1
|
Goodman MS, Trevizol AP, Konstantinou GN, Boivin-Lafleur D, Brender R, Downar J, Kaster TS, Knyahnytska Y, Vila-Rodriguez F, Voineskos D, Daskalakis ZJ, Blumberger DM. Extended course accelerated intermittent theta burst stimulation as a substitute for depressed patients needing electroconvulsive therapy. Neuropsychopharmacology 2024:10.1038/s41386-024-02007-w. [PMID: 39443721 DOI: 10.1038/s41386-024-02007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
In response to restrictions on electroconvulsive therapy (ECT) access during COVID-19, we designed a trial to assess the clinical outcomes service impacts, employing an extended course of accelerated intermittent theta burst stimulation (aiTBS), in patients with moderate to severe depression in need of ECT. This open label clinical trial was comprised of 3 phases: (i) an acute phase, where iTBS treatments were administered 8 times daily, for up to 10 days; (ii) a tapering phase of 2 treatment days per week for 2 weeks, followed by 1 treatment day per week for 2 weeks; and (iii) a symptom-based relapse prevention phase, whereby treatments were scheduled based on symptom re-emergence, for up to 6 months. Of the 155 patients who completed the acute phase of the study, the remission rate was 16.1%. The mean reduction from baseline on the HRSD-24 was 29.4% (p < 0.001) and the response rate was 25.2%. Of the 110 patients who completed the tapering phase, the mean reduction from baseline was 42.6% (p < 0.001) and response and remission rates were 49.6% and 34.8%, respectively. Of the 61 patients who were eligible for the relapse prevention phase, 43 completed, with a mean reduction from baseline of 60.1% (p < 0.001); 7 patients relapsed during this phase. This study demonstrated that an extended aiTBS protocol safely led to meaningful clinical outcomes in patients with severe depression, who otherwise would have received ECT, and thus reduced pressure on ECT services during the pandemic. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04384965 ( https://clinicaltrials.gov/study/NCT04384965?term=NCT04384965&rank=1 ).
Collapse
Affiliation(s)
- Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alisson P Trevizol
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gerasimos N Konstantinou
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Ram Brender
- Royal Ottawa Mental Health Centre and Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Downar
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tyler S Kaster
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | | | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Goodman MS, Schulze L, Daskalakis ZJ, Konstantinou GN, Mansouri F, Trevizol AP, Blumberger DM, Downar J. Randomised controlled trial comparing different intersession intervals of intermittent theta burst delivered to the dorsal medial prefrontal cortex. BMJ MENTAL HEALTH 2024; 27:e301290. [PMID: 39448077 PMCID: PMC11499886 DOI: 10.1136/bmjment-2024-301290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation (rTMS) that can be administered in a fraction of the time of standard rTMS. Applying multiple daily iTBS sessions (ie, accelerated iTBS) may enable patients to achieve remission more rapidly. However, questions remain regarding the optimal time interval between treatment sessions. OBJECTIVE The overall aim of this study was to compare the efficacy and tolerability of two accelerated bilateral iTBS protocols (ie, 30-min or 60-min intervals) and a once-daily bilateral iTBS protocol (ie, 0-min interval) while the number of pulses was held constant, in patients with treatment-resistant depression (TRD). METHODS 182 patients with TRD were randomised to receive two sessions per day of bilateral iTBS of the dorsomedial prefrontal cortex (DMPFC) at 60-min, 30-min or 0-min intervals. Sham treatments were delivered using a shielded 'sham coil' which produced the auditory and tactile sensations of stimulation. The primary outcome measure was a change in depression scores on the 17-item Hamilton Rating Scale for Depression (HRSD-17) after 20 days of treatment. RESULTS HRSD-17 scores improved across all groups; however, these improvements did not significantly differ between the three groups after 20 days of treatment. Similarly, response and remission rates did not differ between the treatment groups. CONCLUSIONS These results suggest that contrary to our original hypothesis, implementing a 30-min or 60-min interval between two treatment sessions of DMPFC-iTBS does not lead to a more rapid improvement in symptoms, than once-daily iTBS administration. TRIAL REGISTRATION NUMBER NCT02778035.
Collapse
Affiliation(s)
- Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Laura Schulze
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | | | - Alisson P Trevizol
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dai H, Hui J, Wang D, Ren L, Lv Z, Li J, Yang Y, Song J, Zhang Z. A preliminary comparison of the clinical efficacy of repetitive transcranial magnetic stimulation with facial feature point localization and navigated localization in the treatment of depression. J Affect Disord 2024:S0165-0327(24)01780-4. [PMID: 39447973 DOI: 10.1016/j.jad.2024.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE To compare the clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) under facial feature point localization (FFP) localization versus neuro-navigated localization for depression. METHODS 42 depressed patients were randomly assigned to two groups, received 10 Hz rTMS twice daily for 10 consecutive days. Relevant symptom scale assessments were conducted by professionals at baseline, after 10 sessions, and at the end of treatment. The confidence interval was calculated at a 95 % confidence level. The significant level was set at p < 0.05. RESULTS The absolute change in HAMD total score from baseline to the end of therapy did not differ significantly between the groups. The generalized estimating equation showed the main effect of time was significant, which showed improvement of depressive symptoms in patients throughout treatment. Upon completion of the treatment, FFP group showed a response rate of 64.7 % and a remission rate of 29.4 %, whereas the navigated group exhibited a response rate of 61.1 % and a remission rate of 44.4 %. There was no serious adverse events occurred during the treatment process. Throughout the study, no intervention was made on the normal medication treatment, and some patients had concomitant antidepressants and benzodiazepines. CONCLUSION There was no significant difference in clinical efficacy between FFP localization and navigation localization in the small-sample study. However, due to the limited sample size and lack of rigorous non-inferiority testing, the superiority of one over the other remains uncertain, necessitating rigorous experimental design to validate the efficacy difference between the two localization methods.
Collapse
Affiliation(s)
- Haiyue Dai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, Henan 453000, China
| | - Juan Hui
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, Henan 453000, China
| | - Di Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, Henan 453000, China
| | - Liuyan Ren
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453000, China
| | - Zhongheng Lv
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453000, China
| | - Juan Li
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, Henan 453000, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, Henan 453000, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453000, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, Henan 453000, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453000, China.
| |
Collapse
|
4
|
Bretecher CA, Verot A, Teschuk JM, Uehara MA, Fitzgerald PB, Koski L, Lithgow BJ, Moussavi Z. Quantitative Analysis of Factors of Attrition in a Double-blind rTMS Study for Alzheimer Treatment. Alzheimer Dis Assoc Disord 2024; 38:288-291. [PMID: 39115246 DOI: 10.1097/wad.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Attrition is a particular concern in studies examining the efficacy of a treatment for Alzheimer disease. Analyzing reasons for withdrawal in Alzheimer studies is crucial to ruling out attrition bias, which can undermine a study's validity. In contrast, attrition in studies using repetitive transcranial magnetic stimulation (rTMS) has received much less attention. Our goal was to identify any commonalities between participants who withdrew for the same reasons. Three independent coders rated each response concerning the reasons for withdrawal, and frequency tables were generated to characterize the participants within each category. This study was conducted on the 28 withdrawn cases from a 7-month study investigating the short-term and long-term therapeutic effects of rTMS for Alzheimer disease among 156 participants across 3 sites of the study. Seven reasons for withdrawal were identified, with health and medical changes being the most commonly reported reason (7 participants). Personal issues involving family or caregivers were the next most common (5 participants), and the remaining 5 categories consisted of 3 participants each. Although the limited sample size prevented the use of inferential statistics, our findings highlight the need for more transparent reporting of attrition rates and withdrawal reasons by rTMS researchers.
Collapse
Affiliation(s)
- Carly A Bretecher
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Ashley Verot
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - James M Teschuk
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Maria A Uehara
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Lisa Koski
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Brian J Lithgow
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Moussavi
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Pan N, Fang Z, Wang J, Cao P. Frontal Theta Asymmetry may be a new target for reducing the severity of depression and improving cognitive function in depressed patients. J Affect Disord 2024; 356:477-482. [PMID: 38653159 DOI: 10.1016/j.jad.2024.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND The prevalence of depressive disorder is increasing due to a variety of factors, which brings a huge strain on individuals, families and society. This study aims to investigate whether there is Frontal Theta Asymmetry (FTA) in depressed patients, and whether FTAs are related to depression severity and cognitive function changes in depressed patients. METHODS Participants who met the inclusion criteria were enrolled in this study. Socio-demographic data of each participant were recorded. Zung's self-rating Depression Scale was used to assess the depression status of participants. P300 was used to evaluate the cognitive function of participants. EEG data from participants were collected by the NeuroScan SynAmps RT EEG system. t-test, Wilcoxon rank-sum test and Chi-square test were used to detect the differences of different variables between the two groups. Multiple linear regression analysis and multiple logistic regression analysis were used to analyze relationships between FTAs in different regions and participants' depression status and cognitive function. RESULTS A total of 66 depressed participants and 47 healthy control participants were included in this study. The theta spectral power of the left frontal lobe was slightly stronger than that of the right frontal lobe in the depression group, while the opposite was true in the healthy control group. The FTA in F3/F4 had certain effects on the emergence of depression in participants, the emergence of depression in participants and Changes in cognitive function. CONCLUSIONS FTAs are helpful to assess the severity of depression and early identify cognitive impairment in patients with depression.
Collapse
Affiliation(s)
- Nannan Pan
- The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Ziyan Fang
- The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Jinwei Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, China.
| | - Penghui Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, China.
| |
Collapse
|
6
|
Liu HL, Sun J, Meng SF, Sun N. Physiotherapy for patients with depression: Recent research progress. World J Psychiatry 2024; 14:635-643. [PMID: 38808078 PMCID: PMC11129148 DOI: 10.5498/wjp.v14.i5.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Depression, a common mental illness, seriously affects the health of individuals and has deleterious effects on society. The prevention and treatment of depression has drawn the attention of many researchers and has become an important social issue. The treatment strategies for depression include drugs, psychotherapy, and physiotherapy. Drug therapy is ineffective in some patients and psychotherapy has treatment limitations. As a reliable adjuvant therapy, physiotherapy compensates for the shortcomings of drug and psychotherapy and effectively reduces the disease recurrence rate. Physiotherapy is more scientific and rigorous, its methods are diverse, and to a certain extent, provides more choices for the treatment of depression. Physiotherapy can relieve symptoms in many ways, such as by improving the levels of neurobiochemical molecules, inhibiting the inflammatory response, regulating the neuroendocrine system, and increasing neuroplasticity. Physiotherapy has biological effects similar to those of antidepressants and may produce a superimposed impact when combined with other treatments. This article summarizes the findings on the use of physiotherapy to treat patients with depression over the past five years. It also discusses several methods of physiotherapy for treating depression from the aspects of clinical effect, mechanism of action, and disadvantages, thereby serving as a reference for the in-depth development of physiotherapy research.
Collapse
Affiliation(s)
- Hui-Ling Liu
- Department of Mental Health, First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Jing Sun
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Shi-Feng Meng
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ning Sun
- Department of Mental Health, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
7
|
Ramasubbu R, Brown EC, Selby B, McGirr A, Cole J, Hassan H, McAusland L. Accelerated sequential bilateral theta-burst stimulation in major depression: an open trial. Eur Arch Psychiatry Clin Neurosci 2024; 274:697-707. [PMID: 37470840 DOI: 10.1007/s00406-023-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Theta burst stimulation (TBS) is approved and widely used in the treatment of treatment resistant-major depression. More recently, accelerated protocols delivering multiple treatments per day have been shown to be efficacious and potentially enhance outcomes compared to once daily protocols. Meanwhile, bilateral treatment protocols have also been increasingly tested to enhance outcomes. Here, we examined the efficacy and safety of accelerated bilateral TBS in major depressive disorder (MDD). In this open label pilot study, 25 patients with MDD (60%: women; mean age (SD): 45.24 (12.22)) resistant to at least one antidepressant, received bilateral TBS, consisting of 5 sequential bilateral intermittent TBS (iTBS) (600 pulses) and continuous TBS (cTBS) (600 pulses) treatments delivered to the left and right dorsolateral prefrontal cortex (DLPFC), respectively, daily for 5 days at 120% resting motor threshold. Outcome measures were post-treat treatment changes at day 5 and 2-weeks in Hamilton Depression Rating Scale (HDRS-17) scores and response (≥ 50% reduction from the baseline scores) and remission (≤ 7) rates. There was a significant reduction in HDRS scores at day 5 (p < 0.001) and 2-weeks post treatment (p < 0.001). The response rates increased from 20% at day 5 to 32% at 2-weeks post treatment suggesting delayed clinical effects. However, reduction in symptom scores between two post treatment endpoints was non-significant. 60% of patients could not tolerate the high intensity stimulation. No major adverse events occurred. Open label uncontrolled study with small sample size. These preliminary findings suggest that accelerated bilateral TBS may be clinically effective and safe for treatment resistant depression. Randomized sham-controlled trials are needed to establish the therapeutic role of accelerated bilateral TBS in depression.Trial registration: ClinicalTrials.gov, NCT10001858.
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry/Clinical Neurosciences Cumming School of Medicine, Mathison Centre for Mental Health Research and Education, Non-Invasive Neurostimulation Network, Hotchkiss Brain Institute, University of Calgary, TRW Building, Room 4D64, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada.
| | - Elliot C Brown
- School of Health and Care Management, Faculty of Business, Arden University, Berlin, Germany
| | - Ben Selby
- Non-Invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry/Clinical Neurosciences Cumming School of Medicine, Mathison Centre for Mental Health Research and Education, Non-Invasive Neurostimulation Network, Hotchkiss Brain Institute, University of Calgary, TRW Building, Room 4D64, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada
| | - Jaeden Cole
- Mathison Centre for Mental Health Research & Education, Non-Invasive Neurostimulation Network, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hadi Hassan
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Laina McAusland
- Mathison Centre for Mental Health Research & Education Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Zhang M, Li W, Ye Y, Hu Z, Zhou Y, Ning Y. Efficacy and safety of intermittent theta burst stimulation on adolescents and young adults with major depressive disorder: A randomized, double blinded, controlled trial. J Affect Disord 2024; 350:214-221. [PMID: 38199406 DOI: 10.1016/j.jad.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a newer form of Repetitive Transcranial Magnetic Stimulation (rTMS) for depression. However, its efficacy and safety in adolescents and young adults with major depressive disorder (AYA-MDD) have not been well studied, especially when applied with a strategy that combines neuronavigation targeting and accelerated iTBS. METHODS In this study, ninety patients were randomly assigned to twice-daily (two 600-pulse sessions spaced out by 10 min, n = 31), once-daily (one 600-pulse session, n = 29) or sham iTBS (no pulses, n = 30) groups for 10 treatment days. The primary outcome measure was the change in depression scores on the Hamilton Rating Scale for Depression (HAMD-17). Other clinical symptoms, such as anxiety, were also evaluated. RESULTS Linear mixed model analysis found that scores on the HAMD-17 and its factors improved in all three groups, but these improvements did not significantly differ among groups. Other clinical symptoms such as anxiety also improved. Response and remission rates were relatively low and did not differ among groups at any time point. The most common adverse event was headache, and the proportion of participants who reported headache in the twice-daily and once-daily groups was significantly higher than that in the sham group. CONCLUSIONS The current results indicated that twice-daily and once-daily iTBS under neuronavigation are safe and well tolerated in AYA-MDD, but the overall efficacy was not superior to that of sham treatment. We speculated several possible reasons such as the high placebo response of the young population, inadequate iTBS pulses and so on.
Collapse
Affiliation(s)
- Min Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhibo Hu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Cole E, O'Sullivan SJ, Tik M, Williams NR. Accelerated Theta Burst Stimulation: Safety, Efficacy, and Future Advancements. Biol Psychiatry 2024; 95:523-535. [PMID: 38383091 PMCID: PMC10952126 DOI: 10.1016/j.biopsych.2023.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 02/23/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can be used to modulate neural networks underlying psychiatric and neurological disorders. TBS can be delivered intermittently or continuously. The conventional intermittent TBS protocol is approved by the U.S. Food and Drug Administration to treat otherwise treatment-resistant depression, but the 6-week duration limits the applicability of this therapy. Accelerated TBS protocols present an opportunity to deliver higher pulse doses in shorter periods of time, thus resulting in faster and potentially more clinically effective treatment. However, the acceleration of TBS delivery raises questions regarding the relative safety, efficacy, and durability compared with conventional TBS protocols. In this review paper, we present the data from accelerated TBS trials to date that support the safety and effectiveness of accelerated protocols while acknowledging the need for more durability data. We discuss the stimulation parameters that seem to be important for the efficacy of accelerated TBS protocols and possible avenues for further optimization.
Collapse
Affiliation(s)
- Eleanor Cole
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | - Sean J O'Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California; Department of Psychiatry and Behavioral Sciences, Dell School of Medicine, Austin, Texas
| | - Martin Tik
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California.
| |
Collapse
|
10
|
van Rooij SJH, Arulpragasam AR, McDonald WM, Philip NS. Accelerated TMS - moving quickly into the future of depression treatment. Neuropsychopharmacology 2024; 49:128-137. [PMID: 37217771 PMCID: PMC10700378 DOI: 10.1038/s41386-023-01599-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/24/2023]
Abstract
Accelerated TMS is an emerging application of Transcranial Magnetic Stimulation (TMS) aimed to reduce treatment length and improve response time. Extant literature generally shows similar efficacy and safety profiles compared to the FDA-cleared protocols for TMS to treat major depressive disorder (MDD), yet accelerated TMS research remains at a very early stage in development. The few applied protocols have not been standardized and vary significantly across a set of core elements. In this review, we consider nine elements that include treatment parameters (i.e., frequency and inter-stimulation interval), cumulative exposure (i.e., number of treatment days, sessions per day, and pulses per session), individualized parameters (i.e., treatment target and dose), and brain state (i.e., context and concurrent treatments). Precisely which of these elements is critical and what parameters are most optimal for the treatment of MDD remains unclear. Other important considerations for accelerated TMS include durability of effect, safety profiles as doses increase over time, the possibility and advantage of individualized functional neuronavigation, use of biological readouts, and accessibility for patients most in need of the treatment. Overall, accelerated TMS appears to hold promise to reduce treatment time and achieve rapid reduction in depressive symptoms, but at this time significant work remains to be done. Rigorous clinical trials combining clinical outcomes and neuroscientific measures such as electroencephalogram, magnetic resonance imaging and e-field modeling are needed to define the future of accelerated TMS for MDD.
Collapse
Affiliation(s)
- Sanne J H van Rooij
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Amanda R Arulpragasam
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | - William M McDonald
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Noah S Philip
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA.
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA.
| |
Collapse
|
11
|
Tang N, Shu W, Wang HN. Accelerated transcranial magnetic stimulation for major depressive disorder: A quick path to relief? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1666. [PMID: 37779251 DOI: 10.1002/wcs.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a safe, tolerable, and evidence-based intervention for major depressive disorder (MDD). However, even after decades of research, nearly half of the patients with MDD fail to respond to conventional TMS, with responding slowly and requiring daily attendance at the treatment site for 4-6 weeks. To intensify antidepressant efficacy and shorten treatment duration, accelerated TMS protocols, which involve multiple sessions per day over a few days, have been proposed and evaluated for safety and viability. We reviewed and summarized the current knowledge in accelerated TMS, including stimulation parameters, antidepressant efficacy, anti-suicidal efficacy, safety, and adverse effects. Limitations and suggestions for future directions are also addressed, along with a brief discussion on the application of accelerated TMS during the COVID-19 pandemic. This article is categorized under: Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Nailong Tang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, the 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Wanqing Shu
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Downar J, Siddiqi SH, Mitra A, Williams N, Liston C. Mechanisms of Action of TMS in the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:233-277. [PMID: 38844713 DOI: 10.1007/7854_2024_483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Transcranial magnetic stimulation (TMS) is entering increasingly widespread use in treating depression. The most common stimulation target, in the dorsolateral prefrontal cortex (DLPFC), emerged from early neuroimaging studies in depression. Recently, more rigorous casual methods have revealed whole-brain target networks and anti-networks based on the effects of focal brain lesions and focal brain stimulation on depression symptoms. Symptom improvement during therapeutic DLPFC-TMS appears to involve directional changes in signaling between the DLPFC, subgenual and dorsal anterior cingulate cortex, and salience-network regions. However, different networks may be involved in the therapeutic mechanisms for other TMS targets in depression, such as dorsomedial prefrontal cortex or orbitofrontal cortex. The durability of therapeutic effects for TMS involves synaptic neuroplasticity, and specifically may depend upon dopamine acting at the D1 receptor family, as well as NMDA-receptor-dependent synaptic plasticity mechanisms. Although TMS protocols are classically considered 'excitatory' or 'inhibitory', the actual effects in individuals appear quite variable, and might be better understood at the level of populations of synapses rather than individual synapses. Synaptic meta-plasticity may provide a built-in protective mechanism to avoid runaway facilitation or inhibition during treatment, and may account for the relatively small number of patients who worsen rather than improve with TMS. From an ethological perspective, the antidepressant effects of TMS may involve promoting a whole-brain attractor state associated with foraging/hunting behaviors, centered on the rostrolateral periaqueductal gray and salience network, and suppressing an attractor state associated with passive threat defense, centered on the ventrolateral periaqueductal gray and default-mode network.
Collapse
Affiliation(s)
- Jonathan Downar
- Department of Psychiatry, Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anish Mitra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Conor Liston
- Department of Psychiatry, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Kong Y, Zhou J, Zhao M, Zhang Y, Tan T, Xu Z, Hou Z, Yuan Y, Tan L, Song R, Shi Y, Feng H, Wu W, Zhao Y, Zhang Z. Non-inferiority of intermittent theta burst stimulation over the left V 1 vs. classical target for depression: A randomized, double-blind trial. J Affect Disord 2023; 343:59-70. [PMID: 37751801 DOI: 10.1016/j.jad.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) targeting the visual cortex (VC) has shown antidepressant effects for major depressive disorder (MDD) in sham-controlled trials, but comparisons with rTMS targeting the left dorsolateral prefrontal cortex (DLPFC) are lacking. We aimed to determine the non-inferiority of intermittent theta-burst stimulation (iTBS) over VC vs DLPFC for MDD. METHODS Participants randomly received navigated iTBS over the left V1 or the left DLPFC twice daily for 14 days with a 3-month follow-up. The primary outcome was change in Hamilton Depression Rating Scale (HAMD-17) score from baseline to treatment end, with 2.5 points as the non-inferiority margin. Secondary outcomes included: improvement in Montgomery-Asberg Depression Rating Scale (MADRS), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA); response and remission rates; suicidal ideation and adverse events. RESULTS Of 75 randomized patients, 67 completed full treatment, including 52 first-episode patients and 15 relapsers. The primary outcome indicated the non-inferiority of VC (adjusted difference 1.14, lower 97.5 % CI -1.24; p = .002), confirmed by improvements in objective cognitive task and protein levels, as did most secondary outcomes. Reduced suicidal ideation after treatment, incidence of eye discomfort and pain score were lower in the VC group. CONCLUSIONS Left VC iTBS has the potential to be non-inferior to DLPFC iTBS in most first-episode MDD in improving depressive symptoms and cognitive function, with less suicidal ideation and adverse events. LIMITATIONS Given the limited sample size, the lack of a sham control and the use of antidepressants, the findings should be interpreted with caution.
Collapse
Affiliation(s)
- Yan Kong
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China; Department of Clinical Psychology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Jiawei Zhou
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingge Zhao
- Department of Nursing, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuhua Zhang
- Department of Psychosomatics and Psychiatry, Affiliated of Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, Affiliated of Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Affiliated of Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Affiliated of Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Affiliated of Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Liangliang Tan
- Department of Psychosomatics and Psychiatry, Affiliated of Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ruize Song
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China
| | - Yachen Shi
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China
| | - Haixia Feng
- Department of Nursing, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford 94305, USA
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China; Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China.
| |
Collapse
|
14
|
Leuchter MK, Citrenbaum C, Wilson AC, Tibbe TD, Jackson NJ, Krantz DE, Wilke SA, Corlier J, Strouse TB, Hoftman GD, Tadayonnejad R, Koek RJ, Slan AR, Ginder ND, Distler MG, Artin H, Lee JH, Adelekun AE, Leuchter AF. A comparison of self- and observer-rated scales for detecting clinical improvement during repetitive transcranial stimulation (rTMS) treatment of depression. Psychiatry Res 2023; 330:115608. [PMID: 37984281 DOI: 10.1016/j.psychres.2023.115608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Clinical outcomes of repetitive Transcranial Magnetic Stimulation (rTMS) for treatment of Major Depressive Disorder (MDD) vary widely, and no single mood rating scale is standard for assessing rTMS outcomes. This study of 708 subjects undergoing clinical rTMS compared the performance of four scales in measuring symptom change during rTMS treatment. Self-report and observer ratings were examined weekly with the Inventory of Depressive Symptomatology 30-item (IDS), Patient Health Questionnaire 9-item (PHQ), Profile of Mood States 30-item (POMS), and Hamilton Depression Rating Scale 17-item (HDRS). While all scales were correlated and detected significant improvement, the degree of improvement over time as well as response (33-50%) and remission (20-24%) rates varied significantly. Higher baseline severity was associated with lower likelihood of remission, and greater improvement by sessions 5 and 10 predicted response across all scales. Use of only a single scale to assess outcome conferred 14-36% risk of failing to detect response/remission indicated by another scale. The PHQ was most likely to indicate improvement and least likely to miss response or remission. These findings indicate that assessment of symptom burden during rTMS treatment may be most accurately assessed through use of multiple instruments.
Collapse
Affiliation(s)
- Michael K Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA.
| | - Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | | | - Tristan D Tibbe
- Department of Psychology, University of California, Los Angeles, CA 90024, USA; Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA 90024, USA
| | - Nicholas J Jackson
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA 90024, USA
| | - David E Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Scott A Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Thomas B Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Gil D Hoftman
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ralph J Koek
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Aaron R Slan
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Nathaniel D Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Margaret G Distler
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Hewa Artin
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Adesewa E Adelekun
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| |
Collapse
|
15
|
Chang EH, Gabalski AH, Huerta TS, Datta-Chaudhuri T, Zanos TP, Zanos S, Grill WM, Tracey KJ, Al-Abed Y. The Fifth Bioelectronic Medicine Summit: today's tools, tomorrow's therapies. Bioelectron Med 2023; 9:21. [PMID: 37794457 PMCID: PMC10552422 DOI: 10.1186/s42234-023-00123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
The emerging field of bioelectronic medicine (BEM) is poised to make a significant impact on the treatment of several neurological and inflammatory disorders. With several BEM therapies being recently approved for clinical use and others in late-phase clinical trials, the 2022 BEM summit was a timely scientific meeting convening a wide range of experts to discuss the latest developments in the field. The BEM Summit was held over two days in New York with more than thirty-five invited speakers and panelists comprised of researchers and experts from both academia and industry. The goal of the meeting was to bring international leaders together to discuss advances and cultivate collaborations in this emerging field that incorporates aspects of neuroscience, physiology, molecular medicine, engineering, and technology. This Meeting Report recaps the latest findings discussed at the Meeting and summarizes the main developments in this rapidly advancing interdisciplinary field. Our hope is that this Meeting Report will encourage researchers from academia and industry to push the field forward and generate new multidisciplinary collaborations that will form the basis of new discoveries that we can discuss at the next BEM Summit.
Collapse
Affiliation(s)
- Eric H Chang
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Arielle H Gabalski
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Tomas S Huerta
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Fitzpatrick CIEMAS, Duke University, Room 1427, 101 Science Drive, Box 90281, Durham, NC, 27708, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| |
Collapse
|
16
|
Tang Z, Liu T, Liu Y, Han K, Su W, Zhao J, Chi Q, Zhang X, Zhang H. Different doses of intermittent theta burst stimulation for upper limb motor dysfunction after stroke: a study protocol for a randomized controlled trial. Front Neurosci 2023; 17:1259872. [PMID: 37869516 PMCID: PMC10585036 DOI: 10.3389/fnins.2023.1259872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Background Upper limb motor recovery is one of the important goals of stroke rehabilitation. Intermittent theta burst stimulation (iTBS), a new type of repetitive transcranial magnetic stimulation (rTMS), is considered a potential therapy. However, there is still no consensus on the efficacy of iTBS for upper limb motor dysfunction after stroke. Stimulus dose may be an important factor affecting the efficacy of iTBS. Therefore, we aim to investigate and compare the effects and neural mechanisms of three doses of iTBS on upper limb motor recovery in stroke patients, and our hypothesis is that the higher the dose of iTBS, the greater the improvement in upper limb motor function. Methods This prospective, randomized, controlled trial will recruit 56 stroke patients with upper limb motor dysfunction. All participants will be randomized in a 1:1:1:1 ratio to receive 21 sessions of 600 pulses active iTBS, 1,200 pulses active iTBS, 1,800 pulses active iTBS, or 1,800 pulses sham iTBS in addition to conventional rehabilitation training. The primary outcome is the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score from baseline to end of intervention, and the secondary outcomes are the Wolf Motor Function Test (WMFT), Grip Strength (GS), Modified Barthel Index (MBI), and Stroke Impact Scale (SIS). The FMA-UE, MBI, and SIS are assessed pre-treatment, post-treatment, and at the 3-weeks follow-up. The WMFT, GS, and resting-state functional magnetic resonance imaging (rs-fMRI) data will be obtained pre- and post-treatment. Discussion The iTBS intervention in this study protocol is expected to be a potential method to promote upper limb motor recovery after stroke, and the results may provide supportive evidence for the optimal dose of iTBS intervention.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Qianqian Chi
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Roth Y, Hanlon CA, Pell G, Zibman S, Harmelech T, Muir OS, MacMillan C, Prestley T, Purselle DC, Knightly T, Tendler A. Real world efficacy and safety of various accelerated deep TMS protocols for major depression. Psychiatry Res 2023; 328:115482. [PMID: 37738684 DOI: 10.1016/j.psychres.2023.115482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
There is growing interest in accelerated rTMS dosing regimens, wherein multiple sessions of rTMS are applied per day. This Phase IV study evaluated the safety, efficacy, and durability of various accelerated Deep TMS protocols used in clinical practice. Data were aggregated from 111 patients with major depressive disorder (MDD) at 4 sites. Patients received one of several accelerated Deep TMS protocols (2x/day, 3x/day, 5x/day, 10x/day). Self-assessment questionnaires (PHQ-9, BDI-II) and clinician-based rating scales (HDRS-21, MADRS) were collected. On average, accelerated TMS led to an 80.2% response and 50.5% remission rate in the first month based on the most rated scale for each patient. There was no significant difference between protocols (Response: 2x/day:89.6%; 3x/day:75%; 5x/day:81%; 10x/day:67.6%). Response occurred after 10 (3x/day), 20 (5x/day), and 31 sessions (10x/day) on average- all of which occur on day 3-4 of treatment. Of patients with longer term follow up, durability was found in 86.7% (n = 30; 60 days) and 92.9% (n = 14; 180 days). The protocols were well-tolerated with no reported serious adverse events. Accelerated Deep TMS protocols are found to be safe, effective therapeutic options for MDD. They offer treatment resistant patients a treatment option with a rapid onset of action and with long durability.
Collapse
Affiliation(s)
- Yiftach Roth
- BrainsWay Ltd. Jerusalem, Israel & Burlington, Suite 405, Burlington, MA 01803, United States; Ben Gurion University, Department of Life Sciences, Beer Sheba, Israel
| | - Colleen A Hanlon
- BrainsWay Ltd. Jerusalem, Israel & Burlington, Suite 405, Burlington, MA 01803, United States; Wake Forest University School of Medicine, Winston Salem, NC, United States
| | - Gaby Pell
- BrainsWay Ltd. Jerusalem, Israel & Burlington, Suite 405, Burlington, MA 01803, United States; Ben Gurion University, Department of Life Sciences, Beer Sheba, Israel
| | - Samuel Zibman
- BrainsWay Ltd. Jerusalem, Israel & Burlington, Suite 405, Burlington, MA 01803, United States
| | - Tal Harmelech
- BrainsWay Ltd. Jerusalem, Israel & Burlington, Suite 405, Burlington, MA 01803, United States
| | - Owen S Muir
- Fermata, 58N, 9th St. #103 Brooklyn, NY, United States
| | - Carlene MacMillan
- Fermata, 58N, 9th St. #103 Brooklyn, NY, United States; Osmind, Inc, 3130 20th St Suite 250, San Francisco, CA, United States
| | - Tim Prestley
- Novus TMS, 2201 Jack Warner Pkwy Tuscaloosa, AL, United States
| | - David C Purselle
- Rejuvenate TMS, 652 Bellemeade Ave NW, Atlanta, GA, United States
| | - Thomas Knightly
- Evolve Brain Health, 1055 Summer St. #2 Stamford, CT, United States
| | - Aron Tendler
- BrainsWay Ltd. Jerusalem, Israel & Burlington, Suite 405, Burlington, MA 01803, United States; Ben Gurion University, Department of Life Sciences, Beer Sheba, Israel.
| |
Collapse
|
18
|
Dijkstra E, van Dijk H, Vila-Rodriguez F, Zwienenberg L, Rouwhorst R, Coetzee JP, Blumberger DM, Downar J, Williams N, Sack AT, Arns M. Transcranial Magnetic Stimulation-Induced Heart-Brain Coupling: Implications for Site Selection and Frontal Thresholding-Preliminary Findings. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:939-947. [PMID: 37881544 PMCID: PMC10593873 DOI: 10.1016/j.bpsgos.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Background Neurocardiac-guided transcranial magnetic stimulation (TMS) uses repetitive TMS (rTMS)-induced heart rate deceleration to confirm activation of the frontal-vagal pathway. Here, we test a novel neurocardiac-guided TMS method that utilizes heart-brain coupling (HBC) to quantify rTMS-induced entrainment of the interbeat interval as a function of TMS cycle time. Because prior neurocardiac-guided TMS studies indicated no association between motor and frontal excitability threshold, we also introduce the approach of using HBC to establish individualized frontal excitability thresholds for optimally dosing frontal TMS. Methods In studies 1A and 1B, we validated intermittent theta burst stimulation (iTBS)-induced HBC (2 seconds iTBS on; 8 seconds off: HBC = 0.1 Hz) in 15 (1A) and 22 (1B) patients with major depressive disorder from 2 double-blind placebo-controlled studies. In study 2, HBC was measured in 10 healthy subjects during the 10-Hz "Dash" protocol (5 seconds 10-Hz on; 11 seconds off: HBC = 0.0625 Hz) applied with 15 increasing intensities to 4 evidence-based TMS locations. Results Using blinded electrocardiogram-based HBC analysis, we successfully identified sham from real iTBS sessions (accuracy: study 1A = 83%, study 1B = 89.5%) and found a significantly stronger HBC at 0.1 Hz in active compared with sham iTBS (d = 1.37) (study 1A). In study 2, clear dose-dependent entrainment (p = .002) was observed at 0.0625 Hz in a site-specific manner. Conclusions We demonstrated rTMS-induced HBC as a function of TMS cycle time for 2 commonly used clinical protocols (iTBS and 10-Hz Dash). These preliminary results supported individual site specificity and dose-response effects, indicating that this is a potentially valuable method for clinical rTMS site stratification and frontal thresholding. Further research should control for TMS side effects, such as pain of stimulation, to confirm these findings.
Collapse
Affiliation(s)
- Eva Dijkstra
- Heart & Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Neurowave, Amsterdam, the Netherlands
| | - Hanneke van Dijk
- Heart & Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren Zwienenberg
- Heart & Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Synaeda Psycho Medisch Centrum, Leeuwarden, the Netherlands
| | - Renée Rouwhorst
- Heart & Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
- Neurocare group Netherlands, The Hague, the Netherlands
| | - John P. Coetzee
- Department Of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California
| | - Daniel M. Blumberger
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nolan Williams
- Department Of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Martijn Arns
- Heart & Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
19
|
Strafella R, Momi D, Zomorrodi R, Lissemore J, Noda Y, Chen R, Rajji TK, Griffiths JD, Vila-Rodriguez F, Downar J, Daskalakis ZJ, Blumberger DM, Voineskos D. Identifying Neurophysiological Markers of Intermittent Theta Burst Stimulation in Treatment-Resistant Depression Using Transcranial Magnetic Stimulation-Electroencephalography. Biol Psychiatry 2023; 94:454-465. [PMID: 37084864 DOI: 10.1016/j.biopsych.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) targeting the left dorsolateral prefrontal cortex is effective for treatment-resistant depression, but the effects of iTBS on neurophysiological markers remain unclear. Here, we indexed transcranial magnetic stimulation-electroencephalography (TMS-EEG) markers, specifically, the N45 and N100 amplitudes, at baseline and post-iTBS, comparing separated and contiguous iTBS schedules. TMS-EEG markers were also compared between iTBS responders and nonresponders. METHODS TMS-EEG was analyzed from a triple-blind 1:1 randomized trial for treatment-resistant depression, comparing a separated (54-minute interval) and contiguous (0-minute interval) schedule of 2 × 600-pulse iTBS for 30 treatments. Participants underwent TMS-EEG over the left dorsolateral prefrontal cortex at baseline and posttreatment. One hundred fourteen participants had usable TMS-EEG at baseline, and 98 at posttreatment. TMS-evoked potential components (N45, N100) were examined via global mean field analysis. RESULTS The N100 amplitude decreased from baseline to posttreatment, regardless of the treatment group (F1,106 = 5.20, p = .02). There were no changes in N45 amplitude in either treatment group. In responders, the N100 amplitude decreased after iTBS (F1,102 = 11.30, p = .001, pcorrected = .0004). Responders showed higher posttreatment N45 amplitude than nonresponders (F1,94 = 4.11, p = .045, pcorrected = .016). Higher baseline N100 amplitude predicted lower post-iTBS depression scores (F4,106 = 6.28, p = .00014). CONCLUSIONS These results provide further evidence for an association between the neurophysiological effects of iTBS and treatment efficacy in treatment-resistant depression. Future studies are needed to test the predictive potential for clinical applications of TMS-EEG markers.
Collapse
Affiliation(s)
- Rebecca Strafella
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Davide Momi
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Krembil Centre for Neuroinformatics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jennifer Lissemore
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Robert Chen
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - John D Griffiths
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Krembil Centre for Neuroinformatics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Vancouver, British Columbia, Canada; Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Downar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Daniel M Blumberger
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Lan XJ, Yang XH, Qin ZJ, Cai DB, Liu QM, Mai JX, Deng CJ, Huang XB, Zheng W. Efficacy and safety of intermittent theta burst stimulation versus high-frequency repetitive transcranial magnetic stimulation for patients with treatment-resistant depression: a systematic review. Front Psychiatry 2023; 14:1244289. [PMID: 37583841 PMCID: PMC10423820 DOI: 10.3389/fpsyt.2023.1244289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Objective Intermittent theta-burst stimulation (iTBS), which is a form of repetitive transcranial magnetic stimulation (rTMS), can produce 600 pulses to the left dorsolateral prefrontal cortex (DLPFC) in a stimulation time of just over 3 min. The objective of this systematic review was to compare the safety and efficacy of iTBS and high-frequency (≥ 5 Hz) rTMS (HF-rTMS) for patients with treatment-resistant depression (TRD). Methods Randomized controlled trials (RCTs) comparing the efficacy and safety of iTBS and HF-rTMS were identified by searching English and Chinese databases. The primary outcomes were study-defined response and remission. Results Two RCTs (n = 474) investigating the efficacy and safety of adjunctive iTBS (n = 239) versus HF-rTMS (n = 235) for adult patients with TRD met the inclusion criteria. Among the two included studies (Jadad score = 5), all were classified as high quality. No group differences were found regarding the overall rates of response (iTBS group: 48.0% versus HF-rTMS group: 45.5%) and remission (iTBS group: 30.0% versus HF-rTMS group: 25.2%; all Ps > 0.05). The rates of discontinuation and adverse events such as headache were similar between the two groups (all Ps > 0.05). Conclusion The antidepressant effects and safety of iTBS and HF-rTMS appeared to be similar for patients with TRD, although additional RCTs with rigorous methodology are needed.
Collapse
Affiliation(s)
- Xian-Jun Lan
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Xin-Hu Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Juan Qin
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Qi-Man Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Xin Mai
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Can-jin Deng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing-Bing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Cai DB, Qin ZJ, Lan XJ, Liu QM, Qin XD, Wang JJ, Goya-Maldonado R, Huang XB, Ungvari GS, Ng CH, Zheng W, Xiang YT. Accelerated intermittent theta burst stimulation for major depressive disorder or bipolar depression: A systematic review and meta-analysis. Asian J Psychiatr 2023; 85:103618. [PMID: 37201381 DOI: 10.1016/j.ajp.2023.103618] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
We aimed to systematically evaluate the clinical efficacy and safety of accelerated intermittent theta burst stimulation (aiTBS) for patients with major depressive disorder (MDD) or bipolar depression (BD). A random-effects model was adopted to analyze the primary and secondary outcomes using the Review Manager, Version 5.3 software. This meta-analysis (MA) identified five double-blind randomized controlled trials (RCTs) comprising 239 MDD or BD patients with a major depressive episode. Active aiTBS overperformed sham stimulation in the study-defined response. This MA found preliminary evidence that active aiTBS resulted in a greater response in treating major depressive episodes in MDD or BD patients than sham stimulation.
Collapse
Affiliation(s)
- Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China; The Fourth Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen-Juan Qin
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Xian-Jun Lan
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qi-Man Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-De Qin
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China; The Fourth Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian-Jun Wang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China; The Fourth Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Xing-Bing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gabor S Ungvari
- University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia/Graylands Hospital, Perth, Australia
| | - Chee H Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, Victoria, Australia.
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
22
|
Berlow YA, Zandvakili A, Brennan MC, Williams LM, Price LH, Philip NS. Modeling the antidepressant treatment response to transcranial magnetic stimulation using an exponential decay function. Sci Rep 2023; 13:7138. [PMID: 37130868 PMCID: PMC10154303 DOI: 10.1038/s41598-023-33599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
Recovery from depression often demonstrates a nonlinear pattern of treatment response, where the largest reduction in symptoms is observed early followed by smaller improvements. This study investigated whether this exponential pattern could model the antidepressant response to repetitive transcranial magnetic stimulation (TMS). Symptom ratings from 97 patients treated with TMS for depression were collected at baseline and after every five sessions. A nonlinear mixed-effects model was constructed using an exponential decay function. This model was also applied to group-level data from several published clinical trials of TMS for treatment-resistant depression. These nonlinear models were compared to corresponding linear models. In our clinical sample, response to TMS was well modeled with the exponential decay function, yielding significant estimates for all parameters and demonstrating superior fit compared to a linear model. Similarly, when applied to multiple studies comparing TMS modalities as well as to previously identified treatment response trajectories, the exponential decay models yielded consistently better fits compared to linear models. These results demonstrate that the antidepressant response to TMS follows a nonlinear pattern of improvement that is well modeled with an exponential decay function. This modeling offers a simple and useful framework to inform clinical decisions and future studies.
Collapse
Affiliation(s)
- Yosef A Berlow
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA.
| | - Amin Zandvakili
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA
| | - McKenna C Brennan
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence H Price
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Butler Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA
| |
Collapse
|
23
|
Chen L, Klooster DCW, Tik M, Thomas EHX, Downar J, Fitzgerald PB, Williams NR, Baeken C. Accelerated Repetitive Transcranial Magnetic Stimulation to Treat Major Depression: The Past, Present, and Future. Harv Rev Psychiatry 2023; 31:142-161. [PMID: 37171474 PMCID: PMC10188211 DOI: 10.1097/hrp.0000000000000364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective and evidence-based therapy for treatment-resistant major depressive disorder. A conventional course of rTMS applies 20-30 daily sessions over 4-6 weeks. The schedule of rTMS delivery can be accelerated by applying multiple stimulation sessions per day, which reduces the duration of a treatment course with a predefined number of sessions. Accelerated rTMS reduces time demands, improves clinical efficiency, and potentially induces faster onset of antidepressant effects. However, considerable heterogeneity exists across study designs. Stimulation protocols vary in parameters such as the stimulation target, frequency, intensity, number of pulses applied per session or over a course of treatment, and duration of intersession intervals. In this article, clinician-researchers and neuroscientists who have extensive research experience in accelerated rTMS synthesize a consensus based on two decades of investigation and development, from early studies ("Past") to contemporaneous theta burst stimulation, a time-efficient form of rTMS gaining acceptance in clinical settings ("Present"). We propose descriptive nomenclature for accelerated rTMS, recommend avenues to optimize therapeutic and efficiency potential, and suggest using neuroimaging and electrophysiological biomarkers to individualize treatment protocols ("Future"). Overall, empirical studies show that accelerated rTMS protocols are well tolerated and not associated with serious adverse effects. Importantly, the antidepressant efficacy of accelerated rTMS appears comparable to conventional, once daily rTMS protocols. Whether accelerated rTMS induces antidepressant effects more quickly remains uncertain. On present evidence, treatment protocols incorporating high pulse dose and multiple treatments per day show promise and improved efficacy.
Collapse
Affiliation(s)
- Leo Chen
- From the Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia (Drs. Chen, Thomas); Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin (UZGent), Ghent University, Ghent, Belgium (Drs. Klooster, Baeken); Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford University, Stanford, CA (Drs. Tik, Williams); Institute of Medical Science and Department of Psychiatry, University of Toronto, Canada (Dr. Downar); School of Medicine and Psychology, he Australian National University, Canberra, Australia (Dr. Fitzgerald)
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaster TS, Downar J, Vila-Rodriguez F, Baribeau DA, Thorpe KE, Daskalakis ZJ, Blumberger DM. Differential symptom cluster responses to repetitive transcranial magnetic stimulation treatment in depression. EClinicalMedicine 2023; 55:101765. [PMID: 36483268 PMCID: PMC9722479 DOI: 10.1016/j.eclinm.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) can target specific neural circuits, which may allow for personalized treatment of depression. Treatment outcome is typically determined using sum scores from validated measurement scales; however, this may obscure differential improvements within distinct symptom domains. The objectives for this work were to determine: (1) whether a standard depression measure can be represented using a four symptom cluster model and (2) whether these symptom clusters had a differential response to rTMS treatment. METHODS Data were obtained from two multi-centre randomized controlled trials of rTMS delivered to the left dorsolateral prefrontal cortex (DLPFC) for participants with treatment-resistant depression (TRD) conducted in Canada (THREE-D [Conducted between Sept 2013, and Oct 2016] and CARTBIND [Conducted between Apr 2016 and Feb 2018]). The first objective used confirmatory factor analytic techniques, and the second objective used a linear mixed effects model. Trial Registration: NCT01887782, NCT02729792. FINDINGS In the total sample of 596 participants with TRD, we found a model consisting of four symptom clusters adequately fit the data. The primary analysis using the THREE-D treatment trial found that symptom clusters demonstrated a differential response to rTMS treatment (F(3,5984) = 31.92, p < 0.001). The anxiety symptom cluster was significantly less responsive to treatment than other symptom clusters (t(6001) = -8.02, p < 0.001). These findings were replicated using data from the CARTBIND trial. INTERPRETATION There are distinct symptom clusters experienced by individuals with TRD that have a differential response to rTMS. Future work will determine whether differing rTMS treatment targets have distinct patterns of symptom cluster responses with the eventual goal of personalizing rTMS protocols based on an individual's clinical presentation. FUNDING Canadian Institutes of Health Research, Brain Canada.
Collapse
Key Words
- CFA, Confirmatory factor analysis
- CFI, Comparative fit index
- Cluster analysis
- DLPFC, Dorsolateral prefrontal cortex
- Depressive disorders
- HDRS-17, 17-item Hamilton Depression Rating Scale
- HFL, High-frequency left stimulation
- MDD, Major depressive disorder
- MINI, Mini International Neuropsychiatric Interview
- RMSEA, Root mean square error of approximation
- Repetitive transcranial magnetic stimulation
- SRMR, Standardized root mean squared residual
- TRD, Treatment-resistant depression
- Treatment outcomes
- iTBS, Intermittent theta-burst stimulation
- rTMS, Repetitive transcranial magnetic stimulation
Collapse
Affiliation(s)
- Tyler S. Kaster
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Corresponding author. 1025 Queen St. W., Toronto, ON, M6J 1H4, Canada.
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Danielle A. Baribeau
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Toronto, ON, Canada
| | - Kevin E. Thorpe
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California, San Diego Health, CA, United States
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
25
|
Brunelin J, Galvao F, Mondino M. Twice daily low frequency rTMS for treatment-resistant auditory hallucinations. Int J Clin Health Psychol 2023; 23:100344. [PMID: 36299491 PMCID: PMC9577245 DOI: 10.1016/j.ijchp.2022.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has emerged as a therapeutic solution in patients with treatment-resistant auditory verbal hallucinations. However, the optimal stimulation parameters remain unclear, especially for patients with clozapine-resistant symptoms. METHOD In an open label retrospective study, we investigated whether parameters of stimulation that were useful in patients with major depressive disorder would help schizophrenia patients with treatment-resistant auditory verbal hallucinations. Fourteen participants, including 9 under clozapine, received 30 sessions of 1 Hz rTMS over 3 weeks (360 pulses per sessions delivered with 60 s 'on' and 30 s 'off' at 110% of the resting motor threshold, 2 sessions per day). Stimulations were applied over the left temporoparietal junction (T3-P3 according to 10/20 system). RESULTS After rTMS, a significant decrease of auditory verbal hallucinations was observed (-38.7% ± 31.8, p = 0.003) on the Auditory Hallucination Rating Scale. The beneficial effects were also significant in the 9 patients who were also receiving clozapine (-34.9% ± 28.4, p = 0.01). CONCLUSIONS Low frequency rTMS, 30 sessions over 3 weeks, appears to be a suitable approach to decrease treatment-resistant auditory verbal hallucinations, including in patients with clozapine-resistant symptoms. Results from the current retrospective study in the clinical settings need to be confirmed by large-scale randomized sham-controlled trials.
Collapse
Affiliation(s)
- Jérôme Brunelin
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France,Corresponding author at: CH le Vinatier, PSYR2 team, bat 416 – 1st floor, 95 boulevard Pinel, 69678, BRON Cedex BP 30039, France.
| | - Filipe Galvao
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France
| | - Marine Mondino
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France
| |
Collapse
|
26
|
Richard M, Noiseux C, Desbeaumes Jodoin V, Blumberger DM, Sheen J, Mansouri F, Elkrief L, Longpré-Poirier C, Lespérance P, Miron JP. Prolonged intermittent theta burst stimulation in the treatment of major depressive disorder: a case series. Psychiatry Res 2022; 315:114709. [PMID: 35816923 DOI: 10.1016/j.psychres.2022.114709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Intermittent theta burst stimulation (iTBS) using 600 pulses is an effective and FDA-cleared transcranial magnetic stimulation (TMS) protocol for major depressive disorder (MDD). Prolonged iTBS (piTBS) using 1,800 pulses could increase the effectiveness of TMS for MDD, but its real-world effectiveness is still debated. We assessed the safety, tolerability, and preliminary effectiveness of a 3x daily piTBS 1,800 pulses protocol delivered over 2 weeks in 27 participants. Only four participants (18.2%) achieved response, two of them achieving remission (9.1%). Five participants (18.5%) experienced tolerability issues. Future studies should focus on the neurophysiological effects of TBS protocols to determine optimal parameters.
Collapse
Affiliation(s)
- Maxime Richard
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, QC, Canada.
| | - Clémence Noiseux
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada
| | - Véronique Desbeaumes Jodoin
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute at the Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Jack Sheen
- Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Farrokh Mansouri
- Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Laurent Elkrief
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, QC, Canada
| | - Christophe Longpré-Poirier
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, QC, Canada
| | - Paul Lespérance
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, QC, Canada
| | - Jean-Philippe Miron
- Centre Hospitalier de l'Université de Montréal (CHUM) et Centre de Recherche du CHUM (CRCHUM), Université de Montréal, QC, Canada; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, QC, Canada.
| |
Collapse
|
27
|
Poydasheva AG, Bakulin IS, Sinitsyn DO, Zabirova AH, Suponeva NA, Maslenikov NV, Tsukarzi EE, Mosolov SN, Piradov MA. Experience of Stanford neuromodulation therapy in patients with treatment-resistant depression. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stanford neuromodulation therapy (SNT) is the state-of-the-art magnetic stimulation protocol that has been developed for management of treatment-resistant depression (TRD). The study was aimed to assess the possibility of SNT implementation in clinical practice and to define the protocol safety and efficacy in patients with TRD being an episode of the recurrent depressive disorder or bipolar disorder at the independent center. The study involved six patients (among them three women aged 21–66) with TRD associated with recurrent depression and type 1 or 2 bipolar disorder. The patients received intermittent theta-burst stimulation in accordance with the SNT protocol for five days: applying 10 triple blocks of stimulation daily at intervals of 1 hr between the blocks to the selected stimulation site showing maximum negative functional connectivity with subgenual cingulate cortex within the left dorsolateral prefrontal cortex. The Montgomery–Asberg Depression Rating Scale (MADRS) was used for clinical assessment of the effects, the follow-up period was three months. The improvement of depressive symptoms to the levels characteristic of remission immediately after the SNT completion was observed in five patients (MADRS score ≤10). After three months, two patients still had remission, the condition of three patients met the criteria of mild depressive episode, and one female patient withdrew from the study due to logistical difficulties. No serious adverse events were reported. The findings confirm safety and potentially high efficacy of SNT, including in patients with type 1 and 2 bipolar disorders.
Collapse
Affiliation(s)
| | - IS Bakulin
- Research Center of Neurology, Moscow, Russia
| | - DO Sinitsyn
- Research Center of Neurology, Moscow, Russia
| | - AH Zabirova
- Research Center of Neurology, Moscow, Russia
| | - NA Suponeva
- Research Center of Neurology, Moscow, Russia
| | - NV Maslenikov
- Moscow Research Institute of Psychiatry, Moscow, Russia
| | - EE Tsukarzi
- Moscow Research Institute of Psychiatry, Moscow, Russia
| | - SN Mosolov
- Moscow Research Institute of Psychiatry, Moscow, Russia
| | - MA Piradov
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
28
|
Caulfield KA, Fleischmann HH, George MS, McTeague LM. A transdiagnostic review of safety, efficacy, and parameter space in accelerated transcranial magnetic stimulation. J Psychiatr Res 2022; 152:384-396. [PMID: 35816982 PMCID: PMC10029148 DOI: 10.1016/j.jpsychires.2022.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Accelerated transcranial magnetic stimulation (aTMS) is an emerging delivery schedule of repetitive TMS (rTMS). TMS is "accelerated" by applying two or more stimulation sessions within a day. This three-part review comprehensively reports the safety/tolerability, efficacy, and stimulation parameters affecting response across disorders. METHODS We used the PubMed database to identify studies administering aTMS, which we defined as applying at least two rTMS sessions within one day. RESULTS Our targeted literature search identified 85 aTMS studies across 18 diagnostic and healthy control groups published from July 2001 to June 2022. Excluding overlapping populations, 63 studies delivered 43,873 aTMS sessions using low frequency, high frequency, and theta burst stimulation in 1543 participants. Regarding safety, aTMS studies had similar seizure and side effect incidence rates to those reported for once daily rTMS. One seizure was reported from aTMS (0.0023% of aTMS sessions, compared with 0.0075% in once daily rTMS). The most common side effects were acute headache (28.4%), fatigue (8.6%), and scalp discomfort (8.3%), with all others under 5%. We evaluated aTMS efficacy in 23 depression studies (the condition with the most studies), finding an average response rate of 42.4% and remission rate of 28.4% (range = 0-90.5% for both). Regarding parameters, aTMS studies ranged from 2 to 10 sessions per day over 2-30 treatment days, 10-640 min between sessions, and a total of 9-104 total accelerated TMS sessions per participant (including tapering sessions). Qualitatively, response rate tends to be higher with an increasing number of sessions per day, total sessions, and total pulses. DISCUSSION The literature to date suggests that aTMS is safe and well-tolerated across conditions. Taken together, these early studies suggest potential effectiveness even in highly treatment refractory conditions with the added potential to reduce patient burden while also expediting response time. Future studies are warranted to systematically investigate how key aTMS parameters affect treatment outcome and durability.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Holly H Fleischmann
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Department of Psychology, University of Georgia, Athens, GA, USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
29
|
Does switching between high frequency rTMS and theta burst stimulation improve depression outcomes? Brain Stimul 2022; 15:889-891. [PMID: 35714945 DOI: 10.1016/j.brs.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
|
30
|
Caulfield KA, Brown JC. The Problem and Potential of TMS' Infinite Parameter Space: A Targeted Review and Road Map Forward. Front Psychiatry 2022; 13:867091. [PMID: 35619619 PMCID: PMC9127062 DOI: 10.3389/fpsyt.2022.867091] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments. METHODS We performed a targeted review of pre-clinical and clinical rTMS studies. RESULTS Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy. CONCLUSIONS We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Joshua C Brown
- Departments of Psychiatry and Neurology, Brown University Medical School, Providence, RI, United States
| |
Collapse
|
31
|
Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sci 2021; 12:brainsci12010048. [PMID: 35053792 PMCID: PMC8773947 DOI: 10.3390/brainsci12010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) and alcohol use disorder (AUD) are leading causes of disability, and patients are frequently affected by both conditions. This comorbidity is known to confer worse outcomes and greater illness severity. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation method that has demonstrated antidepressant effects. However, the study of rTMS for patients with MDD and commonly associated comorbidities, such as AUD, has been largely overlooked, despite significant overlap in clinical presentation and neurobiological mechanisms. This narrative review aims to highlight the interrelated aspects of the literature on rTMS for MDD and rTMS for AUD. First, we summarize the available evidence on the effectiveness of rTMS for each condition, both most studied through stimulation of the dorsolateral prefrontal cortex (DLPFC). Second, we describe common symptom constructs that can be modulated by rTMS, such as executive dysfunction, that are transdiagnostic across these disorders. Lastly, we describe promising approaches in the personalization and optimization of rTMS that may be applicable to both AUD and MDD. By bridging the gap between research efforts in MDD and AUD, rTMS is well positioned to be developed as a treatment for the many patients who have both conditions concurrently.
Collapse
|