1
|
Wilkins EW, Young RJ, Houston D, Kawana E, Lopez Mora E, Sunkara MS, Riley ZA, Poston B. Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere. Brain Sci 2024; 14:694. [PMID: 39061434 PMCID: PMC11274959 DOI: 10.3390/brainsci14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Daniel Houston
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Eric Kawana
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Edgar Lopez Mora
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Meghana S. Sunkara
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
2
|
Nascimento Guimarães A, Beggiato Porto A, Junior Guidotti F, Soca Bazo N, Ugrinowitsch H, Hugo Alves Okazaki V. Effect of Transcranial direct current stimulation of the Primary motor Cortex and cerebellum on motor control and learning of geometric drawing tasks with varied cognitive demands. Brain Res 2024; 1828:148786. [PMID: 38266889 DOI: 10.1016/j.brainres.2024.148786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Anderson Nascimento Guimarães
- State University of Londrina, Department of Physical Education, Rodovia Celso Garcia Cid - Pr 445, Km 380, Campus Universitário, Londrina, Brazil.
| | - Alessandra Beggiato Porto
- State University of Londrina, Department of Physical Education, Rodovia Celso Garcia Cid - Pr 445, Km 380, Campus Universitário, Londrina, Brazil
| | - Flavio Junior Guidotti
- State University of Londrina, Department of Physical Education, Rodovia Celso Garcia Cid - Pr 445, Km 380, Campus Universitário, Londrina, Brazil
| | - Norberto Soca Bazo
- State University of Londrina, Department of Physical Education, Rodovia Celso Garcia Cid - Pr 445, Km 380, Campus Universitário, Londrina, Brazil; Licungo University, Department of Physical Education and Sports, Rua de Comandante Gaivão Extensão da Beira, Moçambique
| | - Herbert Ugrinowitsch
- Universidade Federal de Minas Gerais. Av. Presidente Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte MG, Brazil
| | - Victor Hugo Alves Okazaki
- State University of Londrina, Department of Physical Education, Rodovia Celso Garcia Cid - Pr 445, Km 380, Campus Universitário, Londrina, Brazil
| |
Collapse
|
3
|
Fresnoza S, Ischebeck A. Probing Our Built-in Calculator: A Systematic Narrative Review of Noninvasive Brain Stimulation Studies on Arithmetic Operation-Related Brain Areas. eNeuro 2024; 11:ENEURO.0318-23.2024. [PMID: 38580452 PMCID: PMC10999731 DOI: 10.1523/eneuro.0318-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
This systematic review presented a comprehensive survey of studies that applied transcranial magnetic stimulation and transcranial electrical stimulation to parietal and nonparietal areas to examine the neural basis of symbolic arithmetic processing. All findings were compiled with regard to the three assumptions of the triple-code model (TCM) of number processing. Thirty-seven eligible manuscripts were identified for review (33 with healthy participants and 4 with patients). Their results are broadly consistent with the first assumption of the TCM that intraparietal sulcus both hold a magnitude code and engage in operations requiring numerical manipulations such as subtraction. However, largely heterogeneous results conflicted with the second assumption of the TCM that the left angular gyrus subserves arithmetic fact retrieval, such as the retrieval of rote-learned multiplication results. Support is also limited for the third assumption of the TCM, namely, that the posterior superior parietal lobule engages in spatial operations on the mental number line. Furthermore, results from the stimulation of brain areas outside of those postulated by the TCM show that the bilateral supramarginal gyrus is involved in online calculation and retrieval, the left temporal cortex in retrieval, and the bilateral dorsolateral prefrontal cortex and cerebellum in online calculation of cognitively demanding arithmetic problems. The overall results indicate that multiple cortical areas subserve arithmetic skills.
Collapse
Affiliation(s)
- Shane Fresnoza
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
4
|
Pantovic M, Lidstone DE, de Albuquerque LL, Wilkins EW, Munoz IA, Aynlender DG, Morris D, Dufek JS, Poston B. Cerebellar Transcranial Direct Current Stimulation Applied over Multiple Days Does Not Enhance Motor Learning of a Complex Overhand Throwing Task in Young Adults. Bioengineering (Basel) 2023; 10:1265. [PMID: 38002389 PMCID: PMC10669324 DOI: 10.3390/bioengineering10111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) enhances motor skill and learning in relatively simple motor tasks, but it is unclear if c-tDCS can improve motor performance in complex motor tasks. The purpose of this study was to determine the influence of c-tDCS applied over multiple days on motor learning in a complex overhand throwing task. In a double-blind, randomized, between-subjects, SHAM-controlled, experimental design, 30 young adults were assigned to either a c-tDCS or a SHAM group. Participants completed three identical experiments on consecutive days that involved overhand throwing in a pre-test block, five practice blocks with concurrent c-tDCS, and a post-test block. Overhand throwing endpoint accuracy was quantified as the endpoint error. The first dorsal interosseous muscle motor evoked potential (MEP) amplitude elicited by transcranial magnetic stimulation was used to quantify primary motor cortex (M1) excitability modulations via c-tDCS. Endpoint error significantly decreased over the 3 days of practice, but the magnitude of decrease was not significantly different between the c-tDCS and SHAM group. Similarly, MEP amplitude slightly increased from the pre-tests to the post-tests, but these increases did not differ between groups. These results indicate that multi-day c-tDCS does not improve motor learning in an overhand throwing task or increase M1 excitability.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Daniel E. Lidstone
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Irwin A. Munoz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Desiree Morris
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Janet S. Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| |
Collapse
|
5
|
Pantovic M, de Albuquerque LL, Mastrantonio S, Pomerantz AS, Wilkins EW, Riley ZA, Guadagnoli MA, Poston B. Transcranial Direct Current Stimulation of Primary Motor Cortex over Multiple Days Improves Motor Learning of a Complex Overhand Throwing Task. Brain Sci 2023; 13:1441. [PMID: 37891809 PMCID: PMC10604977 DOI: 10.3390/brainsci13101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1) improves motor learning in relatively simple motor tasks performed with the hand and arm. However, it is unknown if tDCS can improve motor learning in complex motor tasks involving whole-body coordination with significant endpoint accuracy requirements. The primary purpose was to determine the influence of tDCS on motor learning over multiple days in a complex over-hand throwing task. This study utilized a double-blind, randomized, SHAM-controlled, between-subjects experimental design. Forty-six young adults were allocated to either a tDCS group or a SHAM group and completed three experimental sessions on three consecutive days at the same time of day. Each experimental session was identical and consisted of overhand throwing trials to a target in a pre-test block, five practice blocks performed simultaneously with 20 min of tDCS, and a post-test block. Overhand throwing performance was quantified as the endpoint error. Transcranial magnetic stimulation was used to obtain motor-evoked potentials (MEPs) from the first dorsal interosseus muscle to quantify changes in M1 excitability due to tDCS. Endpoint error significantly decreased over the three days of practice in the tDCS group but not in the SHAM group. MEP amplitude significantly increased in the tDCS group, but the MEP increases were not associated with increases in motor learning. These findings indicate that tDCS applied over multiple days can improve motor learning in a complex motor tasks in healthy young adults.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina-Wilmington, Wilmington, NC 28403, USA;
| | - Sierra Mastrantonio
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Austin S. Pomerantz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Mark A. Guadagnoli
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
6
|
De Guzman KA, Young RJ, Contini V, Clinton E, Hitchcock A, Riley ZA, Poston B. The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance. Brain Sci 2023; 13:1225. [PMID: 37626581 PMCID: PMC10452200 DOI: 10.3390/brainsci13081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Previous research has shown that some forms of non-invasive brain stimulation can increase fatigue resistance. The purpose of this study is to determine the influence of transcranial alternating current stimulation (tACS) on the time to task failure (TTF) of a precision grip task. The study utilized a randomized, double-blind, SHAM-controlled, within-subjects design. Twenty-six young adults completed two experimental sessions (tACS and SHAM) with a 7-day washout period between sessions. Each session involved a fatiguing isometric contraction of the right hand with a precision grip with either a tACS or SHAM stimulation applied to the primary motor cortex (M1) simultaneously. For the fatiguing contraction, the participants matched an isometric target force of 20% of the maximum voluntary contraction (MVC) force until task failure. Pre- and post-MVCs were performed to quantify the force decline due to fatigue. Accordingly, the dependent variables were the TTF and MVC force decline as well as the average EMG activity, force error, and standard deviation (SD) of force during the fatiguing contractions. The results indicate that there were no significant differences in any of the dependent variables between the tACS and SHAM conditions (p value range: 0.256-0.820). These findings suggest that tACS does not increase the TTF during fatiguing contractions in young adults.
Collapse
Affiliation(s)
- Kayla A. De Guzman
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Richard J. Young
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
- Optum Labs, Minnetonka, MN 55343, USA
| | - Valentino Contini
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Eliza Clinton
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Ashley Hitchcock
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| |
Collapse
|
7
|
Blagovechtchenski E, Kostromina S, Shaboltas A. Using a Pulse Protocol to Fix the Individual Dosage of Transcranial and Transspinal Direct Current Electrical Stimulation. Life (Basel) 2023; 13:1376. [PMID: 37374158 DOI: 10.3390/life13061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The non-invasive current stimulation protocol differs significantly between the brain and spinal cord, such that when comparing the two, there is a clear predominance of protocols using transcranial direct current stimulation (tDCS) for the brain and of protocols using pulsed stimulation for the spinal cord (psSC). These protocols differ in their effects on the central nervous system and in such important parameters as stimulation intensity. In most cases, tDCS has a fixed amplitude for all subjects/patients, while psSC is usually chosen on a case-by-case basis, according to the thresholds of muscle responses. In our opinion, it is possible to use the experience of identifying thresholds during psSC to adjust the dose of the direct current for transcranial and transspinal electrical stimulation, an approach that may provide more homogeneous tDCS data.
Collapse
Affiliation(s)
- Evgeny Blagovechtchenski
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Svetlana Kostromina
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alla Shaboltas
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
8
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Lepage JF, Théoret H. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Cereb Cortex 2023:7030623. [PMID: 36749004 DOI: 10.1093/cercor/bhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Amira Merabtine
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emelie Boucher
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lydia Helena Hofmann
- Department of Psychology and Neuroscience, Maastricht University, Maastricht 6229, The Netherlands
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
The effects of concurrent bilateral anodal tDCS of primary motor cortex and cerebellum on corticospinal excitability: a randomized, double-blind sham-controlled study. Brain Struct Funct 2022; 227:2395-2408. [PMID: 35984496 PMCID: PMC9418272 DOI: 10.1007/s00429-022-02533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1), and cerebellum (CB) can change the level of M1 corticospinal excitability (CSE). A randomized double-blinded crossover, the sham-controlled study design was used to investigate the effects of concurrent bilateral anodal tDCS of M1 and CB (concurrent bilateral a-tDCSM1+CB) on the CSE. Twenty-one healthy participants were recruited in this study. Each participant received anodal-tDCS (a-tDCS) of 2 mA, 20 min in four pseudo-randomized, counterbalanced sessions, separated by at least 7 days (7.11 days ± 0.65). These sessions were bilateral M1 stimulation (bilateral a-tDCSM1), bilateral cerebellar stimulation (bilateral a-tDCSCB), concurrent bilateral a-tDCSM1+CB, and sham stimulation (bilateral a-tDCSSham). Transcranial magnetic stimulation (TMS) was delivered over the left M1, and motor evoked potentials (MEPs) of a contralateral hand muscle were recorded before and immediately after the intervention to measure CSE changes. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) were assessed with paired-pulse TMS protocols. Anodal-tDCS significantly increased CSE after concurrent bilateral a-tDCSM1+CB and bilateral a-tDCSCB. Interestingly, CSE was decreased after bilateral a-tDCSM1. Respective alterations in SICI, LICI, and ICF were seen, including increased SICI and decreased ICF, which indicate the involvement of glutamatergic and GABAergic systems in these effects. These results confirm that the concurrent bilateral a-tDCSM1+CB have a facilitatory effect on CSE, whereas bilateral a-tDCSM1 exert some inhibitory effects. Moreover, the effects of the 2 mA, 20 min a-tDCS on the CB were consistent with its effects on the M1.
Collapse
|
10
|
No effects of prefrontal multichannel tACS at individual alpha frequency on phonological decisions. Clin Neurophysiol 2022; 142:96-108. [DOI: 10.1016/j.clinph.2022.07.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022]
|
11
|
The Influence of Transcranial Direct Current Stimulation on Shooting Performance in Elite Deaflympic Athletes: A Case Series. J Funct Morphol Kinesiol 2022; 7:jfmk7020042. [PMID: 35736013 PMCID: PMC9224564 DOI: 10.3390/jfmk7020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to improve motor learning in numerous studies. However, only a few of these studies have been conducted on elite-level performers or in complex motor tasks that have been practiced extensively. The purpose was to determine the influence of tDCS applied to the dorsolateral prefrontal cortex (DLPFC) on motor learning over multiple days on 10-m air rifle shooting performance in elite Deaflympic athletes. Two male and two female elite Deaflympic athletes (World, European, and National medalists) participated in this case series. The study utilized a randomized, double-blind, SHAM-controlled, cross-over design. Anodal tDCS or SHAM stimulation was applied to the left DLPFC for 25 min with a current strength of 2 mA concurrent with three days of standard shooting practice sessions. Shooting performance was quantified as the points and the endpoint error. Separate 2 Condition (DLPFC-tDCS, SHAM) × 3 Day (1,2,3) within-subjects ANOVAs revealed no significant main effects or interactions for either points or endpoint error. These results indicate that DLPFC-tDCS applied over multiple days does not improve shooting performance in elite athletes. Different stimulation parameters or very long-term (weeks/months) application of tDCS may be needed to improve motor learning in elite athletes.
Collapse
|
12
|
Ghodratitoostani I, Gonzatto OA, Vaziri Z, Delbem ACB, Makkiabadi B, Datta A, Thomas C, Hyppolito MA, Santos ACD, Louzada F, Leite JP. Dose-Response Transcranial Electrical Stimulation Study Design: A Well-Controlled Adaptive Seamless Bayesian Method to Illuminate Negative Valence Role in Tinnitus Perception. Front Hum Neurosci 2022; 16:811550. [PMID: 35677206 PMCID: PMC9169505 DOI: 10.3389/fnhum.2022.811550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
The use of transcranial Electrical Stimulation (tES) in the modulation of cognitive brain functions to improve neuropsychiatric conditions has extensively increased over the decades. tES techniques have also raised new challenges associated with study design, stimulation protocol, functional specificity, and dose-response relationship. In this paper, we addressed challenges through the emerging methodology to investigate the dose-response relationship of High Definition-transcranial Direct Current Stimulation (HD tDCS), identifying the role of negative valence in tinnitus perception. In light of the neurofunctional testable framework and tES application, hypotheses were formulated to measure clinical and surrogate endpoints. We posited that conscious pairing adequately pleasant stimuli with tinnitus perception results in correction of the loudness misperception and would be reinforced by concurrent active HD-tDCS on the left Dorsolateral Prefrontal Cortex (dlPFC). The dose-response relationship between HD-tDCS specificity and the loudness perception is also modeled. We conducted a double-blind, randomized crossover pilot study with six recruited tinnitus patients. Accrued data was utilized to design a well-controlled adaptive seamless Bayesian dose-response study. The sample size (n = 47, for 90% power and 95% confidence) and optimum interims were anticipated for adaptive decision-making about efficacy, safety, and single session dose parameters. Furthermore, preliminary pilot study results were sufficient to show a significant difference (90% power, 99% confidence) within the longitudinally detected self-report tinnitus loudness between before and under positive emotion induction. This study demonstrated a research methodology used to improve emotion regulation in tinnitus patients. In the projected method, positive emotion induction is essential for promoting functional targeting under HD-tDCS anatomical specificity to indicate the efficacy and facilitate the dose-finding process. The continuous updating of prior knowledge about efficacy and dose during the exploratory stage adapts the anticipated dose-response model. Consequently, the effective dose range to make superiority neuromodulation in correcting loudness misperception of tinnitus will be redefined. Highly effective dose adapts the study to a standard randomized trial and transforms it into the confirmatory stage in which active HD-tDCS protocol is compared with a sham trial (placebo-like). Establishing the HD-tDCS intervention protocols relying on this novel method provides reliable evidence for regulatory agencies to approve or reject the efficacy and safety. Furthermore, this paper supports a technical report for designing multimodality data-driven complementary investigations in emotion regulation, including EEG-driven neuro markers, Stroop-driven attention biases, and neuroimaging-driven brain network dynamics.
Collapse
Affiliation(s)
- Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory, Center for Engineering Applied to Health, Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil
- *Correspondence: Iman Ghodratitoostani
| | - Oilson A. Gonzatto
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil
| | - Zahra Vaziri
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Alexandre C. B. Delbem
- Neurocognitive Engineering Laboratory, Center for Engineering Applied to Health, Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil
| | - Bahador Makkiabadi
- Research Center for Biomedical Technologies and Robotics, Institute for Advanced Medical Technologies, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Miguel A. Hyppolito
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Antonio C. D. Santos
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Francisco Louzada
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
- João Pereira Leite
| |
Collapse
|
13
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
14
|
Anodal tDCS accelerates on-line learning of dart throwing. Neurosci Lett 2021; 764:136211. [PMID: 34481881 DOI: 10.1016/j.neulet.2021.136211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to enhance or block online learning of motor skills, depending on the current direction. However, most research on the use of tDCS has been limited to the study of relatively simple motor tasks. The purpose of the present study was to examine the influence of anodal (a-tDCS) and cathodal (c-tDCS) direct current stimulation on the online learning during a single session of dart throwing. Fifty-eight young adults were randomized to a-tDCS, c-tDCS, or SHAM groups and completed a pre-test block of dart throws, a 20-minute practice block of throws while receiving their stimulation condition, and a post-test block of dart throws. The results showed that a-tDCS accelerated the skill learning of dart throwing more than SHAM and c-tDCS conditions. The SHAM and c-tDCS conditions were not different. We conclude that a-tDCS may have a positive effect in a single training session which would be ideal in a recreational game environment where repeated practice is not common.
Collapse
|
15
|
Focality-Oriented Selection of Current Dose for Transcranial Direct Current Stimulation. J Pers Med 2021; 11:jpm11090940. [PMID: 34575717 PMCID: PMC8466113 DOI: 10.3390/jpm11090940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022] Open
Abstract
Background: In transcranial direct current stimulation (tDCS), the injected current becomes distributed across the brain areas. The objective is to stimulate the target region of interest (ROI) while minimizing the current in non-target ROIs (the 'focality' of tDCS). For this purpose, determining the appropriate current dose for an individual is difficult. Aim: To introduce a dose-target determination index (DTDI) to quantify the focality of tDCS and examine the dose-focality relationship in three different populations. Method: Here, we extended our previous toolbox i-SATA to the MNI reference space. After a tDCS montage is simulated for a current dose, the i-SATA(MNI) computes the average (over voxels) current density for every region in the brain. DTDI is the ratio of the average current density at the target ROI to the ROI with a maximum value (the peak region). Ideally, target ROI should be the peak region, so DTDI shall range from 0 to 1. The higher the value, the better the dose. We estimated the variation of DTDI within and across individuals using T1-weighted brain images of 45 males and females distributed equally across three age groups: (a) young adults (20 ≤ x ˂ 40 years), (b) mid adults (40 ≤ x ˂ 60 years), and (c) older adults (60 ≤ x ˂ 80 years). DTDI's were evaluated for the frontal montage with electrodes at F3 and the right supraorbital for three current doses of 1 mA, 2 mA, and 3 mA, with the target ROI at the left middle frontal gyrus. Result: As the dose is incremented, DTDI may show (a) increase, (b) decrease, and (c) no change across the individuals depending on the relationship (nonlinear or linear) between the injected tDCS current and the distribution of current density in the target ROI. The nonlinearity is predominant in older adults with a decrease in focality. The decline is stronger in males. Higher current dose at older age can enhance the focality of stimulation. Conclusion: DTDI provides information on which tDCS current dose will optimize the focality of stimulation. The recommended DTDI dose should be prioritized based on the age (>40 years) and sex (especially for males) of an individual. The toolbox i-SATA(MNI) is freely available.
Collapse
|
16
|
Aloi D, della Rocchetta AI, Ditchfield A, Coulborn S, Fernández-Espejo D. Therapeutic Use of Transcranial Direct Current Stimulation in the Rehabilitation of Prolonged Disorders of Consciousness. Front Neurol 2021; 12:632572. [PMID: 33897592 PMCID: PMC8058460 DOI: 10.3389/fneur.2021.632572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Patients with Prolonged Disorders of Consciousness (PDOC) have catastrophic disabilities and very complex needs for care. Therapeutic options are very limited, and patients often show little functional improvement over time. Neuroimaging studies have demonstrated that a significant number of PDOC patients retain a high level of cognitive functioning, and in some cases even awareness, and are simply unable to show this with their external behavior - a condition known as cognitive-motor dissociation (CMD). Despite vast implications for diagnosis, the discovery of covert cognition in PDOC patients is not typically associated with a more favorable prognosis, and the majority of patients will remain in a permanent state of low responsiveness. Recently, transcranial direct current stimulation (tDCS) has attracted attention as a potential therapeutic tool in PDOC. Research to date suggests that tDCS can lead to clinical improvements in patients with a minimally conscious state (MCS), especially when administered over multiple sessions. While promising, the outcomes of these studies have been highly inconsistent, partially due to small sample sizes, heterogeneous methodologies (in terms of both tDCS parameters and outcome measures), and limitations related to electrode placement and heterogeneity of brain damage inherent to PDOC. In addition, we argue that neuroimaging and electrophysiological assessments may serve as more sensitive biomarkers to identify changes after tDCS that are not yet apparent behaviorally. Finally, given the evidence that concurrent brain stimulation and physical therapy can enhance motor rehabilitation, we argue that future studies should focus on the integration of tDCS with conventional rehabilitation programmes from the subacute phase of care onwards, to ascertain whether any synergies exist.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Ditchfield
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
18
|
Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses. Sci Rep 2020; 10:22434. [PMID: 33384434 PMCID: PMC7775427 DOI: 10.1038/s41598-020-80023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)–US (unconditioned stimulus) trials were applied. During the first 50 paired CS–US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS–US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance.
Collapse
|
19
|
Pellegrini M, Zoghi M, Jaberzadeh S. Genetic Polymorphisms Do Not Predict Interindividual Variability to Cathodal Transcranial Direct Current Stimulation of the Primary Motor Cortex. Brain Connect 2020; 11:56-72. [PMID: 33198509 DOI: 10.1089/brain.2020.0762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: High variability between individuals (i.e., interindividual variability) in response to transcranial direct current stimulation (tDCS) has become a commonly reported issue in the tDCS literature in recent years. Inherent genetic differences between individuals have been proposed as a contributing factor to observed response variability. This study investigated whether tDCS interindividual variability was genetically mediated. Methods: A large sample size of 61 healthy males received cathodal tDCS (c-tDCS) and sham-tDCS of the primary motor cortex at 1 mA and 10 min via 6 × 4 cm active and 7 × 5 cm return electrodes. Corticospinal excitability (CSE) was assessed via 25 single-pulse transcranial magnetic stimulation motor-evoked potentials (MEPs). Intracortical inhibition was assessed via twenty-five 3 msec interstimulus interval (ISI) paired-pulse MEPs, known as short-interval intracortical inhibition (SICI). Intracortical facilitation (ICF) was assessed via twenty-five 10 msec ISI paired-pulse MEPs. Gene variants encoding for excitatory and inhibitory neuroreceptors were determined via saliva samples. Predetermined thresholds and statistical cluster analyses were used to subgroup individuals. Results: Two distinct subgroups were identified, "responders" reducing CSE following c-tDCS and "nonresponders" showing no reduction or even increase in CSE. Differences in CSE between responders and nonresponders following c-tDCS were not explained by changes in SICI or ICF. Conclusions: No significant relationships were reported between gene variants and interindividual variability to c-tDCS, suggesting that the chosen gene variants did not influence the activity of the neuroreceptors involved in eliciting changes in CSE in responders following c-tDCS. In this largest c-tDCS study of its kind, novel insights were reported into the contribution genetic factors may play in observed interindividual variability to c-tDCS. Impact statement This study adds insight into the issue of interindividual variability to c-tDCS. It highlights not all individuals respond to c-tDCS similarly when exposed to the same stimulus parameters. This disparity in response to c-tDCS between individuals does not appear to be genetically mediated. For c-tDCS to progress to large-scale clinical application, reliability, predictability and reproducibility are essential. Systematically investigating factors contributing to interindividual variability take steps towards this progress the c-tDCS field towards the potential development of screening tools to determine clinical suitability to c-tDCS to ensure its application in those who may benefit the most.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Sivaramakrishnan A, Madhavan S. Combining transcranial direct current stimulation with aerobic exercise to optimize cortical priming in stroke. Appl Physiol Nutr Metab 2020; 46:426-435. [PMID: 33095999 DOI: 10.1139/apnm-2020-0677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aerobic exercise (AE) and transcranial direct current stimulation (tDCS) are priming techniques that have been studied for their potential neuromodulatory effects on corticomotor excitability (CME); however, the synergistic effects of AE and tDCS are not explored in stroke. Here we investigated the synergistic effects of AE and tDCS on CME, intracortical and transcallosal inhibition, and motor control for the lower limb in stroke. Twenty-six stroke survivors participated in 3 sessions: tDCS, AE, and AE+tDCS. AE included moderate-intensity exercise and tDCS included 1 mA of anodal tDCS to the lower limb motor cortex with or without AE. Outcomes included measures of CME, short-interval intracortical inhibition (SICI), ipsilateral silent period (iSP) (an index of transcallosal inhibition) for the tibialis anterior, and ankle reaction time. Ipsilesional CME significantly decreased for AE compared with AE+tDCS and tDCS. No differences were noted in SICI, iSP measures, or reaction time between all 3 sessions. Our findings suggest that a combination of exercise and tDCS, and tDCS demonstrate greater excitability of the ipsilesional hemisphere compared with exercise only; however, these effects were specific to the descending corticomotor pathways. No additive priming effects of exercise and tDCS over tDCS was observed. Novelty: An exercise and tDCS paradigm upregulated the descending motor pathways from the ipsilesional lower limb primary motor cortex compared with exercise. Exercise or tDCS administered alone or in combination did not affect intracortical or transcallosal inhibition or reaction time.
Collapse
Affiliation(s)
- Anjali Sivaramakrishnan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, UIC, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA
| |
Collapse
|
22
|
Pellegrini M, Zoghi M, Jaberzadeh S. Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex? Eur J Neurosci 2020; 53:1569-1591. [PMID: 33048398 DOI: 10.1111/ejn.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Genetic mediation of cortical plasticity and the role genetic variants play in previously observed response variability to transcranial direct current stimulation (tDCS) have become important issues in the tDCS literature in recent years. This study investigated whether inter-individual variability to tDCS was in-part genetically mediated. In 61 healthy males, anodal-tDCS (a-tDCS) and sham-tDCS were administered to the primary motor cortex at 1 mA for 10-min via 6 × 4 cm active and 7 × 5 cm return electrodes. Twenty-five single-pulse transcranial magnetic stimulation (TMS) motor evoked potentials (MEP) were recorded to represent corticospinal excitability (CSE). Twenty-five paired-pulse MEPs were recorded with 3 ms inter-stimulus interval (ISI) to assess intracortical inhibition (ICI) via short-interval intracranial inhibition (SICI) and 10 ms ISI for intracortical facilitation (ICF). Saliva samples were tested for specific genetic polymorphisms in genes encoding for excitatory and inhibitory neuroreceptors. Individuals were sub-grouped based on a pre-determined threshold and via statistical cluster analysis. Two distinct subgroups were identified, increases in CSE following a-tDCS (i.e. Responders) and no increase or even reductions in CSE (i.e. Non-responders). No changes in ICI or ICF were reported. No relationships were reported between genetic polymorphisms in excitatory receptor genes and a-tDCS responders. An association was reported between a-tDCS responders and GABRA3 gene polymorphisms encoding for GABA-A receptors suggesting potential relationships between GABA-A receptor variations and capacity to undergo tDCS-induced cortical plasticity. In the largest tDCS study of its kind, this study presents an important step forward in determining the contribution genetic factors play in previously observed inter-individual variability to tDCS.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Hassanzahraee M, Nitsche MA, Zoghi M, Jaberzadeh S. Determination of anodal tDCS intensity threshold for reversal of corticospinal excitability: an investigation for induction of counter-regulatory mechanisms. Sci Rep 2020; 10:16108. [PMID: 32999375 PMCID: PMC7527486 DOI: 10.1038/s41598-020-72909-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation is applied to modulate activity, and excitability of the brain. Basically, LTP-like plasticity is induced when anodal tDCS (a-tDCS) is applied over the primary motor cortex. However, it has been shown that specific parameters of a-tDCS can induce a plasticity reversal. We aimed to systematically assess the intensity threshold for reversal of the direction of plasticity induced by a-tDCS, monitored by corticospinal excitability (CSE), and explored mechanisms regulating this reversal. Fifteen healthy participants received a-tDCS in pseudo-random order for 26 min with four intensities of 0.3, 0.7, 1, and 1.5 mA. To measure CSE changes, single-pulse TMS was applied over the left M1, and motor evoked potentials of a contralateral hand muscle were recorded prior to a-tDCS, immediately and 30-min post-intervention. Paired-pulse TMS was used to evaluate intracortical excitation and inhibition. CSE increased significantly following a-tDCS with an intensity of 0.7 mA; however, the expected effect decreased and even reversed at intensities of 1 and 1.5 mA. ICF was significantly increased while SICI and LICI decreased at 0.7 mA. On the other hand, a significant decrease of ICF, but SICI and LICI enhancement was observed at intensities of 1, and 1.5 mA. The present findings show an intensity threshold of ≥ 1 mA for 26 min a-tDCS to reverse LTP- into LTD-like plasticity. It is suggested that increasing stimulation intensity, with constant stimulation duration, activates counter-regulatory mechanisms to prevent excessive brain excitation. Therefore, stimulation intensity and plasticity induced by a-tDCS might non-linearly correlate in scenarios with prolonged stimulation duration.
Collapse
Affiliation(s)
- Maryam Hassanzahraee
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| | - Michael A Nitsche
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.,Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Pellegrini M, Zoghi M, Jaberzadeh S. The effects of transcranial direct current stimulation on corticospinal and cortico-cortical excitability and response variability: Conventional versus high-definition montages. Neurosci Res 2020; 166:12-25. [PMID: 32610058 DOI: 10.1016/j.neures.2020.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023]
Abstract
Response variability following transcranial direct current stimulation (tDCS) highlights need for exploring different tDCS electrode montages. Corticospinal excitability (CSE), cortico-cortical excitability and intra-individual variability was compared following conventional and high-definition (HD) anodal (a-tDCS) and cathodal (c-tDCS) tDCS. Fifteen healthy males attended four sessions at-least one-week apart: conventional a-tDCS, conventional c-tDCS, HD-a-tDCS, HD-c-tDCS. TDCS was administered (1 mA, 10-minutes) over primary motor cortex (M1), via 6 × 4 cm active and 7 × 5 cm return electrodes (conventional tDCS) and 4 × 1 ring-electrodes 3.5 cm apart over M1 (HD-tDCS). For CSE, twenty-five single-pulse transcranial magnetic stimulation (TMS) peak-to-peak motor evoked potentials (MEP) were recorded at baseline, 0-minutes and 30-minutes post-tDCS. Twenty-five paired-pulse MEPs with 3-millisecond (ms) inter-pulse interval (IPI) and twenty-five at 10 ms assessed short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). MEP standardised z-values standard deviations represented intra-individual variability. No significant changes in CSE from baseline were reported for all four interventions. No significant differences were reported in CSE between conventional and HD a-tDCS, but significant differences between conventional and HD c-tDCS 0-minutes post-tDCS. Conventional tDCS significantly reduced intra-individual variability compared to HD-tDCS for a-tDCS (0-minutes) and c-tDCS (30-minutes). No changes were reported for SICI/ICF. These novel findings of increased intra-individual variability following HD-tDCS, at the current stimulus parameters, highlight need for further nuanced research and refinement to optimise the HD-tDCS dosage-response relationship.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
25
|
Bashir S, Ahmad S, Alatefi M, Hamza A, Sharaf M, Fecteau S, Yoo WK. Effects of anodal transcranial direct current stimulation on motor evoked potentials variability in humans. Physiol Rep 2020; 7:e14087. [PMID: 31301123 PMCID: PMC6640590 DOI: 10.14814/phy2.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Motor evoked potentials (MEPs) obtained from transcranial magnetic stimulation (TMS) allow corticospinal excitability (CSE) to be measured in the human primary motor cortex (M1). CSE responses to transcranial direct current stimulation (tDCS) protocols are highly variable. Here, we tested the reproducibility and reliability of individual MEPs following a common anodal tDCS protocol. In this study, 32 healthy subjects received anodal tDCS stimulation over the left M1 for three durations (tDCS‐T5, tDCS‐T10, and tDCS‐T20 min) on separate days in a crossover‐randomized order. After the resting motor threshold (RMT) was determined for the contralateral first dorsal interosseous muscle, 15 single pulses 4–8 sec apart at an intensity of 120% RMT were delivered to the left M1 to determine the baseline MEP amplitude at T0, T5, T10, T20, T30, T40, T50, and T60 min after stimulation for each durations. During TMS delivery, 3D images of the participant's cortex and hot spot were visualized for obtaining MEPs from same position. Our findings revealed that there was a significant MEPs improvement at T0 (P = 0.01) after 10 min of anodal stimulation. After the 20‐min stimulation duration, MEPs differed specifically at T0, T5, T30 min (P < 0.05). This indicates that tDCS is a promising tool to improve MEPs. Our observed variability in response to the tDCS protocol is consistent with other noninvasive brain stimulation studies.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shafiq Ahmad
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Moath Alatefi
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Ali Hamza
- Department of Electrical Engineering, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Mohamed Sharaf
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | | | - Woo Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea.,Hallym Institute for Translational Genomics & Bioinformatics, Hallym University Sacred Heart Hospital, Anyang, South Korea
| |
Collapse
|
26
|
Kuo IJ, Tang CW, Tsai YA, Tang SC, Lin CJ, Hsu SP, Liang WK, Juan CH, Zich C, Stagg CJ, Lee IH. Neurophysiological signatures of hand motor response to dual-transcranial direct current stimulation in subacute stroke: a TMS and MEG study. J Neuroeng Rehabil 2020; 17:72. [PMID: 32527268 PMCID: PMC7291576 DOI: 10.1186/s12984-020-00706-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 11/11/2022] Open
Abstract
Background Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors. Methods We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2–4 weeks after stroke onset and 14 matched healthy controls. Participants had real dual-tDCS (with an ipsilesional [right for controls] M1 anode and a contralesional M1 [left for controls] cathode; 2 mA for 20mins) and sham dual-tDCS on separate days, with concurrent paretic [left for controls] hand exercise. Using transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), we recorded motor evoked potentials (MEPs), the ipsilateral silent period (iSP), short-interval intracortical inhibition, and finger movement-related cortical oscillations before and immediately after tDCS. Results Stroke survivors had decreased excitability in ipsilesional M1 with a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline compared with controls, as quantified by decreased MEPs and increased iSP duration. Dual-tDCS led to increased MEPs and decreased iSP duration in ipsilesional M1. The magnitude of the tDCS-induced MEP increase in stroke survivors was predicted by baseline contralesional-to-ipsilesional transcallosal inhibition (iSP) ratio. Baseline post-movement synchronization in α-band activity in ipsilesional M1 was decreased after stroke compared with controls, and its tDCS-induced increase correlated with upper limb score in stroke survivors. No significant adverse effects were observed during or after dual-tDCS. Conclusions Task-concurrent dual-tDCS in subacute stroke can safely and effectively modulate bilateral M1 excitability and inter-hemispheric imbalance and also movement-related α-activity.
Collapse
Affiliation(s)
- I-Ju Kuo
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Chih-Wei Tang
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Department of Neurology, Far Eastern Memorial Hospital, No.21, Sec. 2, Nanya S. Rd., Banqiao Dist, New Taipei City, 220, Taiwan
| | - Yun-An Tsai
- Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Shuen-Chang Tang
- Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Chun-Jen Lin
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Shih-Pin Hsu
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City, 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City, 320, Taiwan
| | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - I-Hui Lee
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan. .,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan.
| |
Collapse
|
27
|
Bashir S, Aisha D, Hamza A, Al-Hussain F, Yoo WK. Effects of transcranial direct current stimulation on cortex modulation by stimulation of the primary motor cortex and parietal cortex in humans. Int J Neurosci 2020; 131:1107-1114. [PMID: 32462947 DOI: 10.1080/00207454.2020.1775594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM OF THE STUDY Transcranial magnetic stimulation (TMS) is used to measure corticospinal excitability (CSE) from the primary motor cortex (M1) in humans through motor-evoked potentials (MEPs). The variability of CSE responses to transcranial direct current stimulation (tDCS) protocols is high and needs to be reproduced in the healthy population. The M1 and posterior parietal cortex (PPC) are anatomically and functionally connected and could play a role in understanding the variability in CSE responses. We tested the individual MEPs following a common cathodal (ctDCS) protocol over the M1 and PPC. MATERIALS AND METHODS Twenty-eight healthy subjects were randomized for a ctDCS stimulation over the left M1 and PPC for 20 min on a separate days. The first dorsal interosseous muscle (FDI) contralateral stimulation of the left M1 was used as the resting motor threshold (RMT), while 15 single pulses 4-8 s apart at an intensity of 120% RMT were used to determine the baseline MEP amplitude and at T0, 5, 10, 20, 30, 40, 50, and 60 min after ctDCS stimulation in both sessions. RESULTS A 20 min duration of ctDCS stimulation significantly deceased the CSE only at T0 (p = 0.046 at M1, p = 0.010 at PPC). CONCLUSION Our results suggested that PPC stimulation can modulate M1 excitability and PPC-M1 connectivity, but a significant effect is only observed immediately post ctDCS. The tDCS showed variability in response to the tDCS protocol is consistent with other non-invasive brain stimulation studies.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Dowihi Aisha
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Ali Hamza
- Department of Electrical Engineering, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Fawaz Al-Hussain
- Division of Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea.,Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
28
|
Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling. Brain Stimul 2020; 13:961-969. [PMID: 32330607 PMCID: PMC7906246 DOI: 10.1016/j.brs.2020.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Unique amongst brain stimulation tools, transcranial direct current stimulation (tDCS) currently lacks an easy or widely implemented method for individualizing dosage. Objective: We developed a method of reverse-calculating electric-field (E-field) models based on Magnetic Resonance Imaging (MRI) scans that can estimate individualized tDCS dose. We also evaluated an MRI-free method of individualizing tDCS dose by measuring transcranial magnetic stimulation (TMS) motor threshold (MT) and single pulse, suprathreshold transcranial electrical stimulation (TES) MT and regressing it against E-field modeling. Key assumptions of reverse-calculation E-field modeling, including the size of region of interest (ROI) analysis and the linearity of multiple E-field models were also tested. Methods: In 29 healthy adults, we acquired TMS MT, TES MT, and anatomical T1-weighted MPRAGE MRI scans with a fiducial marking the motor hotspot. We then computed a “reverse-calculated tDCS dose” of tDCS applied at the scalp needed to cause a 1.00 V/m E-field at the cortex. Finally, we examined whether the predicted E-field values correlated with each participant’s measured TMS MT or TES MT. Results: We were able to determine a reverse-calculated tDCS dose for each participant using a 5 × 5 x 5 voxel grid region of interest (ROI) approach (average = 6.03 mA, SD = 1.44 mA, range = 3.75–9.74 mA). The Transcranial Electrical Stimulation MT, but not the Transcranial Magnetic Stimulation MT, significantly correlated with the ROI-based reverse-calculated tDCS dose determined by E-field modeling (R2 = 0.45, p < 0.001). Conclusions: Reverse-calculation E-field modeling, alone or regressed against TES MT, shows promise as a method to individualize tDCS dose. The large range of the reverse-calculated tDCS doses between subjects underscores the likely need to individualize tDCS dose. Future research should further examine the use of TES MT to individually dose tDCS as an MRI-free method of dosing tDCS.
Collapse
|
29
|
Hassanzahraee M, Nitsche MA, Zoghi M, Jaberzadeh S. Determination of anodal tDCS duration threshold for reversal of corticospinal excitability: An investigation for induction of counter-regulatory mechanisms. Brain Stimul 2020; 13:832-839. [PMID: 32289714 DOI: 10.1016/j.brs.2020.02.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is used to induce neuroplasticity in the human brain. Within certain limits of stimulation duration, anodal tDCS (a-tDCS) over the primary motor cortex induces long term potentiation- (LTP) like plasticity. A reversal of the direction of plasticity has however been described with prolonged a-tDCS protocols. OBJECTIVE We aimed to systematically investigate the intervention duration threshold for reversal of a-tDCS-induced effects on corticospinal excitability (CSE) and to determine the probable mechanisms involved in these changes. METHODS Fifteen healthy participants received a-tDCS of 1 mA for five different durations in pseudo-random session order. Transcranial magnetic stimulation (TMS) was delivered over the left M1, and motor evoked potentials (MEPs) of a contralateral hand muscle were recorded before, immediately and 30 min following intervention to measure CSE changes. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval facilitation (LIF) were assessed via paired-pulse TMS protocols. RESULTS A-tDCS significantly increased CSE as expected at stimulation durations of 22 and 24 min. However, this effect of a-tDCS on CSE decreased and even reversed when stimulation duration increased to 26, 28, and 30 min. Respective alterations of ICF, LIF, and SICI indicate the involvement of glutamatergic, and GABAergic systems in these effects. CONCLUSIONS These results confirm a duration threshold for reversal of the excitability-enhancing effect of a-tDCS with stimulation durations ≥ 26 min. Counter-regulatory mechanisms are discussed as a mechanistic foundation for these effects, which might prevent excessive brain activation.
Collapse
Affiliation(s)
- Maryam Hassanzahraee
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| | - Michael A Nitsche
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany; Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
Jamil A, Batsikadze G, Kuo HI, Meesen RLJ, Dechent P, Paulus W, Nitsche MA. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study. Hum Brain Mapp 2019; 41:1644-1666. [PMID: 31860160 PMCID: PMC7267945 DOI: 10.1002/hbm.24901] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) induces polarity‐ and dose‐dependent neuroplastic aftereffects on cortical excitability and cortical activity, as demonstrated by transcranial magnetic stimulation (TMS) and functional imaging (fMRI) studies. However, lacking systematic comparative studies between stimulation‐induced changes in cortical excitability obtained from TMS, and cortical neurovascular activity obtained from fMRI, prevent the extrapolation of respective physiological and mechanistic bases. We investigated polarity‐ and intensity‐dependent effects of tDCS on cerebral blood flow (CBF) using resting‐state arterial spin labeling (ASL‐MRI), and compared the respective changes to TMS‐induced cortical excitability (amplitudes of motor evoked potentials, MEP) in separate sessions within the same subjects (n = 29). Fifteen minutes of sham, 0.5, 1.0, 1.5, and 2.0‐mA anodal or cathodal tDCS was applied over the left primary motor cortex (M1) in a randomized repeated‐measure design. Time‐course changes were measured before, during and intermittently up to 120‐min after stimulation. ROI analyses indicated linear intensity‐ and polarity‐dependent tDCS after‐effects: all anodal‐M1 intensities increased CBF under the M1 electrode, with 2.0‐mA increasing CBF the greatest (15.3%) compared to sham, while all cathodal‐M1 intensities decreased left M1 CBF from baseline, with 2.0‐mA decreasing the greatest (−9.3%) from sham after 120‐min. The spatial distribution of perfusion changes correlated with the predicted electric field, as simulated with finite element modeling. Moreover, tDCS‐induced excitability changes correlated more strongly with perfusion changes in the left sensorimotor region compared to the targeted hand‐knob region. Our findings reveal lasting tDCS‐induced alterations in cerebral perfusion, which are dose‐dependent with tDCS parameters, but only partially account for excitability changes.
Collapse
Affiliation(s)
- Asif Jamil
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,REVAL Research Institute, University of Hasselt, Hasselt, Belgium
| | - Giorgi Batsikadze
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hsiao-I Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Raf L J Meesen
- REVAL Research Institute, University of Hasselt, Hasselt, Belgium
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
31
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Kortuem V, Kadish NE, Siniatchkin M, Moliadze V. Efficacy of tRNS and 140 Hz tACS on motor cortex excitability seemingly dependent on sensitivity to sham stimulation. Exp Brain Res 2019; 237:2885-2895. [PMID: 31482197 DOI: 10.1007/s00221-019-05640-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/27/2019] [Indexed: 11/25/2022]
Abstract
This study investigates the effect of corticospinal excitability during sham stimulation on the individual response to transcranial non-invasive brain stimulation (tNIBS). Thirty healthy young adults aged 24.2 ± 2.8 S.D. participated in the study. Sham, as well as 1 mA of tRNS and 140 Hz tACS stimulation were applied for 10 min each at different sessions. The effect of each stimulation type was quantified by recording TMS-induced, motor evoked potentials (MEPs) before (baseline) and at fixed time points after stimulation (T0, T30, T60 min.). According to the individual response to sham stimulation at T0 in comparison to baseline MEPs, subjects were regarded as responder or non-responder to sham. Following, MEPs at T0, T30 and T60 after verum or sham stimulation were assessed with a repeated measures ANOVA with the within-subject factor stimulation (sham, tRNS, 140 Hz tACS) and the between-subjects factor group (responder vs non-responder). We found that individuals who did not show immediately changes in excitability in sham stimulation sessions were the ones who responded to active stimulation conditions. On the other hand, individuals who responded to sham condition, by either increases or decreases in MEPS, did not respond to active verum stimulation. This result suggests that the presence or lack of responses to sham stimulation can provide a marker for how individuals will respond to tRNS/tACS and thus provide an explanation for the variability in interindividual response. The results of this study draw attention to the general reactivity of the brain, which can be taken into account when planning future studies using tNIBS.
Collapse
Affiliation(s)
- Viktoria Kortuem
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany
| | - Navah Ester Kadish
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany.,Clinic for Child and Adolescent Psychiatry, Hospital Bethel, Remterweg 13a, 33617, Bielefeld, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany.
| |
Collapse
|
33
|
Iyer PC, Rosenberg A, Baynard T, Madhavan S. Influence of neurovascular mechanisms on response to tDCS: an exploratory study. Exp Brain Res 2019; 237:2829-2840. [PMID: 31455998 DOI: 10.1007/s00221-019-05626-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The beneficial effects of transcranial direct current stimulation (tDCS) for stroke rehabilitation are limited by the variability in changes in corticomotor excitability (CME) after tDCS. Neuronal activity is closely related to cerebral blood flow; however, the cerebral hemodynamics of neuromodulation in relation to neural effects have been less explored. In this study, we examined the effects of tDCS on cerebral blood velocity (CBv) in chronic stroke survivors using transcranial Doppler (TCD) ultrasound in relation to changes in CME and described the neurovascular characteristics of tDCS responders. Middle cerebral artery (MCA) CBv, cerebrovascular resistance (CVRi) and other cerebral hemodynamics-related variables were continuously measured before and after 15 min of 1 mA anodal tDCS to the lesioned lower limb M1. tDCS did not modulate CBv in the whole group and upon TMS-based stratification of responders and non-responders. However, at baseline, responders demonstrated lower CME levels, lower CBv and higher CVRi as compared to non-responders. These results indicate a possible difference in baseline CME and CBv in tDCS responders that may influence their response to neuromodulation. Future trials with a large sample size and repeated baseline measurements may help validate these findings and establish a relationship between neuromodulation and neurovascular mechanisms in stroke.
Collapse
Affiliation(s)
- Pooja C Iyer
- Graduate Program in Rehabilitation Science, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander Rosenberg
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Tracy Baynard
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
34
|
Patel R, Madhavan S. Comparison of Transcranial Direct Current Stimulation Electrode Montages for the Lower Limb Motor Cortex. Brain Sci 2019; 9:brainsci9080189. [PMID: 31390741 PMCID: PMC6721300 DOI: 10.3390/brainsci9080189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been widely explored as a neuromodulatory adjunct to modulate corticomotor excitability and improve motor behavior. However, issues with the effectiveness of tDCS have led to the exploration of empirical and experimental alternate electrode placements to enhance neuromodulatory effects. Here, we conducted a preliminary study to compare a novel electrode montage (which involved placing 13 cm2 electrodes anterior and posterior to the target location) to the traditionally used electrode montage (13 cm2 stimulating electrode over the target area and the 35 cm2 reference electrode over the contralateral orbit). We examined the effects of tDCS of the lower limb motor area (M1) by measuring the corticomotor excitability (CME) of the tibialis anterior muscle using transcranial magnetic stimulation in twenty healthy participants. We examined behavioral effects using a skilled motor control task performed with the ankle. We did not find one electrode montage to be superior to the other for changes in the CME or motor control. When the group was dichotomized into responders and non-responders (based on upregulation in CME), we found that the responders showed significant upregulation from baseline after tDCS for both montages. However, only the responders in the traditional montage group showed significant changes in motor control after tDCS. These results do not support the superiority of the new anterior–posterior montage over the traditional montage. Further work with a larger cohort and multiple cumulative sessions may be necessary to confirm our results.
Collapse
Affiliation(s)
- Radhika Patel
- Department of Physical Therapy, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA
| | - Sangeetha Madhavan
- Department of Physical Therapy, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| |
Collapse
|
35
|
Labruna L, Stark-Inbar A, Breska A, Dabit M, Vanderschelden B, Nitsche MA, Ivry RB. Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation. Brain Stimul 2019; 12:992-1000. [PMID: 30930208 PMCID: PMC6592723 DOI: 10.1016/j.brs.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) can enhance cognitive function in healthy individuals, with promising applications as a therapeutic intervention. Despite this potential, variability in the efficacy of tDCS has been a considerable concern. OBJECTIVE /Hypothesis: Given that tDCS is always applied at a set intensity, we examined whether individual differences in sensitivity to brain stimulation might be one variable that modulates the efficacy of tDCS in a motor learning task. METHODS In the first part of the experiment, single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) was used to determine each participant's resting motor threshold (rMT). This measure was used as a proxy of individual sensitivity to brain stimulation. In an experimental group of 28 participants, 2 mA tDCS was then applied during a motor learning task with the anodal electrode positioned over left M1. Another 14 participants received sham stimulation. RESULTS M1-Anodal tDCS facilitated learning relative to participants who received sham stimulation. Of primary interest was a within-group analysis of the experimental group, showing that the rate of learning was positively correlated with rMT: Participants who were more sensitive to brain stimulation as operationalized by our TMS proxy (low rMT), showed faster adaptation. CONCLUSIONS Methodologically, the results indicate that TMS sensitivity can predict tDCS efficacy in a behavioral task, providing insight into one source of variability that may contribute to replication problems with tDCS. Theoretically, the results provide further evidence of a role of sensorimotor cortex in adaptation, with the boost from tDCS observed during acquisition.
Collapse
Affiliation(s)
- L Labruna
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA.
| | - A Stark-Inbar
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA
| | - A Breska
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA
| | - M Dabit
- Department of Psychology, University of California, 94704, Berkeley, CA, USA
| | - B Vanderschelden
- Department of Psychology, University of California, 94704, Berkeley, CA, USA
| | - M A Nitsche
- Leibniz Research Center for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - R B Ivry
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA
| |
Collapse
|
36
|
Madeo G, Bonci A. Rewiring the Addicted Brain: Circuits-Based Treatment for Addiction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:173-184. [PMID: 31097615 DOI: 10.1101/sqb.2018.83.038158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The advent of the noninvasive brain stimulation (NIBS) technique has paved the way for neural circuit-based treatments for addiction. Recently, evidence from both preclinical and clinical studies has evaluated the use of transcranial magnetic stimulation (TMS) as a safe and cost-effective therapeutic tool for substance use disorders (SUDs). Indeed, repetitive TMS impacts on neural activity inducing short- and long-term effects involving neuroplasticity mechanisms locally within the target area of stimulation and the network level throughout the brain. Here, we provide an integrated view of evidence highlighting the mechanisms of TMS-induced effects on modulating the maladaptive brain circuitry of addiction. We then review the preclinical and clinical findings suggesting rTMS as an effective interventional tool for the treatment of SUDs.
Collapse
Affiliation(s)
- Graziella Madeo
- Novella Fronda Foundation, Human Science and Brain Research Piazza Castello, 16-35141 Padua, Italy.,Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
37
|
Albuquerque LLD, Fischer KM, Pauls AL, Pantovic M, Guadagnoli MA, Riley ZA, Poston B. An acute application of transcranial random noise stimulation does not enhance motor skill acquisition or retention in a golf putting task. Hum Mov Sci 2019; 66:241-248. [PMID: 31078943 DOI: 10.1016/j.humov.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 11/18/2022]
Abstract
Transcranial random noise stimulation (tRNS) is a brain stimulation technique that has been shown to increase motor performance in simple motor tasks. The purpose was to determine the influence of tRNS on motor skill acquisition and retention in a complex golf putting task. Thirty-four young adults were randomly assigned to a tRNS group or a SHAM stimulation group. Each subject completed a practice session followed by a retention session. In the practice session, subjects performed golf putting trials in a baseline test block, four practice blocks, and a post test block. Twenty-four hours later subjects completed the retention test block. The golf putting task involved performing putts to a small target located 3 m away. tRNS or SHAM was applied during the practice blocks concurrently with the golf putting task. tRNS was applied over the first dorsal interosseus muscle representation area of the motor cortex for 20 min at a current strength of 2 mA. Endpoint error and endpoint variance were reduced across the both the practice blocks and the test blocks, but these reductions were not different between groups. These findings suggest that an acute application of tRNS failed to enhance skill acquisition or retention in a golf putting task.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Katherine M Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Aaron L Pauls
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Mark A Guadagnoli
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zachary A Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
38
|
Mamlins A, Hulst T, Donchin O, Timmann D, Claassen J. No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects. J Neurophysiol 2019; 121:2112-2125. [PMID: 30943093 DOI: 10.1152/jn.00352.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that cerebellar transcranial direct current stimulation (tDCS) leads to faster adaptation of arm reaching movements to visuomotor rotation and force field perturbations in healthy subjects. The first aim of the present study was to confirm a stimulation-dependent effect on motor adaptation. Second, we investigated whether tDCS effects differ depending on onset, that is, before or at the beginning of the adaptation phase. A total of 120 healthy and right-handed subjects (60 women, mean age 23.2 ± SD 2.7 yr, range 18-31 yr) were tested. Subjects moved a cursor with a manipulandum to one of eight targets presented on a vertically orientated screen. Three baseline blocks were followed by one adaptation block and three washout blocks. Sixty subjects did a force field adaptation task (FF), and 60 subjects did a visuomotor adaptation task (VM). Equal numbers of subjects received anodal, cathodal, or sham cerebellar tDCS beginning either in the third baseline block or at the start of the adaptation block. In FF and VM, tDCS and the onset of tDCS did not show a significant effect on motor adaptation (all P values >0.05). We were unable to support previous findings of modulatory cerebellar tDCS effects in reaching adaptation tasks in healthy subjects. Prior to possible application in patients with cerebellar disease, future experiments are needed to determine which tDCS and task parameters lead to robust tDCS effects. NEW & NOTEWORTHY Transcranial direct current stimulation (tDCS) is a promising tool to improve motor learning. We investigated whether cerebellar tDCS improves motor learning in force field and visuomotor tasks in healthy subjects and what influence the onset of stimulation has. We did not find stimulation effects of tDCS or an effect of onset of stimulation. A reevaluation of cerebellar tDCS in healthy subjects and at the end of the clinical potential in cerebellar patients is demanded.
Collapse
Affiliation(s)
- A Mamlins
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany
| | - T Hulst
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany.,Department of Neuroscience, Erasmus MC, Rotterdam , The Netherlands ; Erasmus University College, Rotterdam , The Netherlands
| | - O Donchin
- Ben-Gurion University of the Negev, Department of Biomedical Engineering and Zlotowski Center for Neuroscience , Beer Sheva , Israel
| | - D Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany
| | - J Claassen
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany
| |
Collapse
|
39
|
False positives associated with responder/non-responder analyses based on motor evoked potentials. Brain Stimul 2019; 12:314-318. [DOI: 10.1016/j.brs.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022] Open
|
40
|
Pellegrini M, Zoghi M, Jaberzadeh S. Cluster analysis and subgrouping to investigate inter-individual variability to non-invasive brain stimulation: a systematic review. Rev Neurosci 2018; 29:675-697. [PMID: 29329109 DOI: 10.1515/revneuro-2017-0083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/25/2017] [Indexed: 01/17/2023]
Abstract
Cluster analysis and other subgrouping techniques have risen in popularity in recent years in non-invasive brain stimulation research in the attempt to investigate the issue of inter-individual variability - the issue of why some individuals respond, as traditionally expected, to non-invasive brain stimulation protocols and others do not. Cluster analysis and subgrouping techniques have been used to categorise individuals, based on their response patterns, as responder or non-responders. There is, however, a lack of consensus and consistency on the most appropriate technique to use. This systematic review aimed to provide a systematic summary of the cluster analysis and subgrouping techniques used to date and suggest recommendations moving forward. Twenty studies were included that utilised subgrouping techniques, while seven of these additionally utilised cluster analysis techniques. The results of this systematic review appear to indicate that statistical cluster analysis techniques are effective in identifying subgroups of individuals based on response patterns to non-invasive brain stimulation. This systematic review also reports a lack of consensus amongst researchers on the most effective subgrouping technique and the criteria used to determine whether an individual is categorised as a responder or a non-responder. This systematic review provides a step-by-step guide to carrying out statistical cluster analyses and subgrouping techniques to provide a framework for analysis when developing further insights into the contributing factors of inter-individual variability in response to non-invasive brain stimulation.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Peninsula Campus, PO Box 527, Frankston, VIC 3199, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Peninsula Campus, PO Box 527, Frankston, VIC 3199, Australia
| |
Collapse
|
41
|
Abstract
Transcranial direct current stimulation (tDCS) devices apply direct current through electrodes on the scalp with the intention to modulate brain function for experimental or clinical purposes. All tDCS devices include a current controlled stimulator, electrodes that include a disposable electrolyte, and headgear to position the electrodes on the scalp. Transcranial direct current stimulation dose can be defined by the size and position of electrodes and the duration and intensity of current applied across electrodes. Electrode design and preparation are important for reproducibility and tolerability. High-definition tDCS uses smaller electrodes that can be arranged in arrays to optimize brain current flow. When intended to be used at home, tDCS devices require specific device design considerations. Computational models of current flow have been validated and support optimization and hypothesis testing. Consensus on the safety and tolerability of tDCS is protocol specific, but medical-grade tDCS devices minimize risk.
Collapse
|
42
|
Mikkonen M, Laakso I, Sumiya M, Koyama S, Hirata A, Tanaka S. TMS Motor Thresholds Correlate With TDCS Electric Field Strengths in Hand Motor Area. Front Neurosci 2018; 12:426. [PMID: 29988501 PMCID: PMC6026630 DOI: 10.3389/fnins.2018.00426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 07/06/2018] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (TDCS) modulates cortical activity and influences motor and cognitive functions in both healthy and clinical populations. However, there is large inter-individual variability in the responses to TDCS. Computational studies have suggested that inter-individual differences in cranial and brain anatomy may contribute to this variability via creating varying electric fields in the brain. This implies that the electric fields or their strength and orientation should be considered and incorporated when selecting the TDCS dose. Unfortunately, electric field modeling is difficult to perform; thus, a more-robust and practical method of estimating the strength of TDCS electric fields for experimental use is required. As recent studies have revealed a relationship between the sensitivity to TMS and motor cortical TDCS after-effects, the aim of the present study was to investigate whether the resting motor threshold (RMT), a simple measure of transcranial magnetic stimulation (TMS) sensitivity, would be useful for estimating TDCS electric field strengths in the hand area of primary motor cortex (M1). To achieve this, we measured the RMT in 28 subjects. We also obtained magnetic resonance images from each subject to build individual three-dimensional anatomic models, which were used in solving the TDCS and TMS electric fields using the finite element method (FEM). Then, we calculated the correlation between the measured RMT and the modeled TDCS electric fields. We found that the RMT correlated with the TDCS electric fields in hand M1 (R2 = 0.58), but no obvious correlations were identified in regions outside M1. The found correlation was mainly due to a correlation between the TDCS and TMS electric fields, both of which were affected by individual's anatomic features. In conclusion, the RMT could provide a useful tool for estimating cortical electric fields for motor cortical TDCS.
Collapse
Affiliation(s)
- Marko Mikkonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Motofumi Sumiya
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Soichiro Koyama
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
| | - Akimasa Hirata
- Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
43
|
Effects of TDCS dosage on working memory in healthy participants. Brain Stimul 2018; 11:518-527. [DOI: 10.1016/j.brs.2018.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022] Open
|
44
|
Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Dmochowski J, Edwards DJ, Frohlich F, Kappenman ES, Lim KO, Loo C, Mantovani A, McMullen DP, Parra LC, Pearson M, Richardson JD, Rumsey JM, Sehatpour P, Sommers D, Unal G, Wassermann EM, Woods AJ, Lisanby SH. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul 2018; 11:465-480. [PMID: 29398575 PMCID: PMC5997279 DOI: 10.1016/j.brs.2017.12.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. OBJECTIVE This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. METHODS The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. RESULTS Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. CONCLUSIONS These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Leigh E Charvet
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Zhi-De Deng
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Dylan J Edwards
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Rehabilitation and Research, Burke-Cornell Medical Research Facility, White Plains, New York and School of Medicine and Health Sciences, Edith Cowan University, Perth, Australia
| | - Flavio Frohlich
- Department of Psychiatry, Cell Biology and Physiology, Biomedical Engineering, and Neurology, Carolina Center for Neurostimulation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Emily S Kappenman
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis Veterans Administration Health Care System, and Defense Veterans Brain Injury Center, Minneapolis, MN, United States
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Antonio Mantovani
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, New York, NY, United States
| | - David P McMullen
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Michele Pearson
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Judith M Rumsey
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States.
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - David Sommers
- Scientific Review Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah H Lisanby
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Foerster Á, Dutta A, Kuo M, Paulus W, Nitsche MA. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals. Eur J Neurosci 2018; 47:779-789. [DOI: 10.1111/ejn.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Águida Foerster
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Anirban Dutta
- Department of Biomedical Engineering University at Buffalo Buffalo NY USA
| | - Min‐Fang Kuo
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
| | - Michael A. Nitsche
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
- Department of Neurology University Medical Hospital Bergmannsheil Bochum Germany
| |
Collapse
|
46
|
Using tDCS priming to improve brain function: Can metaplasticity provide the key to boosting outcomes? Neurosci Biobehav Rev 2017; 83:155-159. [DOI: 10.1016/j.neubiorev.2017.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 11/23/2022]
|
47
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
48
|
|
49
|
Bowling NC, Banissy MJ. Modulating vicarious tactile perception with transcranial electrical current stimulation. Eur J Neurosci 2017; 46:2355-2364. [PMID: 28921774 PMCID: PMC5900887 DOI: 10.1111/ejn.13699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 12/03/2022]
Abstract
Our capacity to share the experiences of others is a critical part of social behaviour. One process thought to be important for this is vicarious perception. Passively viewing touch activates some of the same network of brain regions as the direct experience of touch. This vicarious experience is usually implicit, but for some people, viewing touch evokes conscious tactile sensations (mirror-touch synaesthesia). Recent work has attempted to induce conscious vicarious touch in those that do not normally experience these sensations, using transcranial direct current stimulation (tDCS). Anodal tDCS applied to primary somatosensory cortex (SI) was found to induce behavioural performance akin to mirror-touch synaesthesia on a visuotactile interference task. Here, we conducted two experiments that sought to replicate and extend these findings by examining: (i) the effects of tDCS and high-frequency transcranial random noise stimulation (tRNS) targeted at SI and temporo-parietal junction (TPJ) on vicarious tactile perception, (ii) the extent to which any stimulation effects were specific to viewing touch to humans vs. inanimate agents and (iii) the influence of visual perspective (viewing touch from one's own vs. another's perspective) on vicarious perception. In Experiment 1, tRNS targeted at SI did not modulate vicarious perception. In Experiment 2, tDCS targeted at SI, but not TPJ, resulted in some modulation of vicarious perception, but there were important caveats to this effect. Implications regarding mechanisms of vicarious perception are discussed. Collectively, the findings do not provide convincing evidence for the potential to modulate vicarious tactile perception with transcranial electrical current stimulation.
Collapse
|
50
|
Dissanayaka T, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur J Neurosci 2017; 46:1968-1990. [DOI: 10.1111/ejn.13640] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Thusharika Dissanayaka
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport; School of Allied Health; La Trobe University; Bundoora Victoria Australia
| | - Michael Farrell
- Monash Biomedical Imaging; Monash University; Melbourne Victoria Australia
- Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences; Monash University; Melbourne Victoria Australia
| | - Gary F. Egan
- Monash Biomedical Imaging; Monash University; Melbourne Victoria Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
| |
Collapse
|