1
|
Ye S, Wang B, Sui H, Xiu M, Wu F. Association between white blood cell counts and the efficacy on cognitive function after rTMS intervention in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:41. [PMID: 40064894 PMCID: PMC11894214 DOI: 10.1038/s41537-025-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
rTMS has shown some effect in improving cognitive functions in patients with schizophrenia. However, these findings were controversial, and specific mechanisms of action and optimal therapeutic parameters still require further investigation. This study aimed to examine predictive biomarkers of the efficacy of rTMS in cognitive improvement in schizophrenia. A secondary analysis of a previous randomized, controlled trial was performed. Fifty-six patients were allocated to the active rTMS and 28 to the sham group. Patients received 6 weeks of treatment and were followed up for 18 weeks. Cognition was assessed and blood biomarkers were measured in all patients. In patients with schizophrenia, there was a significant interaction between time and group on immediate memory. Furthermore, this study found that after controlling for confounders, patients with higher baseline white blood cell (WBC) counts showed less improvement in immediate memory after rTMS than patients with lower WBC counts. Linear regression analysis showed that WBC counts were associated with immediate memory improvement after rTMS treatment. Our results reveal that WBC counts at baseline correlated with the response to rTMS in patients with schizophrenia. Patients with higher baseline WBC counts improved less after rTMS intervention than those with lower WBC counts.
Collapse
Affiliation(s)
- Suzhen Ye
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Heling Sui
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Pagali SR, Kumar R, LeMahieu AM, Basso MR, Boeve BF, Croarkin PE, Geske JR, Hassett LC, Huston J, Kung S, Lundstrom BN, Petersen RC, St Louis EK, Welker KM, Worrell GA, Pascual-Leone A, Lapid MI. Efficacy and safety of transcranial magnetic stimulation on cognition in mild cognitive impairment, Alzheimer's disease, Alzheimer's disease-related dementias, and other cognitive disorders: a systematic review and meta-analysis. Int Psychogeriatr 2024; 36:880-928. [PMID: 38329083 PMCID: PMC11306417 DOI: 10.1017/s1041610224000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN Systematic review, Meta-Analysis. SETTING We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.
Collapse
Affiliation(s)
- Sandeep R Pagali
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MN, USA
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Allison M LeMahieu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michael R Basso
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - John Huston
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MN, USA
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kirk M Welker
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MN, USA
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna, Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Neurology, Harvard Medical School, Cambridge, MA, USA
| | - Maria I Lapid
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Ye S, Guan X, Xiu M, Wu F, Huang Y. Early efficacy of rTMS intervention at week 2 predicts subsequent responses at week 24 in schizophrenia in a randomized controlled trial. Neurotherapeutics 2024; 21:e00392. [PMID: 38944636 PMCID: PMC11579878 DOI: 10.1016/j.neurot.2024.e00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique for modulating cortical activities and improving neural plasticity. Several studies investigated the effects of rTMS, etc., but the results are inconsistent. This study was designed to examine whether rTMS applied on the left dorsolateral prefrontal cortex (l-DLPFC) showed an effect on improving cognitive deficits in SZ and whether the early efficacy could predict efficacy at subsequent follow-ups. Cognitive ability was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) scale at baseline, weeks 2, 6, and 24. We found a significant interaction between time (weeks 0, 2, 6, and 24) and intervention on immediate memory and RBANS total scores (p = 0.02 and p = 0.04), indicating that both 10-Hz and 20-Hz rTMS stimulations had a delayed beneficial effect on immediate memory in SZ. Moreover, we found that 20-Hz rTMS stimulation, but not 10-Hz rTMS improved immediate memory at week 6 compared to the sham group (p = 0.029). More importantly, improvements in immediate memory at week 2 were positively correlated with improvements at week 24 (β = 0.461, t = 3.322, p = 0.002). Our study suggests that active rTMS was beneficial for cognitive deficits in patients with SZ. Furthermore, efficacy at week 2 could predict the subsequent efficacy at 24-week follow-up.
Collapse
Affiliation(s)
- Suzhen Ye
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Xu X, Li F, Liu C, Wang Y, Yang Z, Xie G, Zhang T. Low-frequency repetitive transcranial magnetic stimulation alleviates abnormal behavior in valproic acid rat model of autism through rescuing synaptic plasticity and inhibiting neuroinflammation. Pharmacol Biochem Behav 2024; 240:173788. [PMID: 38734150 DOI: 10.1016/j.pbb.2024.173788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300130 Tianjin, China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Fangjuan Li
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Chunhua Liu
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Yue Wang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Guoming Xie
- Ningbo Medical Center Lihuili Hospital, 315040 Ningbo, Zhejiang, China.
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
5
|
Wang M, Lu S, Hao L, Xia Y, Shi Z, Su L. Placebo effects of repetitive transcranial magnetic stimulation on negative symptoms and cognition in patients with schizophrenia spectrum disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1377257. [PMID: 38863608 PMCID: PMC11165700 DOI: 10.3389/fpsyt.2024.1377257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Background Negative symptoms and cognitive impairments are highly frequent in schizophrenia spectrum disorders (SSD), associated with adverse functional outcomes and quality of life. Repetitive transcranial magnetic stimulation (rTMS) has been considered a promising therapeutic option in SSD. However, placebo effects of rTMS on these symptoms remained unclear. Objective To investigate placebo effects of rTMS on alleviating negative symptoms and cognitive impairment in patients with SSD and to explore potential moderators. Methods We systematically searched five electronic databases up to 15 July 2023. Randomized, double-blind, sham-controlled trials investigating effects of rTMS on negative symptoms or cognition in patients with SSD were included. The pooled placebo effect sizes, represented by Hedges' g, were estimated using the random-effects model. Potential moderators were explored through subgroup analysis and meta-regression. Results Forty-four randomized controlled trials with 961 patients (mean age 37.53 years; 28.1% female) in the sham group were included. Significant low-to-moderate pooled placebo effect sizes were observed for negative symptoms (g=0.44, p<0.001), memory (g=0.31, p=0.010), executive function (g=0.35, p<0.001), working memory (g=0.26, p=0.004), and processing speed (g=0.36, p=0.004). Subgroup analysis indicated that placebo effects were affected by sham stimulation methods, rTMS targeting approaches, and stimulation frequency. Conclusions Placebo effects of rTMS on negative symptoms and cognition in patients with SSD are significant in a small-to-moderate magnitude, which might be mediated by rTMS parameters. Our findings will provide new insights for practitioners to further optimize and establish standardized rTMS protocols for future RCTs tackling cardinal symptoms in SSD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023390138.
Collapse
Affiliation(s)
- Mingqi Wang
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shensen Lu
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Lu Hao
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Yifei Xia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchun Shi
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Lei Su
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| |
Collapse
|
6
|
Csukly G, Orbán-Szigeti B, Suri K, Zsigmond R, Hermán L, Simon V, Kabaji A, Bata B, Hársfalvi P, Vass E, Csibri É, Farkas K, Réthelyi J. Theta-burst rTMS in schizophrenia to ameliorate negative and cognitive symptoms: study protocol for a double-blind, sham-controlled, randomized clinical trial. Trials 2024; 25:269. [PMID: 38632647 PMCID: PMC11025264 DOI: 10.1186/s13063-024-08106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Treatment effects of conventional approaches with antipsychotics or psychosocial interventions are limited when it comes to reducing negative and cognitive symptoms in schizophrenia. While there is emerging clinical evidence that new, augmented protocols based on theta-burst stimulation can increase rTMS efficacy dramatically in depression, data on similar augmented therapies are limited in schizophrenia. The different patterns of network impairments in subjects may underlie that some but not all patients responded to given stimulation locations. METHODS Therefore, we propose an augmented theta-burst stimulation protocol in schizophrenia by stimulating both locations connected to negative symptoms: (1) the left dorsolateral prefrontal cortex (DLPFC), and (2) the vermis of the cerebellum. Ninety subjects with schizophrenia presenting negative symptoms and aging between 18 and 55 years will be randomized to active and sham stimulation in a 1:1 ratio. The TBS parameters we adopted follow the standard TBS protocols, with 3-pulse 50-Hz bursts given every 200 ms (at 5 Hz) and an intensity of 100% active motor threshold. We plan to deliver 1800 stimuli to the left DLPFC and 1800 stimuli to the vermis daily in two 9.5-min blocks for 4 weeks. The primary endpoint is the change in negative symptom severity measured by the Positive and Negative Syndrome Scale (PANSS). Secondary efficacy endpoints are changes in cognitive flexibility, executive functioning, short-term memory, social cognition, and facial emotion recognition. The difference between study groups will be analyzed by a linear mixed model analysis with the difference relative to baseline in efficacy variables as the dependent variable and treatment group, visit, and treatment-by-visit interaction as independent variables. The safety outcome is the number of serious adverse events. DISCUSSION This is a double-blind, sham-controlled, randomized medical device study to assess the efficacy and safety of an augmented theta-burst rTMS treatment in schizophrenia. We hypothesize that social cognition and negative symptoms of patients on active therapy will improve significantly compared to patients on sham treatment. TRIAL REGISTRATION The study protocol is registered at "ClinicalTrials.gov" with the following ID: NCT05100888. All items from the World Health Organization Trial Registration Data Set are registered. Initial release: 10/19/2021.
Collapse
Affiliation(s)
- Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary.
| | - Boglárka Orbán-Szigeti
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Karolin Suri
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Réka Zsigmond
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Levente Hermán
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Viktória Simon
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Anita Kabaji
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Barnabás Bata
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Péter Hársfalvi
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
- BiTrial Clinical Research, Budapest, Hungary
| | - Edit Vass
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Éva Csibri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| | - János Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1083, Hungary
| |
Collapse
|
7
|
Li L, Liu C, Pan W, Wang W, Jin W, Ren Y, Ma X. Repetitive Transcranial Magnetic Stimulation for Working Memory Deficits in Schizophrenia: A Systematic Review of Randomized Controlled Trials. Neuropsychiatr Dis Treat 2024; 20:649-662. [PMID: 38528855 PMCID: PMC10962363 DOI: 10.2147/ndt.s450303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Working memory (WM) deficits are a significant component of neurocognitive impairment in individuals with schizophrenia (SCZ). Two previous meta-analyses, conducted on randomized controlled trials (RCTs), examined the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in addressing WM deficits in individuals diagnosed with SCZ. However, the conclusions drawn from these analyses were inconsistent. Additionally, the commonly used random effects (RE) models might underestimate statistical errors, attributing a significant portion of perceived heterogeneity between studies to variations in study quality. Therefore, this review utilized both RE and quality effects (QE) models to assess relevant RCTs comparing TMS with sham intervention in terms of clinical outcomes. A comprehensive literature search was conducted using PubMed and Scopus databases, resulting in the inclusion of 13 studies for data synthesis. Overall, regardless of whether the RE or QE model was used, eligible RCTs suggested that the TMS and sham groups exhibited comparable therapeutic effects after treatment. The current state of research regarding the use of rTMS as a treatment for WM deficits in patients with SCZ remains in its preliminary phase. Furthermore, concerning the mechanism of action, the activation of brain regions focused on the dorsolateral prefrontal cortex and alterations in gamma oscillations may hold significant relevance in the therapeutic application of rTMS for addressing WM impairments. Finally, we believe that the application of closed-loop neuromodulation may contribute to the optimization of rTMS for WM impairment in patients with SCZ.
Collapse
Affiliation(s)
- Li Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Chaomeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Weigang Pan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Wen Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Wenqing Jin
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Xue F, Wang X, Kong F, Yin T, Wang Y, Shi L, Liu X, Yu H, Liu L, Zhu P, Qi X, Xu X, Hu H, Li S. Effects of bilateral repetitive transcranial magnetic stimulation on prospective memory in patients with schizophrenia: A double-blind randomized controlled clinical trial. Neuropsychopharmacol Rep 2024; 44:97-108. [PMID: 38053478 PMCID: PMC10932802 DOI: 10.1002/npr2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
AIMS To investigate effects of repetitive transcranial magnetic stimulation (rTMS) on the prospective memory (PM) in patients with schizophrenia (SCZ). METHODS Fifty of 71 patients completed this double-blind placebo-controlled randomized trial and compared with 18 healthy controls' (HCs) PM outcomes. Bilateral 20 Hz rTMS to the dorsolateral prefrontal cortex at 90% RMT administered 5 weekdays for 4 weeks for a total of 20 treatments. The Positive and Negative Symptom Scale (PANSS), the Scale for the Assessment of Negative Symptoms (SANS), and PM test were assessed before and after treatment. RESULTS Both Event-based PM (EBPM) and Time-based PM (TBPM) scores at baseline were significantly lower in patients with SCZ than that in HCs. After rTMS treatments, the scores of EBPM in patients with SCZ was significantly improved and had no differences from that in HCs, while the scores of TBPM did not improved. The negative symptom scores on PANSS and the scores of almost all subscales and total scores of SANS were significantly improved in both groups. CONCLUSIONS Our findings indicated that bilateral high-frequency rTMS treatment can alleviate EBPM but not TBPM in patients with SCZ, as well as improve the negative symptoms. SIGNIFICANCE Our results provide one therapeutic option for PM in patients with SCZ.
Collapse
Affiliation(s)
- Fen Xue
- Mental Health Hospital, Dongcheng districtBeijingChaci communityChina
| | - Xin‐Fu Wang
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Fan‐Ni Kong
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence ResearchPeking UniversityBeijingHaidian DistrictChina
| | - Tian‐Lu Yin
- Institute of Medical InformationChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yu‐Hong Wang
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Li‐Da Shi
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Xiao‐Wen Liu
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Hui‐Jing Yu
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Li‐Jun Liu
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Ping Zhu
- Mental Health Hospital, Dongcheng districtBeijingChaci communityChina
| | - Xiao‐Xue Qi
- Mental Health Hospital, Dongcheng districtBeijingChaci communityChina
| | - Xue‐Jing Xu
- College of EducationTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Hong‐Pu Hu
- Institute of Medical InformationChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Su‐Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence ResearchPeking UniversityBeijingHaidian DistrictChina
| |
Collapse
|
9
|
Vergallito A, Gramano B, La Monica K, Giuliani L, Palumbo D, Gesi C, Torriero S. Combining transcranial magnetic stimulation with training to improve social cognition impairment in schizophrenia: a pilot randomized controlled trial. Front Psychol 2024; 15:1308971. [PMID: 38445059 PMCID: PMC10912559 DOI: 10.3389/fpsyg.2024.1308971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Schizophrenia is a severe, chronic mental disorder that profoundly impacts patients' everyday lives. The illness's core features include positive and negative symptoms and cognitive impairments. In particular, deficits in the social cognition domain showed a tighter connection to patients' everyday functioning than the other symptoms. Social remediation interventions have been developed, providing heterogeneous results considering the possibility of generalizing the acquired improvements in patients' daily activities. In this pilot randomized controlled trial, we investigated the feasibility of combining fifteen daily cognitive and social training sessions with non-invasive brain stimulation to boost the effectiveness of the two interventions. We delivered intermittent theta burst stimulation (iTBS) over the left dorsolateral prefrontal cortex (DLPFC). Twenty-one patients were randomized into four groups, varying for the assigned stimulation condition (real vs. sham iTBS) and the type of cognitive intervention (training vs. no training). Clinical symptoms and social cognition tests were administered at five time points, i.e., before and after the treatment, and at three follow-ups at one, three, and six months after the treatments' end. Preliminary data show a trend in improving the competence in managing emotion in participants performing the training. Conversely, no differences were found in pre and post-treatment scores for emotion recognition, theory of mind, and attribution of intentions scores. The iTBS intervention did not induce additional effects on individuals' performance. The methodological approach's novelty and limitations of the present study are discussed.
Collapse
Affiliation(s)
| | - Bianca Gramano
- Department of Mental Health and Addictions, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Kevin La Monica
- Department of Mental Health and Addictions, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Luigi Giuliani
- Department of Psychiatry, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Palumbo
- Department of Psychiatry, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Camilla Gesi
- Department of Mental Health and Addictions, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Sara Torriero
- Department of Mental Health and Addictions, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
10
|
Li X, Dai J, Liu Q, Zhao Z, Zhang X. Efficacy and safety of non-invasive brain stimulation on cognitive function for cognitive impairment associated with schizophrenia: A systematic review and meta-analysis. J Psychiatr Res 2024; 170:174-186. [PMID: 38150769 DOI: 10.1016/j.jpsychires.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Based on existing evidence of the effects of the most commonly used non-invasive brain stimulation (NIBS), which includes transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), we conducted a meta-analysis to investigate the cognitive improvement and safety of NIBS on schizophrenia-related cognitive impairment. PubMed, EMBASE, Cochrane Library, and Web of Science were searched. The Cochrane Risk of Bias tool was used to assess the risk of bias of the included RCTs; Review Manager, version 5.4.1, was used to perform the statistical analysis. Twenty double-blind, randomized, sham-controlled trials involving 997 patients were included. As a result, no significant improvement in cognitive function was observed after NIBS treatment. However, the overall treatment effect of the two main NIBS modes (i.e., rTMS and tDCS) was associated with significantly larger improvements in negative symptoms and good tolerability in patients with schizophrenia compared to sham-controls (SMD = -0.56, 95% CI [-1.03, -0.08], p = 0.02, I2 = 88%). NIBS model and stimulus parameters influenced the effect of NIBS. More favorable effects were observed in patients who received rTMS stimulation (SMD = 0.25, 95% CI [0.01, 0.49], p = 0.04, I2 = 0%) in the left dorsolateral prefrontal cortex with a stimulation intensity of 20 Hz (p = 0.004) for a period longer than 1 month (p < 0.05). Yet, due to the limited number of included studies and heterogeneity in both study design and target population, the results of this analysis need to be interpreted with caution.
Collapse
Affiliation(s)
- Xueyan Li
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China.
| | - Jie Dai
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| | - Qingran Liu
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| | - Zhenying Zhao
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| | - Xiaofeng Zhang
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| |
Collapse
|
11
|
Sun X, Doose J, Faller J, McIntosh JR, Saber GT, Huffman S, Pantazatos SP, Yuan H, Goldman RI, Brown TR, George MS, Sajda P. Increased entrainment and decreased excitability predict efficacious treatment of closed-loop phase-locked rTMS for treatment-resistant depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296751. [PMID: 37873424 PMCID: PMC10593047 DOI: 10.1101/2023.10.09.23296751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved therapy for major depressive disorder (MDD), specifically for patients who have treatment-resistant depression (TRD). However, TMS produces response or remission in about 50% of patients but is ineffective for the other 50%. Limits on efficacy may be due to individual patient variability, but to date, there are no good biomarkers or measures of target engagement. In addition, TMS efficacy is typically not assessed until a six-week treatment ends, precluding the evaluation of intermediate improvements during the treatment duration. Here, we report on results using a closed-loop phase-locked repetitive TMS (rTMS) treatment that synchronizes the delivery of rTMS based on the timing of the pulses relative to a patient's individual electroencephalographic (EEG) prefrontal alpha oscillation informed by functional magnetic resonance imaging (fMRI). We find that, in responders, synchronized delivery of rTMS produces two systematic changes in brain dynamics. The first change is a decrease in global cortical excitability, and the second is an increase in the phase entrainment of cortical dynamics. These two effects predict clinical outcomes in the synchronized treatment group but not in an active-treatment unsynchronized control group. The systematic decrease in excitability and increase in entrainment correlated with treatment efficacy at the endpoint and intermediate weeks during the synchronized treatment. Specifically, we show that weekly tracking of these biomarkers allows for efficacy prediction and potential of dynamic adjustments through a treatment course, improving the overall response rates.
Collapse
|
12
|
Mao J, Fan K, Zhang Y, Wen N, Fang X, Ye X, Chen Y. 10 Hz repetitive transcranial magnetic stimulation (rTMS) may improve cognitive function: An exploratory study of schizophrenia patients with auditory hallucinations. Heliyon 2023; 9:e19912. [PMID: 37809845 PMCID: PMC10559318 DOI: 10.1016/j.heliyon.2023.e19912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives Cognitive impairment in schizophrenia patients with auditory hallucinations is more prominent compared to those without. Our study aimed to investigate the cognitive improvement effects of 10 Hz repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) in schizophrenia with auditory hallucinations. Methods A total of 60 schizophrenic patients with auditory hallucinations in this study were randomly assigned to sham or active group. Both groups received 10 Hz or sham rTMS targeted in left DLPFC for 20 sessions. The Positive and Negative Syndrome Scale (PANSS), the Auditory Hallucination Rating Scale (AHRS), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and the Udvalg for Kliniske Under-sogelser (UKU) side effect scale were used to measure psychiatric symptoms, auditory hallucinations, cognition, and side reaction, respectively. Results Our results indicated that the active group experienced greater improvements in RBANS-total score (P = 0.043) and immediate memory subscale score (P = 0.001). Additionally, the PANSS-total score, negative and positive subscale score were obviously lower in the active group compared to the sham group (all P < 0.050). Furthermore, our study found that the improvement of RBANS-total score was positively associated with the decline of positive factor score, and the improvement of language score in RBANS was positively associated with the reduction in PANSS-total scale, negative and positive subscale score in the real stimulation group (all P < 0.050). Conclusion Our results demonstrated that a four-week intervention of 10 Hz rTMS over the left DLPFC can improve cognition (particularly immediate memory) among schizophrenia patients with auditory hallucinations. Future studies with larger sample size are needful to verify our preliminary findings.
Collapse
Affiliation(s)
- Jiankai Mao
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Kaili Fan
- Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, PR China
| | - Yaoyao Zhang
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, PR China
| | - Na Wen
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, PR China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xiangming Ye
- Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yi Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, PR China
| |
Collapse
|
13
|
Liu JL, Tan ZM, Jiao SJ. Repetitive transcranial magnetic stimulation combined with olanzapine and amisulpride for treatment-refractory schizophrenia. World J Psychiatry 2023; 13:453-460. [PMID: 37547736 PMCID: PMC10401498 DOI: 10.5498/wjp.v13.i7.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/17/2023] Open
Abstract
BACKGROUND Treatment-refractory schizophrenia (TRS), accounting for approximately 30% of all schizophrenia cases, has poor treatment response and prognosis despite treatment with antipsychotic drugs.
AIM To analyze the therapeutic effectiveness of repetitive transcranial magnetic stimulation (rTMS) combined with olanzapine (OLZ) and amisulpride (AMI) for TRS and its influence on the patient’s cognitive function.
METHODS This study enrolled 114 TRS patients who received treatment at the First Affiliated Hospital of Zhengzhou University between July 2019 and July 2022. In addition to the basic OLZ + AMI therapy, 54 cases of the control group (Con group) received modified electroconvulsive therapy, while 60 cases of the research group (Res group) received rTMS. Data on therapeutic effectiveness, safety (incidence of drowsiness, headache, nausea, vomiting, or memory impairment), Positive and Negative Symptom Scale, Montreal Cognitive Assessment Scale, and Schizophrenia Quality of Life Scale were collected from both cohorts for comparative analyses.
RESULTS The Res group elicited a higher overall response rate and better safety profile when compared with the Con group. Additionally, a significant reduction was observed in the post-treatment Positive and Negative Symptom Scale and Schizophrenia Quality of Life Scale scores of the Res group, presenting lower scores than those of the Con group. Furthermore, a significant increase in the Montreal Cognitive Assessment Scale score was reported in the Res group, with higher scores than those of the Con group.
CONCLUSION The treatment of TRS with rTMS and OLZ + AMI is effective and safe. Moreover, it can alleviate the patients’ mental symptoms, improve their cognitive function and quality of life, and has a high clinical application value.
Collapse
Affiliation(s)
- Jin-Ling Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Zhi-Mei Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Shu-Jie Jiao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
14
|
Langenbach BP, Koelkebeck K, Knoch D. Mentalising and depression: a mini-review on behavior, neural substrates, and treatment options. Front Psychiatry 2023; 14:1116306. [PMID: 37398589 PMCID: PMC10308027 DOI: 10.3389/fpsyt.2023.1116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Major depression is one of the most common mental disorders, affecting millions of people around the globe. In recent years, researchers increasingly investigated social cognition in depression and discovered pronounced alterations. A special focus has been put on mentalising or Theory of Mind, the ability to recognize and understand another person's thoughts and feelings. While there is behavioral evidence for deficits in this ability in patients with depression as well as specialized therapeutic interventions, the neuroscientific substrates are only beginning to be understood. In this mini-review, we take a social neuroscience perspective to analyse the importance of altered mentalising in depression and whether it can help to understand the origins and perpetuation of the disorder. We will put a special focus on treatment options and corresponding neural changes to identify relevant paths for future (neuroscientific) research.
Collapse
Affiliation(s)
- Benedikt P. Langenbach
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Essen, Germany
| | - Katja Koelkebeck
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Essen, Germany
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Wang D, Tang L, Xi C, Luo D, Liang Y, Huang Q, Wang Z, Chen J, Zhao X, Zhou H, Wang F, Hu S. Targeted visual cortex stimulation (TVCS): a novel neuro-navigated repetitive transcranial magnetic stimulation mode for improving cognitive function in bipolar disorder. Transl Psychiatry 2023; 13:193. [PMID: 37291106 DOI: 10.1038/s41398-023-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
A more effective and better-tolerated site for repetitive transcranial magnetic stimulation (rTMS) for treating cognitive dysfunction in patients with bipolar disorder (BD) is needed. The primary visual cortex (V1) may represent a suitable site. To investigate the use of the V1, which is functionally linked to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), as a potential site for improving cognitive function in BD. Seed-based functional connectivity (FC) analysis was used to locate targets in the V1 that had significant FC with the DLPFC and ACC. Subjects were randomly assigned to 4 groups, namely, the DLPFC active-sham rTMS (A1), DLPFC sham-active rTMS (A2), ACC active-sham rTMS (B1), and ACC sham-active rTMS groups (B2). The intervention included the rTMS treatment once daily, with five treatments a week for four weeks. The A1 and B1 groups received 10 days of active rTMS treatment followed by 10 days of sham rTMS treatment. The A2 and B2 groups received the opposite. The primary outcomes were changes in the scores of five tests in the THINC-integrated tool (THINC-it) at week 2 (W2) and week 4 (W4). The secondary outcomes were changes in the FC between the DLPFC/ACC and the whole brain at W2 and W4. Of the original 93 patients with BD recruited, 86 were finally included, and 73 finished the trial. Significant interactions between time and intervention type (Active/Sham) were observed in the scores of the accuracy of the Symbol Check in the THINC-it tests at baseline (W0) and W2 in groups B1 and B2 (F = 4.736, p = 0.037) using a repeated-measures analysis of covariance approach. Group B1 scored higher in the accuracy of Symbol Check at W2 compared with W0 (p < 0.001), while the scores of group B2 did not differ significantly between W0 and W2. No significant interactions between time and intervention mode were seen between groups A1 and A2, nor was any within-group significance of FC between DLPFC/ACC and the whole brain observed between baseline (W0) and W2/W4 in any group. One participant in group B1 experienced disease progression after 10 active and 2 sham rTMS sessions. The present study demonstrated that V1, functionally correlated with ACC, is a potentially effective rTMS stimulation target for improving neurocognitive function in BD patients. Further investigation using larger samples is required to confirm the clinical efficacy of TVCS.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, P.R. China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210000, P.R. China
| | - Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Dan Luo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Ward Five of The Third People's Hospital of Jiashan County, Jiaxing, 314000, China
| | - Yin Liang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Taizhou Second People's Hospital, Taizhou, 318000, China
| | - Qi Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Nanchong Psychosomatic Hospital, Nanchong, 637000, China
| | - Zhong Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Xudong Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Huzhou Third municipal hospital, Huzhou, 313000, China
| | - Hetong Zhou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, P.R. China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210000, P.R. China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
16
|
Markiewicz-Gospodarek A, Markiewicz R, Borowski B, Dobrowolska B, Łoza B. Self-Regulatory Neuronal Mechanisms and Long-Term Challenges in Schizophrenia Treatment. Brain Sci 2023; 13:brainsci13040651. [PMID: 37190616 DOI: 10.3390/brainsci13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Schizophrenia is a chronic and relapsing disorder that is characterized not only by delusions and hallucinations but also mainly by the progressive development of cognitive and social deficits. These deficits are related to impaired synaptic plasticity and impaired neurotransmission in the nervous system. Currently, technological innovations and medical advances make it possible to use various self-regulatory methods to improve impaired synaptic plasticity. To evaluate the therapeutic effect of various rehabilitation methods, we reviewed methods that modify synaptic plasticity and improve the cognitive and executive processes of patients with a diagnosis of schizophrenia. PubMed, Scopus, and Google Scholar bibliographic databases were searched with the keywords mentioned below. A total of 555 records were identified. Modern methods of schizophrenia therapy with neuroplastic potential, including neurofeedback, transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, virtual reality therapy, and cognitive remediation therapy, were reviewed and analyzed. Since randomized controlled studies of long-term schizophrenia treatment do not exceed 2-3 years, and the pharmacological treatment itself has an incompletely estimated benefit-risk ratio, treatment methods based on other paradigms, including neuronal self-regulatory and neural plasticity mechanisms, should be considered. Methods available for monitoring neuroplastic effects in vivo (e.g., fMRI, neuropeptides in serum), as well as unfavorable parameters (e.g., features of the metabolic syndrome), enable individualized monitoring of the effectiveness of long-term treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
17
|
Jin Y, Tong J, Huang Y, Shi D, Zhu N, Zhu M, Liu M, Liu H, Sun X. Effectiveness of accelerated intermittent theta burst stimulation for social cognition and negative symptoms among individuals with schizophrenia: A randomized controlled trial. Psychiatry Res 2023; 320:115033. [PMID: 36603383 DOI: 10.1016/j.psychres.2022.115033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Social cognitive and negative symptoms impairment may increase the risk of mental disability in individuals with schizophrenia. However, randomized controlled studies on the effectiveness of accelerated intermittent theta burst stimulation (iTBS) for social cognition and negative symptoms in individuals with schizophrenia are very limited. METHODS A total of 125 individuals with schizophrenia were recruited, 66 of whom were randomly divided into an active iTBS group (n=34) and sham iTBS group (n=32) by stratified sampling. Participants received either active iTBS or sham iTBS targeting the left dorsolateral prefrontal cortex (DLPFC) 20 sessions for 4 weeks under navigation. The Facial Emotion Recognition Test (FERT), Hinting Task (HT), and Positive and Negative Syndrome Scale (PANSS) were measured at baseline, 2 weeks, and 4 weeks. The trial protocol was registered with the Chinese Clinical Trial Registry (ChiCTR2100051984). RESULTS Sixty patients (90.90%) completed the intervention and the 4-week follow-up, including 29 women (43.94%) and 37 men (56.06%) with a mean (SD) age of 47.53 (10.17) years. The primary outcomes showed FERT scores (week 2; 0.27 [95% CI, 0.09 to 0.45]; P< .01; ES 0.14) (week 4; 0.63 [95% CI, 0.45 to 0.80]; P< .001; ES 0.47) and HT scores (week 2; 1.00 [95% CI, -0.02 to 1.98]; P< .05; ES 0.67) (week 4; 2.13 [95% CI, 1.21 to 3.06]; P< .001; ES 0.27) in the active iTBS group were significantly different from those in the sham iTBS group at 2 and 4 weeks of follow-up. The secondary outcome showed that the negative symptom score (-3.43 [95% CI, -4.85 to -2.01]; P< .001; ES 0.29) of the active iTBS group was significantly different from that of the sham iTBS group at the 4th week of follow-up. CONCLUSIONS Accelerated iTBS can effectively ameliorate the social cognition and negative symptoms of individuals with schizophrenia. These results suggest that accelerated iTBS may be a safe and effective neuromodulation technique to improve the overall functional recovery of individuals with schizophrenia, and has a good clinical application prospect.
Collapse
Affiliation(s)
- Ying Jin
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China.
| | - Jie Tong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Ying Huang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Dianhong Shi
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Na Zhu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Minghuan Zhu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Minjia Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Haijun Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xirong Sun
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
18
|
Mandal MK, Habel U, Gur RC. Facial expression-based indicators of schizophrenia: Evidence from recent research. Schizophr Res 2023; 252:335-344. [PMID: 36709656 DOI: 10.1016/j.schres.2023.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Impaired ability to recognize emotion in other's face (decoding) or to express emotion through the face (encoding) are considered critical in schizophrenia. The topic of research draws considerable attention since clinicians rely heavily on the patient's facial expressions for diagnosis and on the patient's ability to understand the clinician's communicative intent. While most researchers argue in favor of a generalized emotion deficit, others indicate an emotion-specific deficit in schizophrenia. An early review (Mandal et al., 1998) indicated a possible breakdown in perception-expression-experience link of emotion; later reviews (Kohler et al., 2010; Chan et al., 2010) pointed to a generalized emotion processing deficit due to perceptual deficits in schizophrenia. The present review (2010-2022) revisits this controversy with 47 published studies (37 decoding, 10 encoding) conducted on 2364 patients in 20 countries. Schizophrenia is characterized by reduced emotion processing ability, especially with negative symptoms and at an acute state of illness. It is however still unclear whether this dysfunction is independent of a generalized face perception deficit or of subjective experience of emotion in schizophrenia.
Collapse
Affiliation(s)
- Manas K Mandal
- Department of Humanities & Social Sciences, Indian Institute of Technology-Kharagpur, India.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany
| | - Ruben C Gur
- Department of Psychiatry, Brain Behavior Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Yamada Y, Inagawa T, Hirabayashi N, Sumiyoshi T. Emotion Recognition Deficits in Psychiatric Disorders as a Target of Non-invasive Neuromodulation: A Systematic Review. Clin EEG Neurosci 2022; 53:506-512. [PMID: 33587001 PMCID: PMC9548945 DOI: 10.1177/1550059421991688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background. Social cognition deficits are a core feature of psychiatric disorders, such as schizophrenia and mood disorder, and deteriorate the functionality of patients. However, no definite strategy has been established to treat social cognition (eg, emotion recognition) impairments in these illnesses. Here, we provide a systematic review of the literature regarding transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) for the treatment of social cognition deficits in individuals with psychiatric disorders. Methods. A literature search was conducted on English articles identified by PubMed, PsycINFO, and Web of Science databases, according to the guidelines of the PRISMA statement. We defined the inclusion criteria as follows: (1) randomized controlled trials (RCTs), (2) targeting patients with psychiatric disorders (included in F20-F39 of the 10th revision of the International Statistical Classification of Diseases and Related Health Problems [ICD-10]), (3) evaluating the effect of tDCS or rTMS, (4) reporting at least one standardized social cognition test. Results. Five papers (3 articles on tDCS and 2 articles on rTMS) met the inclusion criteria which deal with schizophrenia or depression. The significant effects of tDCS or rTMS targeting the left dorsolateral prefrontal cortex on the emotion recognition domain were reported in patients with schizophrenia or depression. In addition, rTMS on the right inferior parietal lobe was shown to ameliorate social perception impairments of schizophrenia. Conclusions. tDCS and rTMS may enhance some domains of social cognition in patients with psychiatric disorders. Further research is warranted to identify optimal parameters to maximize the cognitive benefits of these neuromodulation methods.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention, National Institute of Mental Health, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
20
|
Du XD, Li Z, Yuan N, Yin M, Zhao XL, Lv XL, Zou SY, Zhang J, Zhang GY, Li CW, Pan H, Yang L, Wu SQ, Yue Y, Wu YX, Zhang XY. Delayed improvements in visual memory task performance among chronic schizophrenia patients after high-frequency repetitive transcranial magnetic stimulation. World J Psychiatry 2022; 12:1169-1182. [PMID: 36186505 PMCID: PMC9521529 DOI: 10.5498/wjp.v12.i9.1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cognitive impairments are core characteristics of schizophrenia, but are largely resistant to current treatments. Several recent studies have shown that high-frequency repetitive transcranial magnetic stimulation (rTMS) of the left dor-solateral prefrontal cortex (DLPFC) can reduce negative symptoms and improve certain cognitive deficits in schizophrenia patients. However, results are inconsistent across studies. AIM To examine if high-frequency rTMS of the DLPFC can improve visual memory deficits in patients with schizophrenia. METHODS Forty-seven chronic schizophrenia patients with severe negative symptoms on stable treatment regimens were randomly assigned to receive active rTMS to the DLPFC (n = 25) or sham stimulation (n = 22) on weekdays for four consecutive weeks. Patients performed the pattern recognition memory (PRM) task from the Cambridge Neuropsychological Test Automated Battery at baseline, at the end of rTMS treatment (week 4), and 4 wk after rTMS treatment (week 8). Clinical symptoms were also measured at these same time points using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS). RESULTS There were no significant differences in PRM performance metrics, SANS total score, SANS subscores, PANSS total score, and PANSS subscores between active and sham rTMS groups at the end of the 4-wk treatment period, but PRM performance metrics (percent correct and number correct) and changes in these metrics from baseline were significantly greater in the active rTMS group at week 8 compared to the sham group (all P < 0.05). Active rTMS treatment also significantly reduced SANS score at week 8 compared to sham treatment. Moreover, the improvement in visual memory was correlated with the reduction in negative symptoms at week 8. In contrast, there were no between-group differences in PANSS total score and subscale scores at either week 4 or week 8 (all P > 0.05). CONCLUSION High-frequency transcranial magnetic stimulation improves visual memory and reduces negative symptoms in schizophrenia, but these effects are delayed, potentially due to the requirement for extensive neuroplastic changes within DLPFC networks.
Collapse
Affiliation(s)
- Xiang-Dong Du
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Zhe Li
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Nian Yuan
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Ming Yin
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Xue-Li Zhao
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Xiao-Li Lv
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Si-Yun Zou
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Jun Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Guang-Ya Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Chuan-Wei Li
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Hui Pan
- Department of Psychiatry, Third People’s Hospital of Changshu, Changshu 215501, Jiangsu Province, China
| | - Li Yang
- Department of Psychiatry, Third People’s Hospital of Changshu, Changshu 215501, Jiangsu Province, China
| | - Si-Qi Wu
- School of Psychology and Mental Health, North China University of Science and Technology, Langfang 065201, Hebei Province, China
| | - Yan Yue
- Department of Psychiatry, Medical College of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Yu-Xuan Wu
- Department of Psychiatry, Medical College of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Richey JA, Gracanin D, LaConte S, Lisinski J, Kim I, Coffman M, Antezana L, Carlton CN, Garcia KM, White SW. Neural Mechanisms of Facial Emotion Recognition in Autism: Distinct Roles for Anterior Cingulate and dlPFC. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2022; 51:323-343. [PMID: 35476602 PMCID: PMC9177800 DOI: 10.1080/15374416.2022.2051528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The present study sought to measure and internally validate neural markers of facial emotion recognition (FER) in adolescents and young adults with ASD to inform targeted intervention. METHOD We utilized fMRI to measure patterns of brain activity among individuals with ASD (N = 21) and matched controls (CON; N = 20) 2 s prior to judgments about the identity of six distinct facial emotions (happy, sad, angry, surprised, fearful, disgust). RESULTS Predictive modeling of fMRI data (support vector classification; SVC) identified mechanistic roles for brain regions that forecasted correct and incorrect identification of facial emotion as well as sources of errors over these decisions. BOLD signal activation in bilateral insula, anterior cingulate (ACC) and right dorsolateral prefrontal cortex (dlPFC) preceded accurate FER in both controls and ASD. Predictive modeling utilizing SVC confirmed the utility of ACC in forecasting correct decisions in controls but not ASD, and further indicated that a region within the right dlPFC was the source of a type 1 error signal in ASD (i.e. neural marker reflecting an impending correct judgment followed by an incorrect behavioral response) approximately two seconds prior to emotion judgments during fMRI. CONCLUSIONS ACC forecasted correct decisions only among control participants. Right dlPFC was the source of a false-positive signal immediately prior to an error about the nature of a facial emotion in adolescents and young adults with ASD, potentially consistent with prior work indicating that dlPFC may play a role in attention to and regulation of emotional experience.
Collapse
Affiliation(s)
- John A. Richey
- Department of Psychology, Virginia Tech. 109 Williams Hall, MC0436, Blacksburg, VA 24061
| | - Denis Gracanin
- Department of Computer Science, Virginia Tech. 2202 Kraft Drive, Room 1135, Blacksburg VA 24060
| | - Stephen LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion. 2 Riverside Circle Roanoke, VA 24016
- Department of Biomedical Engineering and Mechanics, Virginia Tech
| | - Jonathan Lisinski
- Fralin Biomedical Research Institute at Virginia Tech Carilion. 2 Riverside Circle Roanoke, VA 24016
| | - Inyoung Kim
- Fralin Biomedical Research Institute at Virginia Tech Carilion. 2 Riverside Circle Roanoke, VA 24016
- Department of Statistics, Hutcheson Hall, RM 406-A Virginia Tech. Blacksburg, VA 24061
| | - Marika Coffman
- Department of Psychology, Virginia Tech. 109 Williams Hall, MC0436, Blacksburg, VA 24061
- Duke University Center for Autism and Brain Development. 2608 Erwin Rd, Suite 300 b
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27701Durham, NC 27705
| | - Ligia Antezana
- Department of Psychology, Virginia Tech. 109 Williams Hall, MC0436, Blacksburg, VA 24061
| | - Corinne N. Carlton
- Department of Psychology, Virginia Tech. 109 Williams Hall, MC0436, Blacksburg, VA 24061
| | - Katelyn M. Garcia
- Department of Psychology, Virginia Tech. 109 Williams Hall, MC0436, Blacksburg, VA 24061
| | - Susan W. White
- Center for Youth Development and Intervention, McMillan Building 101-F, University of Alabama. Tuscaloosa, AL 35487
| |
Collapse
|
22
|
Oliver LD, Hawco C, Viviano JD, Voineskos AN. From the Group to the Individual in Schizophrenia Spectrum Disorders: Biomarkers of Social Cognitive Impairments and Therapeutic Translation. Biol Psychiatry 2022; 91:699-708. [PMID: 34799097 DOI: 10.1016/j.biopsych.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
People with schizophrenia spectrum disorders (SSDs) often experience persistent social cognitive impairments, associated with poor functional outcome. There are currently no approved treatment options for these debilitating symptoms, highlighting the need for novel therapeutic strategies. Work to date has elucidated differential social processes and underlying neural circuitry affected in SSDs, which may be amenable to modulation using neurostimulation. Further, advances in functional connectivity mapping and electric field modeling may be used to identify individualized treatment targets to maximize the impact of brain stimulation on social cognitive networks. Here, we review literature supporting a roadmap for translating functional connectivity biomarker discovery to individualized treatment development for social cognitive impairments in SSDs. First, we outline the relevance of social cognitive impairments in SSDs. We review machine learning approaches for dimensional brain-behavior biomarker discovery, emphasizing the importance of individual differences. We synthesize research showing that brain stimulation techniques, such as repetitive transcranial magnetic stimulation, can be used to target relevant networks. Further, functional connectivity-based individualized targeting may enhance treatment response. We then outline recent approaches to account for neuroanatomical variability and optimize coil positioning to individually maximize target engagement. Overall, the synthesized literature provides support for the utility and feasibility of this translational approach to precision treatment. The proposed roadmap to translate biomarkers of social cognitive impairments to individualized treatment is currently under evaluation in precision-guided trials. Such a translational approach may also be applicable across conditions and generalizable for the development of individualized neurostimulation targeting other behavioral deficits.
Collapse
Affiliation(s)
- Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Joseph D Viviano
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Neuromodulation of facial emotion recognition in health and disease: A systematic review. Neurophysiol Clin 2022; 52:183-201. [DOI: 10.1016/j.neucli.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
|
24
|
Thirthalli J, Mehta UM, Keshav Kumar JK, Tyagi V, Sunder P, Dharmappa A, Govindaraj R, Saini J, Chaturvedi SK, Gangadhar BN. Randomized, sham-controlled trial of transcranial magnetic stimulation augmentation of cognitive remediation in schizophrenia. Schizophr Res 2022; 241:63-65. [PMID: 35086060 DOI: 10.1016/j.schres.2022.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Jagadisha Thirthalli
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India.
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - J K Keshav Kumar
- Department of Clinical Psychology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Vidhi Tyagi
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Poornima Sunder
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Arpitha Dharmappa
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Ramajayam Govindaraj
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neuroradiology and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - S K Chaturvedi
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - B N Gangadhar
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
25
|
Ning Y, Zheng S, Feng S, Zhang B, Jia H. Potential Locations for Non-Invasive Brain Stimulation in Treating Schizophrenia: A Resting-State Functional Connectivity Analysis. Front Neurol 2022; 12:766736. [PMID: 34975725 PMCID: PMC8715096 DOI: 10.3389/fneur.2021.766736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Non-invasive brain stimulation (NIBS) techniques have been widely used for the purpose of improving clinical symptoms of schizophrenia. However, the ambiguous stimulation targets may limit the efficacy of NIBS for schizophrenia. Exploring effective stimulation targets may improve the clinical efficacy of NIBS in schizophrenia. Methods: We first conducted a neurosynth-based meta-analysis of 715 functional magnetic resonance imaging studies to identify schizophrenia-related brain regions as regions of interest. Then, we performed the resting-state functional connectivity analysis in 32 patients with first-episode schizophrenia to find brain surface regions correlated with the regions of interest in three pipelines. Finally, the 10–20 system coordinates corresponding to the brain surface regions were considered as potential targets for NIBS. Results: We identified several potential targets of NIBS, including the bilateral dorsal lateral prefrontal cortex, supplementary motor area, bilateral inferior parietal lobule, temporal pole, medial prefrontal cortex, precuneus, superior and middle temporal gyrus, and superior and middle occipital gyrus. Notably, the 10-20 system location of the bilateral dorsal lateral prefrontal cortex was posterior to F3 (F4), not F3 (F4). Conclusion: Conclusively, our findings suggested that the stimulation locations corresponding to these potential targets might help clinicians optimize the application of NIBS therapy in individuals with schizophrenia.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Binlong Zhang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Brunelin J, Mondino M, Haesebaert J, Attal J, Benoit M, Chupin M, Dollfus S, El-Hage W, Galvao F, Jardri R, Llorca PM, Magaud L, Plaze M, Schott-Pethelaz AM, Suaud-Chagny MF, Szekely D, Fakra E, Poulet E. Examining transcranial random noise stimulation as an add-on treatment for persistent symptoms in schizophrenia (STIM'Zo): a study protocol for a multicentre, double-blind, randomized sham-controlled clinical trial. Trials 2021; 22:964. [PMID: 34963486 PMCID: PMC8715588 DOI: 10.1186/s13063-021-05928-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background One out of three patients with schizophrenia failed to respond adequately to antipsychotics and continue to experience debilitating symptoms such as auditory hallucinations and negative symptoms. The development of additional therapeutic approaches for these persistent symptoms constitutes a major goal for patients. Here, we develop a randomized-controlled trial testing the efficacy of high-frequency transcranial random noise stimulation (hf-tRNS) for the treatment of resistant/persistent symptoms of schizophrenia in patients with various profiles of symptoms, cognitive deficits and illness duration. We also aim to investigate the biological and cognitive effects of hf-tRNS and to identify the predictors of clinical response. Methods In a randomized, double-blind, 2-arm parallel-group, controlled, multicentre study, 144 patients with schizophrenia and persistent symptoms despite the prescription of at least one antipsychotic treatment will be randomly allocated to receive either active (n = 72) or sham (n = 72) hf-tRNS. hf-tRNS (100–500 Hz) will be delivered for 20 min with a current intensity of 2 mA and a 1-mA offset twice a day on 5 consecutive weekdays. The anode will be placed over the left dorsolateral prefrontal cortex and the cathode over the left temporoparietal junction. Patients’ symptoms will be assessed prior to hf-tRNS (baseline), after the 10 sessions, and at 1-, 3- and 6-month follow-up. The primary outcome will be the number of responders defined as a reduction of at least 25% from the baseline scores on the Positive and Negative Syndrome Scale (PANSS) after the 10 sessions. Secondary outcomes will include brain activity and connectivity, source monitoring performances, social cognition, other clinical (including auditory hallucinations) and biological variables, and attitude toward treatment. Discussion The results of this trial will constitute a first step toward establishing the usefulness of hf-tRNS in schizophrenia whatever the stage of the illness and the level of treatment resistance. We hypothesize a long-lasting effect of active hf-tRNS on the severity of schizophrenia symptoms as compared to sham. This trial will also have implications for the use of hf-tRNS as a preventive intervention of relapse in patients with schizophrenia. Trial registration ClinicalTrials.gov NCT02744989. Prospectively registered on 20 April 2016
Collapse
Affiliation(s)
- Jerome Brunelin
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France. .,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France. .,Lyon 1 University, F-69000, Villeurbanne, France. .,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.
| | - Marine Mondino
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France.,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France
| | - Julie Haesebaert
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France.,Research on Healthcare Performance RESHAPE, INSERM U1290, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | - Marie Chupin
- Paris Brain Institute - Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France.,CATI Multicenter Neuroimaging Platform, F-75000, Paris, France
| | | | - Wissam El-Hage
- CHRU de Tours, CIC 1415, INSERM, Tours; UMR 1253, iBrain, Université de Tours, INSERM, F-37044, Tours, France
| | - Filipe Galvao
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France
| | - Renaud Jardri
- University in Lille, INSERM U1172, CHU Lille, Lille Neuroscience & Cognition Research Centre, Plasticity & SubjectivitY (PSY) team, CURE Platform, Lille, France
| | | | - Laurent Magaud
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France
| | - Marion Plaze
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, F-75014, Paris, France.,Université de Paris, F-75005, Paris, France
| | - Anne Marie Schott-Pethelaz
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France.,Research on Healthcare Performance RESHAPE, INSERM U1290, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Marie-Françoise Suaud-Chagny
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France
| | | | - Eric Fakra
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.,CHU de Saint Etienne, F-42000, Saint Etienne, France
| | - Emmanuel Poulet
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France.,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.,Psychiatric emergency service, Hospices civils de Lyon, F-69005, Lyon, France
| |
Collapse
|
27
|
Wu Q, Wang X, Wang Y, Long YJ, Zhao JP, Wu RR. Developments in Biological Mechanisms and Treatments for Negative Symptoms and Cognitive Dysfunction of Schizophrenia. Neurosci Bull 2021; 37:1609-1624. [PMID: 34227057 PMCID: PMC8566616 DOI: 10.1007/s12264-021-00740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
The causal mechanisms and treatment for the negative symptoms and cognitive dysfunction in schizophrenia are the main issues attracting the attention of psychiatrists over the last decade. The first part of this review summarizes the pathogenesis of schizophrenia, especially the negative symptoms and cognitive dysfunction from the perspectives of genetics and epigenetics. The second part describes the novel medications and several advanced physical therapies (e.g., transcranial magnetic stimulation and transcranial direct current stimulation) for the negative symptoms and cognitive dysfunction that will optimize the therapeutic strategy for patients with schizophrenia in future.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ying Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yu-Jun Long
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jing-Ping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Murray T, O'Brien J, Sagiv N, Garrido L. The role of stimulus-based cues and conceptual information in processing facial expressions of emotion. Cortex 2021; 144:109-132. [PMID: 34666297 DOI: 10.1016/j.cortex.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023]
Abstract
Face shape and surface textures are two important cues that aid in the perception of facial expressions of emotion. Additionally, this perception is also influenced by high-level emotion concepts. Across two studies, we use representational similarity analysis to investigate the relative roles of shape, surface, and conceptual information in the perception, categorisation, and neural representation of facial expressions. In Study 1, 50 participants completed a perceptual task designed to measure the perceptual similarity of expression pairs, and a categorical task designed to measure the confusability between expression pairs when assigning emotion labels to a face. We used representational similarity analysis and constructed three models of the similarities between emotions using distinct information. Two models were based on stimulus-based cues (face shapes and surface textures) and one model was based on emotion concepts. Using multiple linear regression, we found that behaviour during both tasks was related with the similarity of emotion concepts. The model based on face shapes was more related with behaviour in the perceptual task than in the categorical, and the model based on surface textures was more related with behaviour in the categorical than the perceptual task. In Study 2, 30 participants viewed facial expressions while undergoing fMRI, allowing for the measurement of brain representational geometries of facial expressions of emotion in three core face-responsive regions (the Fusiform Face Area, Occipital Face Area, and Superior Temporal Sulcus), and a region involved in theory of mind (Medial Prefrontal Cortex). Across all four regions, the representational distances between facial expression pairs were related to the similarities of emotion concepts, but not to either of the stimulus-based cues. Together, these results highlight the important top-down influence of high-level emotion concepts both in behavioural tasks and in the neural representation of facial expressions.
Collapse
Affiliation(s)
- Thomas Murray
- Psychology Department, School of Biological and Behavioural Sciences, Queen Mary University London, United Kingdom.
| | - Justin O'Brien
- Centre for Cognitive Neuroscience, Department of Life Sciences, Brunel University London, United Kingdom
| | - Noam Sagiv
- Centre for Cognitive Neuroscience, Department of Life Sciences, Brunel University London, United Kingdom
| | - Lúcia Garrido
- Department of Psychology, City, University of London, United Kingdom
| |
Collapse
|
29
|
Immediate and cumulative effects of high-frequency repetitive transcranial magnetic stimulation on cognition and neuronal excitability in mice. Neurosci Res 2021; 173:90-98. [PMID: 34111441 DOI: 10.1016/j.neures.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
This study primarily explored the potential effects of high-frequency (20 Hz) repetitive transcranial magnetic stimulation (rTMS) with different intervention protocols on cognition and neuronal excitability in mice. Mice were randomly divided into 4 groups: a control group that received sham stimulation, an rTMS in vitro group whose acute brain slices received high-frequency stimulation, an rTMS 1 d group that received high-frequency stimulation for only 1 d, and an rTMS 15 d group that received high-frequency stimulation for 15 d. The novel object recognition and step-down tests were used to assess cognitive ability. The patch-clamp technique was used to record the membrane potentials and neural discharges of dentate gyrus granule cells to evaluate neuronal excitability. Results revealed that cognition and neuronal excitability in the rTMS 15 d group were significantly increased than that in the control and rTMS 1 d groups. The neuronal excitability in the rTMS in vitro group was also significantly increased than that in the control and rTMS 1 d groups. No significant changes were observed between the control and rTMS 1 d groups. These results suggested that high-frequency rTMS applied to the acute brain slices of mice in vitro exerted an immediate effect on increasing neuronal excitability. Chronic high-frequency rTMS applied to the brain of mice in vivo exerted a cumulative effect in improving cognition and increasing neuronal excitability.
Collapse
|
30
|
Brandt SJ, Oral HY, Arellano-Bravo C, Plawecki MH, Hummer TA, Francis MM. Repetitive Transcranial Magnetic Stimulation as a Therapeutic and Probe in Schizophrenia: Examining the Role of Neuroimaging and Future Directions. Neurotherapeutics 2021; 18:827-844. [PMID: 33844154 PMCID: PMC8423934 DOI: 10.1007/s13311-021-01046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia is a complex condition associated with perceptual disturbances, decreased motivation and affect, and disrupted cognition. Individuals living with schizophrenia may experience myriad poor outcomes, including impairment in independent living and function as well as decreased life expectancy. Though existing treatments may offer benefit, many individuals still experience treatment resistant and disabling symptoms. In light of the negative outcomes associated with schizophrenia and the limitations in currently available treatments, there is a significant need for novel therapeutic interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can modulate the activity of discrete cortical regions, allowing direct manipulation of local brain activation and indirect manipulation of the target's associated neural networks. rTMS has been studied in schizophrenia for the treatment of auditory hallucinations, negative symptoms, and cognitive deficits, with mixed results. The field's inability to arrive at a consensus on the use rTMS in schizophrenia has stemmed from a variety of issues, perhaps most notably the significant heterogeneity amongst existing trials. In addition, it is likely that factors specific to schizophrenia, rather than the rTMS itself, have presented barriers to the interpretation of existing results. However, advances in approaches to rTMS as a biologic probe and therapeutic, many of which include the integration of neuroimaging with rTMS, offer hope that this technology may still play a role in improving the understanding and treatment of schizophrenia.
Collapse
Affiliation(s)
- Stephen J Brandt
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Halimah Y Oral
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Carla Arellano-Bravo
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Martin H Plawecki
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Tom A Hummer
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Michael M Francis
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA.
| |
Collapse
|
31
|
Sciortino D, Pigoni A, Delvecchio G, Maggioni E, Schiena G, Brambilla P. Role of rTMS in the treatment of cognitive impairments in Bipolar Disorder and Schizophrenia: a review of Randomized Controlled Trials. J Affect Disord 2021; 280:148-155. [PMID: 33212406 DOI: 10.1016/j.jad.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) and Bipolar Disorder (BD) are severe psychiatric illnesses often characterized by mild-to-severe cognitive deficits. Since available pharmacotherapy showed poor efficacy in treating these cognitive impairments, new strategies are needed. Repeated Transcranial Magnetic Stimulation (rTMS) represents a safe non-invasive technique that has been hypothesized to improve cognitive symptoms in these pathologies. Therefore, our brief review aims at summarizing the results of Randomized Controlled Trials (RCTs) using rTMS for improving cognitive symptoms in SCZ and BD. METHODS We performed a bibliographic research on PubMed, Google Scholar and Medline of RCTs conducted in patients with BD and SCZ, which evaluated cognitive outcomes after rTMS treatment. RESULTS The inclusion criteria were met by fifteen RCTs, twelve in SCZ and three in BD. Regarding patients with SCZ, the results showed that rTMS seemed to have poor effects on improving cognitive performances, with mixed results also observed for schizoaffective patients. In BD, overall the RCTs showed that rTMS in these patients seemed to improve cognitive domains in euthymic patients, while its effect during acute phases, especially depression, appeared limited. LIMITATIONS Studies employed different rTMS protocols and evaluated different cognitive domains. CONCLUSIONS Although the available evidence from RCTs evaluating the efficacy of rTMS on cognitive deficits in SCZ and BD are still mixed and heterogenous, overall they suggest that rTMS represents a potential clinical tool that could ameliorate cognitive symptoms, especially in specific patients' subtypes. However, standardized protocols and further research are still necessary to evaluate the real efficacy of rTMS.
Collapse
Affiliation(s)
- Domenico Sciortino
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandro Pigoni
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giandomenico Schiena
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
32
|
Wen N, Chen L, Miao X, Zhang M, Zhang Y, Liu J, Xu Y, Tong S, Tang W, Wang M, Liu J, Zhou S, Fang X, Zhao K. Effects of High-Frequency rTMS on Negative Symptoms and Cognitive Function in Hospitalized Patients With Chronic Schizophrenia: A Double-Blind, Sham-Controlled Pilot Trial. Front Psychiatry 2021; 12:736094. [PMID: 34539472 PMCID: PMC8446365 DOI: 10.3389/fpsyt.2021.736094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral pre-frontal cortex (DLPFC) in ameliorating negative symptoms and cognitive impairments in patients with chronic schizophrenia. Fifty-two patients with chronic schizophrenia were randomly assigned to two groups: active rTMS group and sham rTMS group, with existing antipsychotic drugs combined 20 sessions of 10 Hz active/sham rTMS over DLPFC (20 min/session, 5 times/week). The PANSS, RBANS, and SCWT were used to evaluate the clinical symptoms and cognitive functions of the patients. Our results indicated significant improvements in clinical symptoms (PANSS total and subscale scores) and cognitive functions (RBANS total and subscale scores, card 1 and card 3 of the SCWT test) (All p <0.05) after 4-week intervention both in active and sham rTMS group. Moreover, the active rTMS group showed more effective on ameliorating negative symptoms (p = 0.002), immediate memory (p = 0.016) and delayed memory (p = 0.047) compared to the sham group. Interestingly, PANSS negative symptom scores was negatively correlated with RBANS language scores in the real stimulation group (p = 0.046). The study found that the high frequency rTMS stimulation over left DLPFC as a supplement to antipsychotics may have potential benefits in improving clinical symptoms and cognitive functions in patients with chronic schizophrenia.
Collapse
Affiliation(s)
- Na Wen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xuemeng Miao
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Min Zhang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Zhang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yao Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Siyu Tong
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wei Tang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Mengpu Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Siyao Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Fang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ke Zhao
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med 2020; 50:2465-2486. [PMID: 33070785 PMCID: PMC7737055 DOI: 10.1017/s0033291720003670] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognition is commonly affected in brain disorders. Non-invasive brain stimulation (NIBS) may have procognitive effects, with high tolerability. This meta-analysis evaluates the efficacy of transcranial magnetic stimulation (TMS) and transcranial Direct Current Stimulation (tDCS) in improving cognition, in schizophrenia, depression, dementia, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. METHODS A PRISMA systematic search was conducted for randomized controlled trials. Hedges' g was used to quantify effect sizes (ES) for changes in cognition after TMS/tDCS v. sham. As different cognitive functions may have unequal susceptibility to TMS/tDCS, we separately evaluated the effects on: attention/vigilance, working memory, executive functioning, processing speed, verbal fluency, verbal learning, and social cognition. RESULTS We included 82 studies (n = 2784). For working memory, both TMS (ES = 0.17, p = 0.015) and tDCS (ES = 0.17, p = 0.021) showed small but significant effects. Age positively moderated the effect of TMS. TDCS was superior to sham for attention/vigilance (ES = 0.20, p = 0.020). These significant effects did not differ across the type of brain disorder. Results were not significant for the other five cognitive domains. CONCLUSIONS Our results revealed that both TMS and tDCS elicit a small trans-diagnostic effect on working memory, tDCS also improved attention/vigilance across diagnoses. Effects on the other domains were not significant. Observed ES were small, yet even slight cognitive improvements may facilitate daily functioning. While NIBS can be a well-tolerated treatment, its effects appear domain specific and should be applied only for realistic indications (i.e. to induce a small improvement in working memory or attention).
Collapse
Affiliation(s)
- Marieke J. Begemann
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bodyl A. Brand
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris E. Sommer
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Influence of theta-burst transcranial magnetic stimulation over the dorsolateral prefrontal cortex on emotion processing in healthy volunteers. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1278-1293. [PMID: 33000366 PMCID: PMC7716858 DOI: 10.3758/s13415-020-00834-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Repetitive transcranial magnetic stimulation is a potential treatment option for depression, with the newer intermittent theta-burst stimulation (iTBS) protocols providing brief intervention. However, their mechanism of action remains unclear. We investigated the hypothesis that iTBS influences brain circuits involved in emotion processing that are also affected by antidepressants. We predicted that iTBS would lead to changes in performance on emotion-processing tasks. We investigated the effects of intermittent TBS (iTBS) over the left dorsolateral prefrontal cortex (DLPFC) on the processing of emotional information (word recall and categorization, facial emotion recognition, and decision-making) in 28 healthy volunteers by contrasting these effects with those of sham stimulation. Each volunteer received iTBS and sham stimulation in a blinded crossover design and completed the emotion-processing tasks before and after stimulation. Compared to sham stimulation, iTBS increased positive affective processing for word recall, yet had an unexpected effect on facial emotion recognition for happy and sad faces. There was no evidence of an effect on decision-making or word categorization. We found support for our hypothesis that iTBS influences emotion processing, though some changes were not in the expected direction. These findings suggest a possible common mechanism of action between iTBS and antidepressants, and a complex neural circuitry involved in emotion processing that could potentially be tapped into via brain stimulation. Future research should investigate the neural correlates of emotion processing more closely to inform future iTBS protocols.
Collapse
|
35
|
Kar SK, Menon V. Repetitive Transcranial Magnetic Stimulation in Persistent Auditory Hallucination in Schizophrenia: Predictors of Response. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00218-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Xiu MH, Guan HY, Zhao JM, Wang KQ, Pan YF, Su XR, Wang YH, Guo JM, Jiang L, Liu HY, Sun SG, Wu HR, Geng HS, Liu XW, Yu HJ, Wei BC, Li XP, Trinh T, Tan SP, Zhang XY. Cognitive Enhancing Effect of High-Frequency Neuronavigated rTMS in Chronic Schizophrenia Patients With Predominant Negative Symptoms: A Double-Blind Controlled 32-Week Follow-up Study. Schizophr Bull 2020; 46:1219-1230. [PMID: 32185388 PMCID: PMC7505170 DOI: 10.1093/schbul/sbaa035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating studies have shown that high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) may improve cognitive dysfunction of the patients with schizophrenia (SCZ), but with inconsistent results. The present study aims to assess the efficacy of different frequencies of neuronavigated rTMS in ameliorating cognitive impairments and alleviating the psychotic symptoms. A total of 120 patients were randomly assigned to 3 groups: 20 Hz rTMS (n = 40), 10 Hz rTMS (n = 40), or sham stimulation (n = 40) for 8 weeks, and then followed up at week 32. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess the cognitive functions of the patients at baseline, at the end of week 8, and week 32 follow-up. Psychotic symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS) at baseline and at the end of week 2, week 4, week 6, week 8, and week 32 follow-up. Our results demonstrated that 20 Hz rTMS treatment produced an effective therapeutic benefit on immediate memory of patients with chronic SCZ at week 8, but not in the 10 Hz group. Interestingly, both 10 Hz and 20 Hz rTMS treatments produced delayed effects on cognitive functions at the 6-month follow-up. Moreover, in both 10 Hz rTMS and 20 Hz rTMS, the improvements in RBANS total score were positively correlated with the reduction of PANSS positive subscore at the 6-month follow-up. Stepwise regression analysis identified that the visuospatial/constructional index, immediate memory index, and prolactin at baseline were predictors for the improvement of cognitive impairments in the patients. Our results suggest that add-on HF rTMS could be an effective treatment for cognitive impairments in patients with chronic SCZ, with a delayed effect. Trial registration: clinicaltrials.gov identifier-NCT03774927.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Heng Yong Guan
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Jian Min Zhao
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Ke Qiang Wang
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Yan Fen Pan
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Xiu Ru Su
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Yu Hong Wang
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Jin Ming Guo
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Long Jiang
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Hong Yu Liu
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Shi Guang Sun
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Hao Ran Wu
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Han Song Geng
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Xiao Wen Liu
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Hui Jing Yu
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Bao Chun Wei
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Xi Po Li
- Department of Psychiatry, Hebei Province Rong-Jun hospital, Baoding, China
| | - Tammy Trinh
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Shu Ping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Non-Invasive Brain Stimulation Does Not Improve Working Memory in Schizophrenia: A Meta-Analysis of Randomised Controlled Trials. Neuropsychol Rev 2020; 31:115-138. [PMID: 32918254 DOI: 10.1007/s11065-020-09454-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Poor working memory functioning is commonly found in schizophrenia. A number of studies have now tested whether non-invasive brain stimulation can improve this aspect of cognitive functioning. This report used meta-analysis to synthesise the results of these studies to examine whether transcranial electrical stimulation (tES) or repetitive transcranial magnetic stimulation (rTMS) can improve working memory in schizophrenia. The studies included in this meta-analysis were sham-controlled, randomised controlled trials that utilised either tES or rTMS to treat working memory problems in schizophrenia. A total of 22 studies were included in the review. Nine studies administered rTMS and 13 administered tES. Meta-analysis revealed that compared to sham/placebo stimulation, neither TMS nor tES significantly improved working memory. This was found when working memory was measured with respect to the accuracy on working memory tasks (TMS studies: Hedges' g = 0.112, CI95: -0.082, 0.305, p = .257; tES studies Hedges' g = 0.080, CI95: -0.117, 0.277, p = .427) or the speed working memory tasks were completed (rTMS studies: Hedges' g = 0.233, CI95: -0.212, 0.678, p = .305; tES studies Hedges' g = -0.016, CI95: -0.204, 0.173, p = .871). For tES studies, meta-regression analysis found that studies with a larger number of stimulation sessions were associated with larger treatment effects. This association was not found for TMS studies. At present, rTMS and tES is not associated with a reliable improvement in working memory for individuals with schizophrenia.
Collapse
|
38
|
Yu XY, Liao KR, Niu ZK, Wang K, Cheung EFC, Li XL, Chan RCK. Resting frontal EEG asymmetry and schizotypal traits: a test-retest study. Cogn Neuropsychiatry 2020; 25:333-347. [PMID: 32731803 DOI: 10.1080/13546805.2020.1800448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Increase in right relative to left frontal electroencephalography (EEG) activity has been observed in patients with schizophrenia, both in cognitive tasks and during rest; and this lateralisation may be related to the severity of schizotypal traits. Methods: We used the Schizotypal Personality Questionnaire (SPQ) to assess schizotypal traits, and examined the correlation between these traits and resting EEG frontal asymmetry (left-right) in 52 college students, as well as the reliability of this correlation over a three-month interval. Results: A higher total score on the SPQ was correlated with reduced asymmetry in different frequency bands: gamma and beta2 frequency bands at baseline, and delta and alpha frequency bands three months later. Additionally, the reduced left relative to right frontal gamma and beta2 asymmetry was correlated with the participants' verbal fluency ability. However, this correlation was no longer statistically significant after the total SPQ score was controlled. Conclusions: These findings suggest that resting frontal EEG asymmetry is correlated with powers in different frequency bands, and may be an endophenotype for schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Xin-Yang Yu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ke-Ren Liao
- Shenzhen Health Development Research Center, Shenzhen, People's Republic of China
| | - Zi-Kang Niu
- Castle Peak Hospital, Hong Kong Administrative Region, People's Republic of China
| | - Kui Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Administrative Region, People's Republic of China
| | - Xiao-Li Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
39
|
Theta Burst for Cognitive Remediation in Schizophrenia: A Case Series and Feasibility Study. J ECT 2020; 36:72-74. [PMID: 31652174 DOI: 10.1097/yct.0000000000000625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
High-frequency neuronavigated rTMS effect on clinical symptoms and cognitive dysfunction: a pilot double-blind, randomized controlled study in Veterans with schizophrenia. Transl Psychiatry 2020; 10:79. [PMID: 32098946 PMCID: PMC7042343 DOI: 10.1038/s41398-020-0745-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Cognitive impairment is a central aspect of schizophrenia (SCZ) that occurs at the onset of the disease and is related to poor social function and outcome in patients with SCZ. Recent literatures have revealed repetitive transcranial magnetic stimulation (rTMS) to be one of the efficient medical interventions for cognitive impairments. However, no study has been conducted to investigate the treatment effectiveness of 20 Hz rTMS with neuronavigation system administered to the left dorsolateral prefrontal cortex (DLPFC) in patients with schizophrenia. In this randomized, double-blind and sham-controlled study, 56 patients were enrolled in 20 Hz rTMS (n = 28) or sham stimulation (n = 28) over left DLPFC for 8 weeks. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to measure the cognitive function at baseline and after 8 weeks of rTMS treatment. The positive and negative syndrome scales (PANSS) was performed to assess the clinical symptoms at baseline, after 2-week treatment, 4-week treatment, 6-week treatment, and 8-week treatment. Totally, 15 subjects (seven in active group and eight in sham group) dropped out during the trial and the main findings were from completed 41 patients. At 2 weeks, 4 weeks, and 6 weeks, there were no significant differences in PANSS total score and subscores between the sham and treatment groups. At 8 weeks, the 20 Hz rTMS significantly increased the immediate memory score compared with the sham. Furthermore, the improvement in the immediate memory score was correlated with the decrease in the excitement factor score of the patients with SCZ. Our results suggest that 20 Hz rTMS appears to be an effective treatment for improving the cognitive performance and reducing the clinical symptoms of patients with SCZ.
Collapse
|
41
|
Ameis SH, Blumberger DM, Croarkin PE, Mabbott DJ, Lai MC, Desarkar P, Szatmari P, Daskalakis ZJ. Treatment of Executive Function Deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial. Brain Stimul 2020; 13:539-547. [PMID: 32289673 PMCID: PMC8129776 DOI: 10.1016/j.brs.2020.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background: In youth and young adults with autism spectrum disorder (ASD), executive function (EF) deficits may be a promising treatment target with potential impact on everyday functioning. Objective: To conduct a pilot randomized, double-blind, parallel, controlled trial evaluating repetitive transcranial magnetic stimulation (rTMS) for EF deficits in ASD. Method: In Toronto, Ontario (November 2014 to June 2017), a 20-session, 4-week course of 20 Hz rTMS targeting dorsolateral prefrontal cortex (DLPFC) (90%RMT) was compared to sham stimulation in 16—35 year-olds with ASD (28 male/12 female), without intellectual disability, who had impaired everyday EF performance (n = 20 active/n = 20 sham). Outcome measures evaluated protocol feasibility and clinical effects of active vs. sham rTMS on EF performance. The moderating effect of baseline functioning was explored. Results: Of eligible participants, 95% were enrolled and 95% of randomized participants completed the protocol. Adverse events across treatment arms were mild-to-moderate. There was no significant difference between active vs. sham rTMS on EF performance. Baseline adaptive functioning moderated the effect of rTMS, such that participants with lower baseline functioning experienced significant EF improvement in the active vs. sham group. Conclusions: Our pilot RCT demonstrated the feasibility and acceptability of using high frequency rTMS targeting DLPFC in youth and young adults with autism. No evidence for efficacy of active versus sham rTMS on EF performance was found. However, we found promising preliminary evidence of EF performance improvement following active versus sham rTMS in participants with ASD with more severe adaptive functioning deficits. Future work could focus on examining efficacy of rTMS in this higher-need population. Clinical trial registration: Repetitive Transcranial Magnetic Stimulation (rTMS) for Executive Function Deficits in Autism Spectrum Disorder and Effects on Brain Structure: A Pilot Study; https://clinicaltrials.gov/ct2/show/NCT02311751?term=ameis&rank=1; NCT02311751. The trial was funded by: an American Academy of Child and Adolescent Psychiatry (AACAP) Pilot Research Award, the Innovation Fund from the Alternate Funding Plan of the Academic Health Sciences Centres of Ontario, and an Ontario Mental Health Foundation (OMHF) Project A Grant and New Investigator Fellowship.
Collapse
Affiliation(s)
- Stephanie H Ameis
- Centre for Brain and Mental Health, Program in Neurosciences & Mental Health, Sick Kids Research Institute, The Hospital for Sick Children, Toronto, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Daniel M Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Donald J Mabbott
- Centre for Brain and Mental Health, Program in Neurosciences & Mental Health, Sick Kids Research Institute, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| | - Meng-Chuan Lai
- Centre for Brain and Mental Health, Program in Neurosciences & Mental Health, Sick Kids Research Institute, The Hospital for Sick Children, Toronto, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| | - Pushpal Desarkar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Peter Szatmari
- Centre for Brain and Mental Health, Program in Neurosciences & Mental Health, Sick Kids Research Institute, The Hospital for Sick Children, Toronto, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1109] [Impact Index Per Article: 221.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
43
|
Zhu H, Xu G, Fu L, Li Y, Fu R, Zhao D, Ding C. The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice. Electromagn Biol Med 2019; 39:9-19. [DOI: 10.1080/15368378.2019.1696358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Haijun Zhu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Lingdi Fu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Yang Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Rui Fu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Dongshuai Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| | - Chong Ding
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
| |
Collapse
|
44
|
Popov MM, Pluzhnikov IV, Kaleda VG. [Procognitive effects of transcranial magnetic stimulation in the light of neurocognitive deficit in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:120-126. [PMID: 31089106 DOI: 10.17116/jnevro2019119031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a relatively new method of non-invasive therapy of mental and neurological diseases that has great potential of therapeutic and diagnostic application. In schizophrenia, TMS may exert a positive effect on cognitive deficit. However this issue remains open. The authors analyze recent studies focused on the dynamics of neurocognitive deficit in TMS therapy and consider clinical effects of TMS in schizophrenia. The analysis has shown that TMS is successfully implemented in treatment of auditory positive symptoms and studies on its effect on negative symptoms of schizophrenia are perspective. Procognitive effect was found in working memory domain, and partially in perception domain within the perception of faces and facial expressions. The data on regulative functions, attention, speech, and nondeclarative memory remains controversial. It has been concluded that further research is needed to clarify the place of TMS in schizophrenia therapy.
Collapse
Affiliation(s)
- M M Popov
- Mental Health Research Center, Moscow, Russia
| | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This current review summarizes the investigational and therapeutic applications of transcranial magnetic stimulation (TMS) in schizophrenia. RECENT FINDINGS Fairly consistent findings of an impaired cortical excitation-inhibition balance, cortical plasticity, and motor resonance have been reported in schizophrenia. Cortical connectivity impairments have also been demonstrated in motor and prefrontal brain regions. In terms of treatment, the best support is for 1-Hz TMS to the left temporoparietal cortex for the short-term treatment of persistent auditory hallucinations. High-frequency TMS to the left prefrontal cortex improves negative and cognitive symptoms, but with inconsistent and small effects. TMS combined with diverse brain mapping techniques and clinical evaluation can unravel critical brain-behavior relationships relevant to schizophrenia. These provide critical support to the conceptualization of schizophrenia as a connectopathy with anomalous cortical plasticity. Adaptive modulation of these aberrant brain networks in a neuroscience-informed manner drives short-term therapeutic gains in difficult-to-treat symptoms of schizophrenia.
Collapse
|
46
|
Effects of Repetitive Transcranial Magnetic Stimulation over Prefrontal Cortex on Attention in Psychiatric Disorders: A Systematic Review. J Clin Med 2019; 8:jcm8040416. [PMID: 30934685 PMCID: PMC6518000 DOI: 10.3390/jcm8040416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/20/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) may be effective for enhancing cognitive functioning. In this review, we aimed to systematically evaluate the effects of rTMS on attention in psychiatric diseases. In particular, we searched PubMed and Embase to examine the effectiveness of rTMS administered to the dorsolateral prefrontal cortex (DLPFC) on this specific cognitive domain. The search identified 24 articles, 21 of which met inclusion and exclusion criteria. Among them, nine were conducted in patients with depression, four in patients with schizophrenia, three in patients with autism spectrum disorder (ASD), two in patients with attention deficit hyperactivity disorder, one each in patients with Alzheimer's disease and in patients with alcohol or methamphetamine addiction. No evidence for cognitive adverse effects was found in all the included rTMS studies. Several studies showed a significant improvement of attentional function in patients with depression and schizophrenia. The beneficial effects on attention and other executive functions suggest that rTMS has the potential to target core features of ASD. rTMS may influence the attentional networks in alcohol-dependent and other addicted patients. We also reviewed and discussed the studies assessing the effects of rTMS on attention in the healthy population. This review suggests that prefrontal rTMS could exert procognitive effects on attention in patients with many psychiatric disorders.
Collapse
|
47
|
Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer's disease: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:31-40. [PMID: 29953934 DOI: 10.1016/j.pnpbp.2018.06.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 01/30/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective clinical intervention for various neuropsychiatric diseases. However, it is still unclear whether rTMS has an effect on cognitive functioning. In this review, we aimed to systematically evaluate the cognitive effects of rTMS in depression, schizophrenia, and Alzheimer's disease. We searched PubMed (1996-2018) under the set terms to review randomized controlled trials (RCT) to examine the effectiveness of rTMS administered to the dorsolateral prefrontal cortex (DLPFC) and evaluated cognitive functions in patients with depression, schizophrenia, and Alzheimer's disease. Two authors reviewed each article and came to consensus on the inclusion and exclusion criteria. All eligible studies were reviewed, duplicates were removed, and data were extracted individually. The search identified 579 articles, 31 of which met inclusion and exclusion criteria. Among them, 15 were conducted in patients with depression, 11 in patients with schizophrenia, and 5 in patients with Alzheimer's disease. Specifically, 6 studies demonstrated a significant improvement of executive function across these diseases. Further, no evidence for cognitive adverse effects was found in these included rTMS studies. Although the heterogeneity between studies in terms of cognitive measures applied, stimulation parameters, and participants limits the ability to generalize conclusions, this review demonstrated that prefrontal rTMS could exert pro-cognitive effects on executive function and attention in some patients with depression but inconsistent cognitive impacts in any of the examined domains especially in patients with schizophrenia and Alzheimer's disease. The results warrant further rTMS studies that include systematic assessment of cognition across various neuropsychiatric diseases.
Collapse
|
48
|
Yoga: Balancing the excitation-inhibition equilibrium in psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2019; 244:387-413. [PMID: 30732846 DOI: 10.1016/bs.pbr.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Social behavioral disturbances are central to most psychiatric disorders. A disequilibrium within the cortical excitatory and inhibitory neurotransmitter systems underlies these deficits. Gamma-aminobutyric acid (GABA) and glutamate are the most abundant excitatory and inhibitory neurotransmitters in the brain that contribute to this equilibrium. Several contemporary therapies used in treating psychiatric disorders, regulate this GABA-glutamate balance. Yoga has been studied as an adjuvant treatment across a broad range of psychiatric disorders and is shown to have short-term therapeutic gains. Emerging evidence from recent clinical in vivo experiments suggests that yoga improves GABA-mediated cortical-inhibitory tone and enhances peripheral oxytocin levels. This is likely to have a more controlled downstream response of the hypothalamo-pituitary-adrenal system by means of reduced cortisol release and hence a blunted sympathetic response to stress. Animal and early fetal developmental studies suggest an inter-dependent role of oxytocin and GABA in regulating social behaviors. In keeping with these observations, we propose an integrated neurobiological model to study the mechanisms of therapeutic benefits with yoga. Apart from providing a neuroscientific basis for applying a traditional system of practice in the clinical setting, this model can be used as a framework for studying yoga mechanisms in future clinical trials.
Collapse
|
49
|
Yamada Y, Inagawa T, Sueyoshi K, Sugawara N, Ueda N, Omachi Y, Hirabayashi N, Matsumoto M, Sumiyoshi T. Social Cognition Deficits as a Target of Early Intervention for Psychoses: A Systematic Review. Front Psychiatry 2019; 10:333. [PMID: 31156479 PMCID: PMC6529574 DOI: 10.3389/fpsyt.2019.00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Backgrounds: Social cognition deficits are a core feature of schizophrenia and deteriorate functionality of patients. However, evidence is sparse for the treatment effect on social cognition impairments in the early stage of psychosis. Here, we provide a systematic review of the literature on social cognitive impairment in early psychosis in relation to its intervention. Methods: A literature search was conducted on English articles identified by Web of Science and PubMed databases, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Results: Five papers met the inclusion criteria. Results from two studies of cognitive training and one study of modafinil indicate positive results regarding social cognition outcomes in patients with early psychosis. On the other hand, two studies with oxytocin and modafinil did not suggest such effects. Conclusions: Further research is warranted to explore the benefit of early intervention into disturbances of social cognition in psychoses.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuki Sueyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norio Sugawara
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Natsuki Ueda
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshie Omachi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Matsumoto
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
50
|
Jiang Y, Guo Z, Xing G, He L, Peng H, Du F, McClure MA, Mu Q. Effects of High-Frequency Transcranial Magnetic Stimulation for Cognitive Deficit in Schizophrenia: A Meta-Analysis. Front Psychiatry 2019; 10:135. [PMID: 30984036 PMCID: PMC6450172 DOI: 10.3389/fpsyt.2019.00135] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: Repetitive transcranial magnetic stimulation (rTMS) has been applied to dorsolateral prefrontal cortex (DLPFC) to improve cognitive function of patients with schizophrenia (SZs). The aim of this meta-analysis was to evaluate whether a high-frequency rTMS course could enhance cognitive function in SZs. Methods: Studies published in PubMed, Cochrane Library, Embase, ScienceDirect, and Web of science were searched until April 2018. The search terms included: "repetitive transcranial magnetic stimulation" or "Rtms," "SZ," or "schizophrenia," and "neuro-cognition" or "neurocognitive performance" or "cognitive effects" or "cognitive" or "cognition" or "working memory" or "executive function" or "language function" or "processing speed," After screening the literatures according to inclusion and exclusion criteria, extracting data, and evaluating the methodological quality of the included studies, a meta-analysis was performed using RevMan 5.3 software (The Cochrane Collaboration, USA). Results: A total of 9 studies on cognitive dysfunction of SZs were included and involved 351 patients. A significant efficacy of high-frequency rTMS on working memory in SZs was found compared to sham stimulation [p = 0.009, standardized mean difference (SMD) = 0.34]. Specifically, rTMS treatment positioned on the left DLPFC, with a total pluses <30,000 was more significantly more effective in improving the working memory (SMD = 0.33, p = 0.03). No improvement was found in other cognitive domains such as executive function, attention, processing speed, and language function. For the follow-up observations, high-frequency rTMS had long-lasting sustained effects on working memory (SMD = 0.45, p = 0.01) and language function (SMD = 0.77, p = 0.02) in SZs. Conclusions: High-frequency rTMS over the left DLPFC with a total pulses <30,000 stimulation could significantly improve working memory in SZs for an extended period of time.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Zhiwei Guo
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Guoqiang Xing
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Lin He
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Haitao Peng
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Fei Du
- Department of Psychiatry, Harvard Medical School, Belmont, CA, United States
| | - Morgan A McClure
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Qiwen Mu
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|