1
|
Wang W, Li R, Li C, Liang Q, Gao X. Advances in VNS efficiency and mechanisms of action on cognitive functions. Front Physiol 2024; 15:1452490. [PMID: 39444752 PMCID: PMC11496278 DOI: 10.3389/fphys.2024.1452490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 10/25/2024] Open
Abstract
Objective This systematic review aims to comprehensively analyze the efficacy and underlying mechanisms of vagus nerve stimulation (VNS) in enhancing cognitive functions and its therapeutic potential for various cognitive impairments. The review focuses on the impact of VNS on emotional processing, executive functions, learning, memory, and its clinical applications in conditions such as epilepsy, depression, Alzheimer's disease, and other neurological disorders. Methods A systematic search of electronic databases (PubMed, Scopus, Web of Science) was conducted using the keywords "vagus nerve stimulation," "cognitive enhancement," "emotional processing," "executive function," "learning and memory," "epilepsy," "depression," "Alzheimer's disease," "neurological disorders," "attention-deficit/hyperactivity disorder," "sleep disorders," and "long COVID." The inclusion criteria encompassed controlled trials, longitudinal studies, and meta-analyses published in English between 2000 and July 2024. Results A comprehensive review of 100 articles highlighted the cognitive effects of Vagus Nerve Stimulation (VNS). Studies show that VNS, especially through transcutaneous auricular VNS (taVNS), enhances emotional recognition, particularly for facial expressions, and improves selective attention under high cognitive demands. Additionally, VNS enhances learning and memory, including associative memory and spatial working memory tasks. In clinical applications, VNS exhibits promising benefits for improving cognitive functions in treatment-resistant epilepsy, depression, and Alzheimer's disease. Conclusion VNS represents a promising therapeutic approach for enhancing cognitive function across diverse patient populations. The reviewed evidence highlights its efficacy in modulating cognitive domains in healthy individuals and improving cognition in neurological conditions. However, the comparative effectiveness of different VNS modalities and the differential effects of online versus offline VNS on cognitive psychology require further investigation. Future research should focus on optimizing VNS protocols and elucidating specific cognitive domains that benefit most from VNS interventions. This ongoing exploration is essential for maximizing the therapeutic potential of VNS in clinical practice.
Collapse
Affiliation(s)
- Wendi Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| | - Rui Li
- School of Exercise Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Chuangtao Li
- School of Physical Education and Sport Science, Fujian Normal University, Fujian, China
| | - Qimin Liang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiaolin Gao
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2024:10.1007/s11010-024-05091-0. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
3
|
E R, Wang Y. Vagus Nerve Stimulation for Improvement of Vascular Cognitive Impairment. Neuropsychiatr Dis Treat 2024; 20:1445-1451. [PMID: 39072312 PMCID: PMC11283790 DOI: 10.2147/ndt.s465249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Vagus nerve stimulation (VNS) is acknowledged as a highly effective therapy for various neurological conditions, including refractory epilepsy, depression, Alzheimer's disease (AD), migraine, and stroke. Presently, there is an increasing focus on understanding the impact of VNS on cognitive aspects. Numerous studies suggest that VNS suppresses the body's inflammatory response, leading to enhanced cognitive function in patients. Vascular cognitive impairment (VCI) is a severe cognitive dysfunction syndrome resulting from prolonged chronic cerebral hypoperfusion (CCH), where the primary pathogenesis is CCH-induced neuroinflammation. In this paper, we present a comprehensive overview of the research advancements in using VNS for treating VCI and discuss that VNS improves cognitive function in VCI patients by suppressing neuroinflammation, offering insights into a potential novel approach for addressing this condition.
Collapse
Affiliation(s)
- Ridengnaxi E
- Department of Rehabilitation Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, People’s Republic of China
| | - Yan Wang
- Department of Rehabilitation Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, People’s Republic of China
| |
Collapse
|
4
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Wu CH, Chang FC, Wang YF, Lirng JF, Wu HM, Pan LLH, Wang SJ, Chen SP. Impaired Glymphatic and Meningeal Lymphatic Functions in Patients with Chronic Migraine. Ann Neurol 2024; 95:583-595. [PMID: 38055324 DOI: 10.1002/ana.26842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE This study was undertaken to investigate migraine glymphatic and meningeal lymphatic vessel (mLV) functions. METHODS Migraine patients and healthy controls (HCs) were prospectively recruited between 2020 and 2023. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index for glymphatics and dynamic contrast-enhanced magnetic resonance imaging parameters (time to peak [TTP]/enhancement integral [EI]/mean time to enhance [MTE]) for para-superior sagittal (paraSSS)-mLV or paratransverse sinus (paraTS)-mLV in episodic migraine (EM), chronic migraine (CM), and CM with and without medication-overuse headache (MOH) were analyzed. DTI-ALPS correlations with clinical parameters (migraine severity [numeric rating scale]/disability [Migraine Disability Assessment (MIDAS)]/bodily pain [Widespread Pain Index]/sleep quality [Pittsburgh Sleep Quality Index (PSQI)]) were examined. RESULTS In total, 175 subjects (112 migraine + 63 HCs) were investigated. DTI-ALPS values were lower in CM (median [interquartile range] = 0.64 [0.12]) than in EM (0.71 [0.13], p = 0.005) and HCs (0.71 [0.09], p = 0.004). CM with MOH (0.63 [0.07]) had lower DTI-ALPS values than CM without MOH (0.73 [0.12], p < 0.001). Furthermore, CM had longer TTP (paraSSS-mLV: 55.8 [12.9] vs 40.0 [7.6], p < 0.001; paraTS-mLV: 51.2 [8.1] vs 44.0 [3.3], p = 0.002), EI (paraSSS-mLV: 45.5 [42.0] vs 16.1 [9.2], p < 0.001), and MTE (paraSSS-mLV: 253.7 [6.7] vs 248.4 [13.8], p < 0.001; paraTS-mLV: 252.0 [6.2] vs 249.7 [1.2], p < 0.001) than EM patients. The MIDAS (p = 0.002) and PSQI (p = 0.002) were negatively correlated with DTI-ALPS index after Bonferroni corrections (p < q = 0.01). INTERPRETATION CM patients, particularly those with MOH, have glymphatic and meningeal lymphatic dysfunctions, which are highly clinically relevant and may implicate pathogenesis for migraine chronification. ANN NEUROL 2024;95:583-595.
Collapse
Grants
- MOHW 108-TDU-B-211-133001 Ministry of Health and Welfare, Taiwan
- MOHW107-TDU-B-211-123001 Ministry of Health and Welfare, Taiwan
- MOHW112-TDU-B-211-144001 Ministry of Health and Welfare, Taiwan
- N/A Professor Tsuen CHANG's Scholarship Program from Medical Scholarship Foundation In Memory Of Professor Albert Ly-Young Shen
- V109B-009 Taipei Veterans General Hospital
- V110C-102 Taipei Veterans General Hospital
- V111B-032 Taipei Veterans General Hospital
- V112B-007 Taipei Veterans General Hospital
- V112C-053 Taipei Veterans General Hospital
- V112C-059 Taipei Veterans General Hospital
- V112C-113 Taipei Veterans General Hospital
- V112D67-001-MY3-1 Taipei Veterans General Hospital
- V112D67-002-MY3-1 Taipei Veterans General Hospital
- V112E-004-1 Taipei Veterans General Hospital
- VGH-111-C-158 Taipei Veterans General Hospital
- The Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- 110-2314-B-075-005 The National Science and Technology Council, Taiwan
- 110-2314-B-075-032 The National Science and Technology Council, Taiwan
- 110-2321-B-010-005- The National Science and Technology Council, Taiwan
- 110-2326-B-A49A-501-MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-075 -086-MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-075-025 -MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-A49-069-MY3 The National Science and Technology Council, Taiwan
- 111-2321-B-A49-004 The National Science and Technology Council, Taiwan
- 111-2321-B-A49-011 The National Science and Technology Council, Taiwan
- 112-2314-B-075-066- The National Science and Technology Council, Taiwan
- 112-2314-B-A49-037 -MY3 The National Science and Technology Council, Taiwan
- 112-2321-B-075-007 The National Science and Technology Council, Taiwan
- NSTC 108-2314-B-010-022 -MY3 The National Science and Technology Council, Taiwan
- 109V1-5-2 Veterans General Hospitals and University System of Taiwan Joint Research Program
- 110-G1-5-2 Veterans General Hospitals and University System of Taiwan Joint Research Program
- VGHUST-112-G1-2-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
- Vivian W. Yen Neurological Foundation
- CI-109-3 Yen Tjing Ling Medical Foundation
- CI-111-2 Yen Tjing Ling Medical Foundation
- CI-112-2 Yen Tjing Ling Medical Foundation
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Peng T, Xie Y, Liu F, Lian Y, Xie Y, Ma Y, Wang C, Xie N. The cerebral lymphatic drainage system and its implications in epilepsy. J Neurosci Res 2024; 102:e25267. [PMID: 38284855 DOI: 10.1002/jnr.25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 01/30/2024]
Abstract
The central nervous system has long been thought to lack a clearance system similar to the peripheral lymphatic system. Therefore, the clearance of metabolic waste in the central nervous system has been a subject of great interest in neuroscience. Recently, the cerebral lymphatic drainage system, including the parenchymal clearance system and the meningeal lymphatic network, has attracted considerable attention. It has been extensively studied in various neurological disorders. Solute accumulation and neuroinflammation after epilepsy impair the blood-brain barrier, affecting the exchange and clearance between cerebrospinal fluid and interstitial fluid. Restoring their normal function may improve the prognosis of epilepsy. However, few studies have focused on providing a comprehensive overview of the brain clearance system and its significance in epilepsy. Therefore, this review addressed the structural composition, functions, and methods used to assess the cerebral lymphatic system, as well as the neglected association with epilepsy, and provided a theoretical basis for therapeutic approaches in epilepsy.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Fengxia Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Cui Wang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Kim D, Gan Y, Nedergaard M, Kelley DH, Tithof J. Image analysis techniques for in vivo quantification of cerebrospinal fluid flow. EXPERIMENTS IN FLUIDS 2023; 64:181. [PMID: 39691852 PMCID: PMC11651631 DOI: 10.1007/s00348-023-03719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/30/2023] [Indexed: 12/19/2024]
Abstract
Over the past decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drains CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stroke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN 55455, United States
| | - Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY 14627, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY 14627, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN 55455, United States
| |
Collapse
|
8
|
Zhao X, Zhou Y, Li Y, Huang S, Zhu H, Zhou Z, Zhu S, Zhu W. The asymmetry of glymphatic system dysfunction in patients with temporal lobe epilepsy: A DTI-ALPS study. J Neuroradiol 2023; 50:562-567. [PMID: 37301366 DOI: 10.1016/j.neurad.2023.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND PURPOSE While the occurrence of glymphatic system dysfunction has been observed in temporal lobe epilepsy (TLE), the potential asymmetry of this system has yet to be investigated in the TLE context. We aimed to investigate the glymphatic system function in both hemispheres and to analyze asymmetric features of the glymphatic system in TLE patients using diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. MATERIALS AND METHODS 43 patients (left TLE (LTLE), n = 20; right TLE (RTLE), n = 23) and 39 healthy controls (HC) were enrolled in this study. The DTI-ALPS index was calculated for the left (left ALPS index) and right (right ALPS index) hemispheres respectively. An asymmetry index (AI) was calculated by AI = (Right - Left)/ [(Right + Left)/2] to represent the asymmetric pattern. Independent two sample t-test, two-sample paired t-test or one-way ANOVA with Bonferroni correction were conducted to compare the differences in ALPS indices and AI among the groups. RESULTS Both left ALPS index (p = 0.040) and right ALPS index (p = 0.001) of RTLE patients were significantly decreased, while only left ALPS index of LTLE patients (p = 0.005) was reduced. Compared to contralateral ALPS index, the ipsilateral ALPS index was significantly decreased in TLE (p = 0.008) and RTLE (p = 0.009) patients. Leftward asymmetry of the glymphatic system was found in HC (p = 0.045) and RTLE (p = 0.009) patients. The LTLE patients presented reduced asymmetric traits when compared to RTLE patients (p = 0.029). CONCLUSION The TLE patients exhibited altered ALPS indices, which could be triggered by glymphatic system dysfunction. Altered ALPS indices were more severe in ipsilateral than in the contralateral hemisphere. Moreover, LTLE and RTLE patients exhibited different change patterns of the glymphatic system. In addition, glymphatic system function presented asymmetric patterns in both normal adult brain and RTLE patients.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Kim E, Van Reet J, Yoo SS. Cerebrospinal fluid solute transport associated with sensorimotor brain activity in rodents. Sci Rep 2023; 13:17002. [PMID: 37813871 PMCID: PMC10562378 DOI: 10.1038/s41598-023-43920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Cerebrospinal fluid (CSF) is crucial for maintaining neuronal homeostasis, providing nutrition, and removing metabolic waste from the brain. However, the relationship between neuronal activity and CSF solute transport remains poorly understood. To investigate the effect of regional neuronal activity on CSF solute transport, Sprague-Dawley rats (all male, n = 30) under anesthesia received an intracisternal injection of a fluorescent tracer (Texas Red ovalbumin) and were subjected to unilateral electrical stimulation of a forelimb. Two groups (n = 10 each) underwent two different types of stimulation protocols for 90 min, one including intermittent 7.5-s resting periods and the other without rest. The control group was not stimulated. Compared to the control, the stimulation without resting periods led to increased transport across most of the cortical areas, including the ventricles. The group that received intermittent stimulation showed an elevated level of solute uptake in limited areas, i.e., near/within the ventricles and on the ventral brain surface. Interhemispheric differences in CSF solute transport were also found in the cortical regions that overlap with the forelimb sensorimotor area. These findings suggest that neuronal activity may trigger local and brain-wide increases in CSF solute transport, contributing to waste clearance.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Mukherjee S, Mirzaee M, Tithof J. Quantifying the relationship between spreading depolarization and perivascular cerebrospinal fluid flow. Sci Rep 2023; 13:12405. [PMID: 37524734 PMCID: PMC10390554 DOI: 10.1038/s41598-023-38938-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Recent studies have linked spreading depolarization (SD, an electro-chemical wave in the brain following stroke, migraine, traumatic brain injury, and more) with increase in cerebrospinal fluid (CSF) flow through the perivascular spaces (PVSs, annular channels lining the brain vasculature). We develop a novel computational model that couples SD and CSF flow. We first use high order numerical simulations to solve a system of physiologically realistic reaction-diffusion equations which govern the spatiotemporal dynamics of ions in the extracellular and intracellular spaces of the brain cortex during SD. We then couple the SD wave with a 1D CSF flow model that captures the change in cross-sectional area, pressure, and volume flow rate through the PVSs. The coupling is modelled using an empirical relationship between the excess potassium ion concentration in the extracellular space following SD and the vessel radius. We find that the CSF volumetric flow rate depends intricately on the length and width of the PVS, as well as the vessel radius and the angle of incidence of the SD wave. We derive analytical expressions for pressure and volumetric flow rates of CSF through the PVS for a given SD wave and quantify CSF flow variations when two SD waves collide. Our numerical approach is very general and could be extended in the future to obtain novel, quantitative insights into how CSF flow in the brain couples with slow waves, functional hyperemia, seizures, or externally applied neural stimulations.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Mahsa Mirzaee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
11
|
Kim D, Gan Y, Nedergaard M, Kelley DH, Tithof J. Image Analysis Techniques for In Vivo Quantification of Cerebrospinal Fluid Flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549937. [PMID: 37546970 PMCID: PMC10401935 DOI: 10.1101/2023.07.20.549937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Over the last decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drain CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stoke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| | - Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, United States
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| |
Collapse
|
12
|
Gao Y, Liu K, Zhu J. Glymphatic system: an emerging therapeutic approach for neurological disorders. Front Mol Neurosci 2023; 16:1138769. [PMID: 37485040 PMCID: PMC10359151 DOI: 10.3389/fnmol.2023.1138769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
The functions of the glymphatic system include clearance of the metabolic waste and modulation of the water transport in the brain, and it forms a brain-wide fluid network along with cerebrospinal fluid (CSF) and interstitial fluid (ISF). The glymphatic pathway consists of periarterial influx of CSF, astrocyte-mediated interchange between ISF and CSF supported by aquaporin-4 (AQP4) on the endfeet of astrocyte around the periarterioles, and perivenous efflux of CSF. Finally, CSF is absorbed by the arachnoid granules or flows into the cervical lymphatic vessels. There is growing evidence from animal experiments that the glymphatic system dysfunction is involved in many neurological disorders, such as Alzheimer's disease, stroke, epilepsy, traumatic brain injury and meningitis. In this review, we summarize the latest progress on the glymphatic system and its driving factors, as well as changes in the glymphatic pathway in different neurological diseases. We significantly highlight the likely therapeutic approaches for glymphatic pathway in neurological diseases, and the importance of AQP4 and normal sleep architecture in this process.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Kangding Liu
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
13
|
Sepehrinezhad A, Stolze Larsen F, Ashayeri Ahmadabad R, Shahbazi A, Sahab Negah S. The Glymphatic System May Play a Vital Role in the Pathogenesis of Hepatic Encephalopathy: A Narrative Review. Cells 2023; 12:cells12070979. [PMID: 37048052 PMCID: PMC10093707 DOI: 10.3390/cells12070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of liver disease resulting in cognitive, psychiatric, and motor symptoms. Although hyperammonemia is a key factor in the pathogenesis of HE, several other factors have recently been discovered. Among these, the impairment of a highly organized perivascular network known as the glymphatic pathway seems to be involved in the progression of some neurological complications due to the accumulation of misfolded proteins and waste substances in the brain interstitial fluids (ISF). The glymphatic system plays an important role in the clearance of brain metabolic derivatives and prevents aggregation of neurotoxic agents in the brain ISF. Impairment of it will result in aggravated accumulation of neurotoxic agents in the brain ISF. This could also be the case in patients with liver failure complicated by HE. Indeed, accumulation of some metabolic by-products and agents such as ammonia, glutamine, glutamate, and aromatic amino acids has been reported in the human brain ISF using microdialysis technique is attributed to worsening of HE and correlates with brain edema. Furthermore, it has been reported that the glymphatic system is impaired in the olfactory bulb, prefrontal cortex, and hippocampus in an experimental model of HE. In this review, we discuss different factors that may affect the function of the glymphatic pathways and how these changes may be involved in HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Fin Stolze Larsen
- Department of Gastroenterology and Hepatology, Rigshospitalet, Copenhagen University Hospital, 999017 Copenhagen, Denmark
| | | | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1449614535, Iran
| |
Collapse
|
14
|
Min J, Rouanet J, Martini AC, Nashiro K, Yoo HJ, Porat S, Cho C, Wan J, Cole SW, Head E, Nation DA, Thayer JF, Mather M. Modulating heart rate oscillation affects plasma amyloid beta and tau levels in younger and older adults. Sci Rep 2023; 13:3967. [PMID: 36894565 PMCID: PMC9998394 DOI: 10.1038/s41598-023-30167-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Slow paced breathing via heart rate variability (HRV) biofeedback stimulates vagus-nerve pathways that counter noradrenergic stress and arousal pathways that can influence production and clearance of Alzheimer's disease (AD)-related proteins. Thus, we examined whether HRV biofeedback intervention affects plasma Αβ40, Αβ42, total tau (tTau), and phosphorylated tau-181 (pTau-181) levels. We randomized healthy adults (N = 108) to use slow-paced breathing with HRV biofeedback to increase heart rate oscillations (Osc+) or to use personalized strategies with HRV biofeedback to decrease heart rate oscillations (Osc-). They practiced 20-40 min daily. Four weeks of practicing the Osc+ and Osc- conditions produced large effect size differences in change in plasma Aβ40 and Aβ42 levels. The Osc+ condition decreased plasma Αβ while the Osc- condition increased Αβ. Decreases in Αβ were associated with decreases in gene transcription indicators of β-adrenergic signaling, linking effects to the noradrenergic system. There were also opposing effects of the Osc+ and Osc- interventions on tTau for younger adults and pTau-181 for older adults. These results provide novel data supporting a causal role of autonomic activity in modulating plasma AD-related biomarkers.Trial registration: NCT03458910 (ClinicalTrials.gov); first posted on 03/08/2018.
Collapse
Affiliation(s)
- Jungwon Min
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA, USA
| | - Shai Porat
- University of Southern California, Los Angeles, CA, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- University of Southern California, Los Angeles, CA, USA
| | - Steve W Cole
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Khadka N, Bikson M. Neurocapillary-Modulation. Neuromodulation 2022; 25:1299-1311. [PMID: 33340187 PMCID: PMC8213863 DOI: 10.1111/ner.13338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We consider two consequences of brain capillary ultrastructure in neuromodulation. First, blood-brain barrier (BBB) polarization as a consequence of current crossing between interstitial space and the blood. Second, interstitial current flow distortion around capillaries impacting neuronal stimulation. MATERIALS AND METHODS We developed computational models of BBB ultrastructure morphologies to first assess electric field amplification at the BBB (principle 1) and neuron polarization amplification by the presence of capillaries (principle 2). We adapt neuron cable theory to develop an analytical solution for maximum BBB polarization sensitivity. RESULTS Electrical current crosses between the brain parenchyma (interstitial space) and capillaries, producing BBB electric fields (EBBB) that are >400x of the average parenchyma electric field (ĒBRAIN), which in turn modulates transport across the BBB. Specifically, for a BBB space constant (λBBB) and wall thickness (dth-BBB), the analytical solution for maximal BBB electric field (EABBB) is given as: (ĒBRAIN × λBBB)/dth-BBB. Electrical current in the brain parenchyma is distorted around brain capillaries, amplifying neuronal polarization. Specifically, capillary ultrastructure produces ∼50% modulation of the ĒBRAIN over the ∼40 μm inter-capillary distance. The divergence of EBRAIN (Activating function) is thus ∼100 kV/m2 per unit ĒBRAIN. CONCLUSIONS BBB stimulation by principle 1 suggests novel therapeutic strategies such as boosting metabolic capacity or interstitial fluid clearance. Whereas the spatial profile of EBRAIN is traditionally assumed to depend only on macroscopic anatomy, principle 2 suggests a central role for local capillary ultrastructure-which impact forms of neuromodulation including deep brain stimulation (DBS), spinal cord stimulation (SCS), transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), and transcranial electrical stimulation (tES)/transcranial direct current stimulation (tDCS).
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
| |
Collapse
|
16
|
Choi S, Jang DC, Chung G, Kim SK. Transcutaneous Auricular Vagus Nerve Stimulation Enhances Cerebrospinal Fluid Circulation and Restores Cognitive Function in the Rodent Model of Vascular Cognitive Impairment. Cells 2022; 11:cells11193019. [PMID: 36230988 PMCID: PMC9564197 DOI: 10.3390/cells11193019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a common sequela of cerebrovascular disorders. Although transcutaneous auricular vagus nerve stimulation (taVNS) has been considered a complementary treatment for various cognitive disorders, preclinical data on the effect of taVNS on VCI and its mechanism remain ambiguous. To measure cerebrospinal fluid (CSF) circulation during taVNS, we used in vivo two-photon microscopy with CSF and vasculature tracers. VCI was induced by transient bilateral common carotid artery occlusion (tBCCAO) surgery in mice. The animals underwent anesthesia, off-site stimulation, or taVNS for 20 min. Cognitive tests, including the novel object recognition and the Y-maze tests, were performed 24 h after the last treatment. The long-term treatment group received 6 days of treatment and was tested on day 7; the short-term treatment group received 2 days of treatment and was tested 3 days after tBCCAO surgery. CSF circulation increased remarkably in the taVNS group, but not in the anesthesia-control or off-site-stimulation-control groups. The cognitive impairment induced by tBCCAO was significantly restored after both long- and short-term taVNS. In terms of effects, both long- and short-term stimulations showed similar recovery effects. Our findings provide evidence that taVNS can facilitate CSF circulation and that repetitive taVNS can ameliorate VCI symptoms.
Collapse
Affiliation(s)
- Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Dong Cheol Jang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
17
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
18
|
Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem Biophys Res Commun 2022; 605:70-81. [DOI: 10.1016/j.bbrc.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
|
19
|
Chen F, Xie X, Wang L. Research Progress on Intracranial Lymphatic Circulation and Its Involvement in Disorders. Front Neurol 2022; 13:865714. [PMID: 35359624 PMCID: PMC8963982 DOI: 10.3389/fneur.2022.865714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The lymphatic system is an important part of the circulatory system, as an auxiliary system of the vein, which has the functions of immune defense, maintaining the stability of the internal environment, and regulating the pressure of the tissue. It has long been thought that there are no typical lymphatic vessels consisting of endothelial cells in the central nervous system (CNS). In recent years, studies have confirmed the presence of lymphatic vessels lined with endothelial cells in the meninges. The periventricular meninges of the CNS host different populations of immune cells that affect the immune response associated with the CNS, and the continuous drainage of interstitial and cerebrospinal fluid produced in the CNS also proceeds mainly by the lymphatic system. This fluid process mobilizes to a large extent the transfer of antigens produced by the CNS to the meningeal immune cells and subsequently to the peripheral immune system through the lymphatic network, with clinically important implications for infectious diseases, autoimmunity, and tumor immunology. In our review, we discussed recent research advances in intracranial lymphatic circulation and the pathogenesis of its associated diseases, especially the discovery of meningeal lymphatic vessels, which has led to new therapeutic targets for the treatment of diseases associated with the intracranial lymphatic system.
Collapse
Affiliation(s)
- Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Xuan Xie
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
21
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
22
|
Datta-Chaudhuri T, Zanos T, Chang EH, Olofsson PS, Bickel S, Bouton C, Grande D, Rieth L, Aranow C, Bloom O, Mehta AD, Civillico G, Stevens MM, Głowacki E, Bettinger C, Schüettler M, Puleo C, Rennaker R, Mohanta S, Carnevale D, Conde SV, Bonaz B, Chernoff D, Kapa S, Berggren M, Ludwig K, Zanos S, Miller L, Weber D, Yoshor D, Steinman L, Chavan SS, Pavlov VA, Al-Abed Y, Tracey KJ. The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future. Bioelectron Med 2021; 7:7. [PMID: 34024277 PMCID: PMC8142479 DOI: 10.1186/s42234-021-00068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here.
Collapse
Affiliation(s)
| | - Theodoros Zanos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Eric H. Chang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | | | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Chad Bouton
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Daniel Grande
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Loren Rieth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
- University of Utah, Salt Lake City, UT USA
| | - Cynthia Aranow
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Ashesh D. Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | | | | | | | | | | | | | | | - Saroj Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Daniela Carnevale
- Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Silvia V. Conde
- CEDOC, Nova Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Bruno Bonaz
- University of Grenoble Alpes, INSERM, Grenoble, France
| | | | | | | | - Kip Ludwig
- University of Wisconsin, Madison, WI USA
| | - Stavros Zanos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Larry Miller
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Doug Weber
- Carnegie Mellon University, Pittsburgh, PA USA
| | | | | | - Sangeeta S. Chavan
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| |
Collapse
|
23
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Nycz B, Mandera M. The features of the glymphatic system. Auton Neurosci 2021; 232:102774. [PMID: 33610009 DOI: 10.1016/j.autneu.2021.102774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Abstract
The glymphatic system creates a network of perivascular channels. It is made of astroglia cells, whose perikaryon extensions strongly express aquaporin-4 water channels (AQP4). The pathways of the glymphatic system ensure the transport of nutrients, including glucose, lipids, amino acids, neurotransmitters, antigens, and immune cells, as well as exchange of information via afferent and efferent immune pathways. Within the glymphatic system, convective exchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) components takes place, through aquaporin-4 water channels that facilitate fluid exchange. The proper functioning of the glymphatic system allows elimination and reabsorption of solutes, metabolites, pursuit of water and ionic balance, transport of lipid signaling molecules, regulation of intracranial pressure, cerebrospinal fluid pressure, and interstitial fluid pressure. The functions of the glymphatic system are primarily affected by the influence of the sympathetic and parasympathetic innervation, sleep and wakefulness cycle, the aging process, genetic factors, and body posture. Now, the glymphatic system shows weak activity during wakefulness, while its activity increases dramatically during sleep and the state of anesthesia. Changes occurring with age begin a number of factors that impair the function of the glymphatic system pathways. Dysfunction of the glymphatic pathways causes the aggregation of incorrectly formed proteins that underlie the development of neurodegenerative diseases. Harmful protein aggregates cause prolonged inflammation. All pathologies occurring within the central nervous system (CNS), both neurodegenerative diseases and injuries, disrupt the drainage of glymphatic pathways, which are important efflux of interstitial substances and byproducts of CNS metabolism.
Collapse
Affiliation(s)
- Blanka Nycz
- Department of Pediatric Neurosurgery, Medical University of Silesia in Katowice, Medyków 16 Street, 40-752 Katowice, Poland.
| | - Marek Mandera
- Department of Pediatric Neurosurgery, Medical University of Silesia in Katowice, Medyków 16 Street, 40-752 Katowice, Poland.
| |
Collapse
|
25
|
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci 2021; 15:639140. [PMID: 33633540 PMCID: PMC7900543 DOI: 10.3389/fnins.2021.639140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The classic concept of the absence of lymphatic vessels in the central nervous system (CNS), suggesting the immune privilege of the brain in spite of its high metabolic rate, was predominant until recent times. On the other hand, this idea left questioned how cerebral interstitial fluid is cleared of waste products. It was generally thought that clearance depends on cerebrospinal fluid (CSF). Not long ago, an anatomically and functionally discrete paravascular space was revised to provide a pathway for the clearance of molecules drained within the interstitial space. According to this model, CSF enters the brain parenchyma along arterial paravascular spaces. Once mixed with interstitial fluid and solutes in a process mediated by aquaporin-4, CSF exits through the extracellular space along venous paravascular spaces, thus being removed from the brain. This process includes the participation of perivascular glial cells due to a sieving effect of their end-feet. Such draining space resembles the peripheral lymphatic system, therefore, the term "glymphatic" (glial-lymphatic) pathway has been coined. Specific studies focused on the potential role of the glymphatic pathway in healthy and pathological conditions, including neurodegenerative diseases. This mainly concerns Alzheimer's disease (AD), as well as hemorrhagic and ischemic neurovascular disorders; other acute degenerative processes, such as normal pressure hydrocephalus or traumatic brain injury are involved as well. Novel morphological and functional investigations also suggested alternative models to drain molecules through perivascular pathways, which enriched our insight of homeostatic processes within neural microenvironment. Under the light of these considerations, the present article aims to discuss recent findings and concepts on nervous lymphatic drainage and blood-brain barrier (BBB) in an attempt to understand how peripheral pathological conditions may be detrimental to the CNS, paving the way to neurodegeneration.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|