Cross Hospital, Imperial College London, London, UK.
| |
Collapse
|
24
|
Lateralisation of the Vestibular Cortex Is More Pronounced in Left-Handers. Brain Stimul 2016; 9:942-944. [DOI: 10.1016/j.brs.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022] Open
|
25
|
Santos-Pontelli TEG, Rimoli BP, Favoretto DB, Mazin SC, Truong DQ, Leite JP, Pontes-Neto OM, Babyar SR, Reding M, Bikson M, Edwards DJ. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS). PLoS One 2016; 11:e0152331. [PMID: 27031726 PMCID: PMC4816520 DOI: 10.1371/journal.pone.0152331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/11/2016] [Indexed: 11/21/2022] Open
Abstract
Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.
Collapse
Affiliation(s)
- Taiza E G Santos-Pontelli
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Brunna P Rimoli
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Diandra B Favoretto
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Suleimy C Mazin
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Dennis Q Truong
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, New York, United States of America
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Octavio M Pontes-Neto
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Suzanne R Babyar
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Michael Reding
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, New York, United States of America
| | - Dylan J Edwards
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America
| |
Collapse
|
26
|
Arshad Q, Nigmatullina Y, Nigmatullin R, Asavarut P, Goga U, Khan S, Sander K, Siddiqui S, Roberts RE, Cohen Kadosh R, Bronstein AM, Malhotra PA. Bidirectional Modulation of Numerical Magnitude. Cereb Cortex 2016; 26:2311-2324. [PMID: 26879093 PMCID: PMC4830300 DOI: 10.1093/cercor/bhv344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes.
Collapse
Affiliation(s)
- Qadeer Arshad
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | | | - Ramil Nigmatullin
- Institut für Quantenphysik and Centre for Integrated Quantum Science and Technology (IQST), Albert Einstein Allell, Universität Ulm, Ulm D-89069, Germany
| | - Paladd Asavarut
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Usman Goga
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Sarah Khan
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Kaija Sander
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Shuaib Siddiqui
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - R E Roberts
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Oxford University, Oxford 0X1 3UD, UK
| | | | - Paresh A Malhotra
- Division of Brain Sciences, Imperial College London, London W6 8RF, UK
| |
Collapse
|
27
|
Arshad Q, Siddiqui S, Ramachandran S, Goga U, Bonsu A, Patel M, Roberts RE, Nigmatullina Y, Malhotra P, Bronstein AM. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures. Neuroscience 2015; 311:484-9. [PMID: 26518461 PMCID: PMC4674775 DOI: 10.1016/j.neuroscience.2015.10.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
Line bisection predicts V1 excitability. Line bisection predicts degree of VOR modulation. Line bisection correlates with tDCS-mediated vestibular-nystagmus suppression. Degree of nystagmus suppression is a bio-marker of right hemisphere dominance.
Right hemisphere dominance for visuo-spatial attention is characteristically observed in most right-handed individuals. This dominance has been attributed to both an anatomically larger right fronto-parietal network and the existence of asymmetric parietal interhemispheric connections. Previously it has been demonstrated that interhemispheric conflict, which induces left hemisphere inhibition, results in the modulation of both (i) the excitability of the early visual cortex (V1) and (ii) the brainstem-mediated vestibular–ocular reflex (VOR) via top-down control mechanisms. However to date, it remains unknown whether the degree of an individual’s right hemisphere dominance for visuospatial function can influence, (i) the baseline excitability of the visual cortex and (ii) the extent to which the right hemisphere can exert top-down modulation. We directly tested this by correlating line bisection error (or pseudoneglect), taken as a measure of right hemisphere dominance, with both (i) visual cortical excitability measured using phosphene perception elicited via single-pulse occipital trans-cranial magnetic stimulation (TMS) and (ii) the degree of trans-cranial direct current stimulation (tDCS)-mediated VOR suppression, following left hemisphere inhibition. We found that those individuals with greater right hemisphere dominance had a less excitable early visual cortex at baseline and demonstrated a greater degree of vestibular nystagmus suppression following left hemisphere cathodal tDCS. To conclude, our results provide the first demonstration that individual differences in right hemisphere dominance can directly predict both the baseline excitability of low-level brain structures and the degree of top-down modulation exerted over them.
Collapse
Affiliation(s)
- Q Arshad
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - S Siddiqui
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - S Ramachandran
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - U Goga
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - A Bonsu
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - M Patel
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - R E Roberts
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - Y Nigmatullina
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - P Malhotra
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK
| | - A M Bronstein
- Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College, Fulham Palace Road, London W6 8RF, UK.
| |
Collapse
|
28
|
Arshad Q, Cerchiai N, Goga U, Nigmatullina Y, Roberts RE, Casani AP, Golding JF, Gresty MA, Bronstein AM. Electrocortical therapy for motion sickness. Neurology 2015; 85:1257-9. [PMID: 26341870 PMCID: PMC4607597 DOI: 10.1212/wnl.0000000000001989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/14/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qadeer Arshad
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - Niccolo Cerchiai
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - Usman Goga
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - Yuliya Nigmatullina
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - R Ed Roberts
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - Augusto P Casani
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - John F Golding
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - Michael A Gresty
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK
| | - Adolfo M Bronstein
- From Imperial College (Q.A., N.C., U.G., Y.N., R.E.R., M.A.G., A.M.B.), Charing Cross Hospital, London, UK; Otorinolaringoiatria 1 Universitaria (N.C., A.P.C.), Pisa, Italy; and the University of Westminster (J.F.G.), London, UK.
| |
Collapse
|
29
|
Arshad Q, Patel M, Goga U, Nigmatullina Y, Bronstein AM. Role of handedness-related vestibular cortical dominance upon the vestibular-ocular reflex. J Neurol 2015; 262:1069-71. [PMID: 25740663 PMCID: PMC4412832 DOI: 10.1007/s00415-015-7690-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Q Arshad
- Division of Brain Sciences, Academic Department of Neuro-otology, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Road, London, W6 8RF, UK
| | | | | | | | | |
Collapse
|
30
|
A brief review of the clinical anatomy of the vestibular-ocular connections-how much do we know? Eye (Lond) 2014; 29:163-70. [PMID: 25412719 DOI: 10.1038/eye.2014.262] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022] Open
Abstract
The basic connectivity from the vestibular labyrinth to the eye muscles (vestibular ocular reflex, VOR) has been elucidated in the past decade, and we summarise this in graphic format. We also review the concept of 'velocity storage', a brainstem integrator that prolongs vestibular responses. Finally, we present new discoveries of how complex visual stimuli, such as binocular rivalry, influence VOR processing. In contrast to the basic brainstem circuits, cortical vestibular circuits are far from being understood, but parietal-vestibular nuclei projections are likely to be involved.
Collapse
|
31
|
Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. Modulation of human vestibular reflexes with increased postural threat. J Physiol 2014; 592:3671-85. [PMID: 24973412 DOI: 10.1113/jphysiol.2014.270744] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Anxiety and arousal have been shown to facilitate human vestibulo-ocular reflexes, presumably through direct neural connections between the vestibular nuclei and emotional processing areas of the brain. However, the effects of anxiety, fear and arousal on balance-relevant vestibular reflexes are currently unknown. The purpose of this study was to manipulate standing height to determine whether anxiety and fear can modulate the direct relationship between vestibular signals and balance reflexes during stance. Stochastic vestibular stimulation (SVS; 2-25 Hz) was used to evoke ground reaction forces (GRF) while subjects stood in both LOW and HIGH surface height conditions. Two separate experiments were conducted to investigate the SVS-GRF relationship, in terms of coupling (coherence and cumulant density) and gain, in the medio-lateral (ML) and antero-posterior (AP) directions. The short- and medium-latency cumulant density peaks were both significantly increased in the ML and AP directions when standing in HIGH, compared to LOW, conditions. Likewise, coherence was statistically greater between 4.3 Hz and 6.7 Hz in the ML, and between 5.5 and 17.7 Hz in the AP direction. When standing in the HIGH condition, the gain of the SVS-GRF relationship was increased 81% in the ML direction, and 231% in the AP direction. The significant increases in coupling and gain observed in both experiments demonstrate that vestibular-evoked balance responses are augmented in states of height-induced postural threat. These data support the possibility that fear or anxiety-mediated changes to balance control are affected by altered central processing of vestibular information.
Collapse
Affiliation(s)
- Brian C Horslen
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | | | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, Canada International Collaboration for Repair Discoveries, University of British Columbia, Vancouver, Canada Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, Canada Brain Research Centre, University of British Columbia, Vancouver, Canada The Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, Canada International Collaboration for Repair Discoveries, University of British Columbia, Vancouver, Canada Brain Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Arshad Q, Nigmatullina Y, Bhrugubanda V, Asavarut P, Obrocki P, Bronstein AM, Roberts RE. Separate attentional components modulate early visual cortex excitability. Cortex 2013; 49:2938-40. [PMID: 24090998 DOI: 10.1016/j.cortex.2013.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/25/2013] [Accepted: 08/28/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Qadeer Arshad
- Academic Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|