1
|
Wang Y, Duan C, Du X, Zhu Y, Wang L, Hu J, Sun Y. Vagus Nerve and Gut-Brain Communication. Neuroscientist 2024:10738584241259702. [PMID: 39041416 DOI: 10.1177/10738584241259702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.
Collapse
Affiliation(s)
- Yiyang Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Duan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Du
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Jun Hu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Leinen M, Grandy EF, Gebel LMU, Santana TM, Rodriguez AL, Singh SK, Fernandez MI, Dalugdug JC, Garcia-Colon EM, Lybeshari K, Alexander DR, Maura MI, Gonzalez MDC, De Paula Cunha Almeida C, Anyaso-Samuel S, Datta S, Schiefer MA. Bilateral Subdiaphragmatic Vagal Nerve Stimulation Using a Novel Waveform Decreases Body Weight, Food Consumption, Adiposity, and Activity in Obesity-Prone Rats. Obes Surg 2024; 34:1-14. [PMID: 38040984 PMCID: PMC10781827 DOI: 10.1007/s11695-023-06957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Obesity affects millions of Americans. The vagal nerves convey the degree of stomach fullness to the brain via afferent visceral fibers. Studies have found that vagal nerve stimulation (VNS) promotes reduced food intake, causes weight loss, and reduces cravings and appetite. METHODS Here, we evaluate the efficacy of a novel stimulus waveform applied bilaterally to the subdiaphragmatic vagal nerve stimulation (sVNS) for almost 13 weeks. A stimulating cuff electrode was implanted in obesity-prone Sprague Dawley rats maintained on a high-fat diet. Body weight, food consumption, and daily movement were tracked over time and compared against three control groups: sham rats on a high-fat diet that were implanted with non-operational cuffs, rats on a high-fat diet that were not implanted, and rats on a standard diet that were not implanted. RESULTS Results showed that rats on a high-fat diet that received sVNS attained a similar weight to rats on a standard diet due primarily to a reduction in daily caloric intake. Rats on a high-fat diet that received sVNS had significantly less body fat than other high-fat controls. Rats receiving sVNS also began moving a similar amount to rats on the standard diet. CONCLUSION Results from this study suggest that bilateral subdiaphragmatic vagal nerve stimulation can alter the rate of growth of rats maintained on a high-fat diet through a reduction in daily caloric intake, returning their body weight to that which is similar to rats on a standard diet over approximately 13 weeks.
Collapse
Affiliation(s)
- Monique Leinen
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Elise F Grandy
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Lourdes M Ubeira Gebel
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Tahimi Machin Santana
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Amanda L Rodriguez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Sundip K Singh
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Michael I Fernandez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Justin C Dalugdug
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Elaine M Garcia-Colon
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Kamela Lybeshari
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Daniel R Alexander
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Maria I Maura
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Maria D Cabrera Gonzalez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | | | - Samuel Anyaso-Samuel
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, 5Th Fl, Gainesville, FL, 32603, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, 5Th Fl, Gainesville, FL, 32603, USA
| | - Matthew A Schiefer
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA.
- Department of Biomedical Engineering, University of Florida, 1275 Center Dr, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Zhang X, Chen H, Val-Laillet D. Hypothesis paper: electroacupuncture targeting the gut-brain axis to modulate neurocognitive determinants of eating behavior-toward a proof of concept in the obese minipig model. Eat Weight Disord 2021; 26:61-74. [PMID: 32100220 PMCID: PMC7895779 DOI: 10.1007/s40519-020-00864-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Acupuncture has thousands of years of history and perspective for the treatment of many health problems and disorders. Beneficial effects of acupuncture on obesity have been demonstrated at various levels in animals and clinical trials, with almost no adverse effect, even when combined with local electrical stimulation, i.e., electroacupuncture (EA), a way to potentiate the effects of acupuncture. However, there is still scattered evidence about the impact of EA on brain functions related to the control of eating behavior, and notably on the gut-brain axis mechanisms involved in these putative central modulations. During the past 10 years, we have described a convincing diet-induced obese minipig model, and successfully implemented brain imaging and neurocognitive approaches to challenge mechanistic hypotheses and innovative therapeutic strategies. In the present article, we propose to confront the current literature on the acupuncture and EA effects on the gut-brain axis and obesity with the latest developments in nutrition and neuroscience research using the minipig model. Our aims are to (a) elaborate functional hypotheses on the gut-brain mechanisms underlying EA effects on obesity, and especially on the role of the vagus nerve, and (b) present the rational for testing these hypotheses in the minipig model.
Collapse
Affiliation(s)
- Xuwen Zhang
- Panyu Central Hospital, Guangzhou, China.,Guanzhou University of Chinese Medicine, Guangzhou, China
| | | | - David Val-Laillet
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, 16 Le Clos, St Gilles, 35590, Rennes, France.
| |
Collapse
|
4
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Malbert CH, Chauvin A, Horowitz M, Jones KL. Glucose Sensing Mediated by Portal Glucagon-Like Peptide 1 Receptor Is Markedly Impaired in Insulin-Resistant Obese Animals. Diabetes 2021; 70:99-110. [PMID: 33067312 DOI: 10.2337/db20-0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
The glucose portal sensor informs the brain of changes in glucose inflow through vagal afferents that require an activated glucagon-like peptide 1 receptor (GLP-1r). The GLP-1 system is known to be impaired in insulin-resistant conditions, and we sought to understand the consequences of GLP-1 resistance on glucose portal signaling. GLP-1-dependent portal glucose signaling was identified, in vivo, using a novel 68Ga-labeled GLP-1r positron-emitting probe that supplied a quantitative in situ tridimensional representation of the portal sensor with specific reference to the receptor density expressed in binding potential units. It also served as a map for single-neuron electrophysiology driven by an image-based abdominal navigation. We determined that in insulin-resistant animals, portal vagal afferents failed to inhibit their spiking activity during glucose infusion, a GLP-1r-dependent function. This reflected a reduction in portal GLP-1r binding potential, particularly between the splenic vein and the entrance of the liver. We propose that insulin resistance, through a reduction in GLP-1r density, leads to functional portal desensitization with a consequent suppression of vagal sensitivity to portal glucose.
Collapse
Affiliation(s)
| | - Alain Chauvin
- UEPR Unit, Department of Animal Physiology, INRAE, Saint-Gilles, France
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Val-Laillet D. Review: Impact of food, gut-brain signals and metabolic status on brain activity in the pig model: 10 years of nutrition research using in vivo brain imaging. Animal 2019; 13:2699-2713. [PMID: 31354119 DOI: 10.1017/s1751731119001745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to offer a panorama on 10 years of nutrition research using in vivo brain imaging in the pig model. First, we will review some work describing the brain responses to food signals, including basic tastants such as sweet and bitter at both oral and visceral levels, as well as conditioned preferred and aversive flavours. Second, we will have a look at the impact of weight gain and obesity on brain metabolism and functional responses, drawing the parallel with obese human patients. Third, we will evoke the concept of the developmental origins of health and diseases, and how the pig model can shed light on the importance of maternal nutrition during gestation and lactation for the development of the gut-brain axis and adaptation abilities of the progeny to nutritional environments. Finally, three examples of preventive or therapeutic strategies will be introduced: the use of sensory food ingredients or pre-, pro-, and postbiotics to improve metabolic and cognitive functions; the implementation of chronic vagus nerve stimulation to prevent weight gain and glucose metabolism alterations; and the development of bariatric surgery in the pig model for the understanding of its complex mechanisms at the gut-brain level. A critical conclusion will brush the limitations of neurocognitive studies in the pig model and put in perspective the rationale and ethical concerns underlying the use of pig experimentation in nutrition and neurosciences.
Collapse
Affiliation(s)
- D Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
7
|
Malbert CH, Genissel M, Divoux JL, Henry C. Chronic abdominal vagus stimulation increased brain metabolic connectivity, reduced striatal dopamine transporter and increased mid-brain serotonin transporter in obese miniature pigs. J Transl Med 2019; 17:78. [PMID: 30866954 PMCID: PMC6417219 DOI: 10.1186/s12967-019-1831-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/06/2019] [Indexed: 01/18/2023] Open
Abstract
Background/objective Changes in brain metabolism has been investigated thoroughly during unilateral cervical chronic vagal stimulation in epileptic or depressive patients. Bilateral stimulation of the abdominal vagus (aVNS) has received less attention despite the reduction in body weight and an altered feeding behavior in obese animals that could be clinically relevant in obese individuals. Our study aims to examine the changes in brain glucose metabolism (CMRglu) induced by aVNS in obese adult miniature pigs. Dopamine (DAT) and serotonin transporters (SERT) were also quantified to further understand the molecular origins of the alterations in brain metabolism. Subjects/methods Pairs of stimulating electrodes were implanted during laparoscopy on both abdominal vagal trunks in 20 obese adult’s miniature pigs. Half of the animals were permanently stimulated while the remaining were sham stimulated. Two months after the onset of stimulation, dynamic 18FDG PET and 123I-ioflupane SPECT were performed. Food intake, resting energy expenditure and fat deposition were also assessed longitudinally. Results Food intake was halved and resting energy expenditure was increased by 60% in aVNS group compared to sham. The gain in body weight was also 38% less in aVNS group compared to sham. Brain metabolic connectivity increased between numerous structures including striatum, mid-brain, amygdala and hippocampus. On the contrary, increased CMRglu were restricted to the thalamus, the periaqueducal grey and the amygdala. DAT binding potential was decreased by about one third in the striatum while SERT was about doubled in the midbrain. Conclusions Our findings demonstrated that aVNS reduced weight gain as a consequence of diminished daily food intake and increased resting energy expenditure. These changes were associated with enhanced connectivity between several brain areas. A lower striatal DAT together with a doubled mid-brain SERT were likely causative for these changes. Electronic supplementary material The online version of this article (10.1186/s12967-019-1831-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mickael Genissel
- Pegase Unit, Dept of Animal Physiology, INRA, Saint-Gilles, France
| | | | | |
Collapse
|
8
|
Dali M, Picq C, Rossel O, Maciejasz P, Malbert CH, Guiraud D. Comparison of the efficiency of chopped and non-rectangular electrical stimulus waveforms in activating small vagus nerve fibers. J Neurosci Methods 2019; 320:1-8. [PMID: 30826387 DOI: 10.1016/j.jneumeth.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND In the context of morbid obesity, vagus nerve stimulation could be used to control gastric function targeting the small afferent B-fibers and C-fibers. Compared to large A-fibers, activation thresholds of these small efferent fibers are 10 to 100 times greater, inducing technical constraints and possible nerve damages. Although rectangular waveform is commonly used in nerve stimulation, recent modeling and experimental studies suggest that non-rectangular waveforms could reduced the charge injected by the stimulator. NEW METHOD The objective of the present study is to evaluate the charge injection of complex waveforms such as the ramp, quarter sine and chopped pulses in the context of vagus nerve stimulation. We performed in-vivo study on the porcine abdominal vagus nerves and evaluated charge injection at activation thresholds. A modeling study was performed to further extent the results obtained in-vivo. COMPARISON WITH EXISTING METHOD Compared to the rectangular pulse, the ramp and quarter sine waveforms activated gastric fibers with the lowest charge injection: -23.2% and -30.1% respectively. The efficacy of chopped pulses is questioned through the consideration of the strength-duration curve. CONCLUSION Continuous ramp and quarter sine waveforms effectively activate small diameter fibers. These pulse shapes may be considered for long-term vagus nerve stimulation. The results predicted by computational models were qualitatively consistent with experiments. This suggested the relevance of using modeling in the context of complex waveforms prior to future in-vivo tests.
Collapse
Affiliation(s)
- Mélissa Dali
- INRIA, University of Montpellier, Montpellier, France.
| | | | | | | | | | - David Guiraud
- INRIA, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Dali M, Guiho T, Maciejasz P, Rossel O, Guiraud D. Investigation of the efficiency of the shape of chopped pulses using earthworm model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5483-5486. [PMID: 30441578 DOI: 10.1109/embc.2018.8513642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In neural electrical stimulation, limiting the charge delivered during a stimulus pulse is essential to avoid nerve tissue damage and to save power. Previous experimental and modeling studies indicated that waveforms such as non-rectangular continuous pulses or rectangular chopped pulse were able to improve stimulation efficiency. The goal of this study is to evaluate if non-rectangular chopped pulses such as quarter sine and ramp are more charge efficient than rectangular chopped pulse. We performed in vivo study on 17 lumbricus terrestris and compared the charge per stimulating phase needed to activate lateral giant fibers (LGF) and medial giant fiber (MGF) using chopped non-rectangular pulses and rectangular pulse, varying stimulation duration parameters. Results indicated that non rectangular chopped pulses activated MGF and LGF with less charge than rectangular chopped pulses. For MGF (respectively LGF), the gain of charge was up to 33.9\% (resp. 17.8\%) using chopped ramp, and up to 22.8\% (resp. 18.1\%) using chopped quarter sine.
Collapse
|
10
|
Pelot NA, Grill WM. Effects of vagal neuromodulation on feeding behavior. Brain Res 2018; 1693:180-187. [PMID: 29425906 PMCID: PMC6003853 DOI: 10.1016/j.brainres.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Implanted vagus nerve stimulation (VNS) for obesity was recently approved by the FDA. However, its efficacy and mechanisms of action remain unclear. Herein, we synthesize clinical and preclinical effects of VNS on feeding behavior and energy balance and discuss engineering considerations for understanding and improving the therapy. Clinical cervical VNS (≤30 Hz) to treat epilepsy or depression has produced mixed effects on weight loss as a side effect, albeit in uncontrolled, retrospective studies. Conversely, preclinical studies (cervical and subdiaphragmatic VNS) mostly report decreased food intake and either decreased weight gain or weight loss. More recent clinical studies report weight loss in response to kilohertz frequency VNS applied to the subdiaphragmatic vagi, albeit with a large placebo effect. Rather than eliciting neural activity, this therapy putatively blocks conduction in the vagus nerves. Overall, stimulation parameters lack systematic exploration, optimization, and justification based on target nerve fibers and therapeutic outcomes. The vagus nerve transduces, transmits, and integrates important neural (efferent and afferent), humoral, energetic, and inflammatory information between the gut and brain. Thus, improved understanding of the biophysics, electrophysiology, and (patho)physiology has the potential to advance VNS as an effective therapy for a wide range of diseases.
Collapse
Affiliation(s)
- Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Room 130, Hudson Hall, Campus Box 90291, Durham, NC, USA; Department of Neurobiology, Duke University, Room 101B, Bryan Research Building, 311 Research Drive, Campus Box 3209, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|