1
|
Jones S, Santini JM. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Essays Biochem 2023; 67:685-699. [PMID: 37449416 PMCID: PMC10427800 DOI: 10.1042/ebc20220257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Bioleaching offers a low-input method of extracting valuable metals from sulfide minerals, which works by exploiting the sulfur and iron metabolisms of microorganisms to break down the ore. Bioleaching microbes generate energy by oxidising iron and/or sulfur, consequently generating oxidants that attack sulfide mineral surfaces, releasing target metals. As sulfuric acid is generated during the process, bioleaching organisms are typically acidophiles, and indeed the technique is based on natural processes that occur at acid mine drainage sites. While the overall concept of bioleaching appears straightforward, a series of enzymes is required to mediate the complex sulfur oxidation process. This review explores the mechanisms underlying bioleaching, summarising current knowledge on the enzymes driving microbial sulfur and iron oxidation in acidophiles. Up-to-date models are provided of the two mineral-defined pathways of sulfide mineral bioleaching: the thiosulfate and the polysulfide pathway.
Collapse
Affiliation(s)
- Sarah Jones
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, U.K
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
| |
Collapse
|
2
|
Liu X, Xin S, Wang B, Yuan Y, Chu J, He Y, Zhang X, Wang S. Removal of antimonite and antimonate in aqueous solution by mugwort biochar modified by Acidithiobacillus ferrooxidans after pyrolysis. BIORESOURCE TECHNOLOGY 2023; 380:129113. [PMID: 37137450 DOI: 10.1016/j.biortech.2023.129113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
In the research, iron oxides-biochar composites (ALBC) were prepared from pristine biochar modified by Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrolyzed at 500 °C and 700 °C in order to remove antimonite (Sb(III)) and antimonate (Sb(V)) from water. The results indicated that biochar prepared at 500 °C and 700 °C (ALBC500 and ALBC700) were loaded with Fe2O3 and Fe3O4, respectively. In bacterial modification systems, ferrous iron and total iron concentrations decreased continuously. The pH values of bacterial modification systems including ALBC500 increased first and then decreased to a stable state, while the pH values of bacterial modification systems with ALBC700 continued to decrease. The bacterial modification systems can facilitate the formation of more jarosites by A. ferrooxidans. ALBC500 had optimal adsorbing capacities for Sb(III) (18.81 mg·g-1) and Sb(V) (14.64 mg·g-1). The main mechanisms of Sb(III) and Sb(V) adsorption by ALBC were electrostatic interaction and pore filling.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Jizhuang Chu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yihang He
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
3
|
Liapun V, Motola M. Current overview and future perspective in fungal biorecovery of metals from secondary sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117345. [PMID: 36724599 DOI: 10.1016/j.jenvman.2023.117345] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are intimately involved in many biogeochemical processes that underpin the transformation of metals and cycling of related substances, such as metalloids and radionuclides. Many processes determine the mobility and bioavailability of metals, thereby influencing their transfer to the environment and living organisms. These processes are closely related to global phenomena such as soil formation and bioweathering. In addition to environmental significance, microbial metal transformations play an essential role in both in situ and ex situ bioremediation processes for solid and liquid wastes. The solubilization of heavy metals from industrial waste and soil is commonly used in bioremediation. Moreover, immobilization processes are applicable to bioremediation of metals and radionuclides from aqueous solutions. This review provides an overview of critical metal extraction and recovery from secondary sources, applied microorganisms and methods, metal-microbe interactions, as well as a detailed description of known metal recovery mechanisms.
Collapse
Affiliation(s)
- Viktoriia Liapun
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia.
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
4
|
Bioleaching of uranium from low-grade uranium ore with a high fluorine content by indigenous microorganisms and their community structure analysis. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Medina-Díaz HL, Acosta I, Muñoz M, López Bellido FJ, Villaseñor J, Llanos J, Rodríguez L, Fernández-Morales FJ. A classical modelling of abandoned mine tailings' bioleaching by an autochthonous microbial culture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116251. [PMID: 36261963 DOI: 10.1016/j.jenvman.2022.116251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to study and model the bioleaching of abandoned mine tailings at different pulp densities 1-20% w/v by using an autochthonous mesophilic microbial culture. Because of the importance of the ferrous-iron oxidation as sub-process on the bioleaching of sulphide mineral ores, the ferrous-iron oxidation process by the autochthonous microbial culture was studied at different ferrous-iron concentrations. A mathematical model fitted to the experimental results and the main kinetic and stoichiometric parameters were determined, being the most relevant the maximum ferrous-iron oxidation rate 5.1 (mmol Fe2+/mmol C·h) and the biomass yield, 0.01 mmol C/mmol Fe2+, values very similar to that of mixed cultured dominated by Leptospirillum strains. This autochthonous culture was used in the bioleaching experiment carried out at different pulp densities, obtaining a maximum metal recovery in the tests carried out at 1% w/v, recovering a 90% of Cd, 60% of Zn, 30% of Cu, 25% Fe and 6% of Pb. Finally, the different leaching mechanisms were modelled by using the pyrite as ore model obtaining a bioleaching rate of 0.316 mmol Fe2+/(L·h) for the direct mechanisms and a bioleaching rate for the indirect and cooperative leaching mechanisms of 0.055 Fe2+/(L·h).
Collapse
Affiliation(s)
- Hassay Lizeth Medina-Díaz
- Chemical Engineering Department, University of Castilla-La Mancha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Irene Acosta
- Chemical Engineering Department, University of Castilla-La Mancha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Martín Muñoz
- Chemical Engineering Department, University of Castilla-La Mancha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Francisco Javier López Bellido
- Department of Plant Production and Agricultural Technology, School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, s/n, 13003. Ciudad Real, Spain
| | - José Villaseñor
- Chemical Engineering Department, University of Castilla-La Mancha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Javier Llanos
- Chemical Engineering Department, University of Castilla-La Mancha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Luis Rodríguez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, 2, 13071, Ciudad Real, Spain
| | - Francisco Jesús Fernández-Morales
- Chemical Engineering Department, University of Castilla-La Mancha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
6
|
Zhu Y, Di Capua F, Li D, Li H. Enhancement and mechanisms of micron-pyrite driven autotrophic denitrification with different pretreatments for treating organic-limited waters. CHEMOSPHERE 2022; 308:136306. [PMID: 36067811 DOI: 10.1016/j.chemosphere.2022.136306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pyrite-driven autotrophic denitrification (PAD) represents a cheap and promising way for nitrogen removal from organic-limited wastewater, which has obtained increasing attention in recent years. However, the limited denitrification rate and unclear mechanism underlying the process have hindered the engineered application of PAD. This study aims to shed light on the impacts of different pretreatments (i.e., ultrasonication, acid-washing and calcination) on micron-pyrite surface characteristics, denitrification performance and biofilm formation during PAD in batch reactors. A series of solid-phase analyses revealed that all pretreatments could significantly promote biofilm attachment on pyrite granules, but impacted the proportion, distribution and chemical oxidation state of sulfur (S) and iron (Fe) at varying degrees. Batch tests showed that ultrasonication and acid-washing could enhance the total nitrogen reduction rate by 14% and 99%, and decrease the sulfate production rate by 51% and 42%, respectively, when compared with untreated pyrite. Microbial community analysis indicated that Thiobacillus and Rhodanobacter dominated in PAD systems. Two types of indirect mechanisms (i.e., contact and non-contact) for pyrite leaching may co-occur in PAD system, resulting in ferrous iron (Fe2+), thiosulfate (S2O32-) and sulfide (S2-) as the main electron donors for denitrification. A PAD mechanism model was proposed to describe the PAD electron transfer pathway with the aim to optimize the engineered application of PAD for nitrogen removal.
Collapse
Affiliation(s)
- Yingjie Zhu
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Francesco Di Capua
- Department of Civil Environmental Land Construction and Chemistry (DICATECh), Polytechnic University of Bari, 70125, Bari, Italy
| | - Duanxin Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
7
|
Dong Y, Chen D, Lin H. The behavior of heavy metal release from sulfide waste rock under microbial action and different environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75293-75306. [PMID: 35655012 DOI: 10.1007/s11356-022-20555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The dissolution of heavy metals from the waste rock is controlled by many factors. Herein, we investigated the release behavior of iron (Fe), chromium (Cr), copper (Cu), and zinc (Zn) from sulfide waste rock under the actions of microorganisms and different environmental factors (solution pH value, particle size of waste rock, temperature, Fe3+ concentration). The release quantity of heavy metals was negatively correlated with pH and particle size and positively correlated with ambient temperature and Fe3+ concentration. Under the experimental conditions of pH value of 3.0, temperature of 35°C, and waste stone particle size of less than 0.075 mm,, the release quantity of Fe, Cr, Cu, and Zn reached 3680, 18.32, 132.20, 26.60 mg·kg-1 after 20 days of leaching, respectively. Rising the temperature to 45 °C, Fe, Cr, Cu, and Zn release quantities increased to 89.30, 5.81, 105.08, and 28.00 mg·kg-1. Six hundred milligrams per liter Fe3+ increased the release of heavy metals considerably (2.63-65.48 folds). The presence of microorganisms can significantly facilitate the release of heavy metals. Compared to the control group, the release quantities of Fe, Cr, Cu, and Zn increased 4.29, 3.17, 1.54, and 2.39 times, respectively. In addition, the waste rock under microbial action was more seriously corroded than that under chemical factors. The release behavior of these four heavy metals was consistent with the interfacial chemical reaction control model, indicating that the reactions mainly occurred on the surface of the waste rock. This study provides an essential reference for the study of heavy metal leaching behavior.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Danni Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
8
|
Santini TC, Gramenz L, Southam G, Zammit C. Microbial Community Structure Is Most Strongly Associated With Geographical Distance and pH in Salt Lake Sediments. Front Microbiol 2022; 13:920056. [PMID: 35756015 PMCID: PMC9221066 DOI: 10.3389/fmicb.2022.920056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Salt lakes are globally significant microbial habitats, hosting substantial novel microbial diversity and functional capacity. Extremes of salinity and pH both pose major challenges for survival of microbial life in terrestrial and aquatic environments, and are frequently cited as primary influences on microbial diversity across a wide variety of environments. However, few studies have attempted to identify spatial and geochemical contributions to microbial community composition, functional capacity, and environmental tolerances in salt lakes, limiting exploration of novel halophilic and halotolerant microbial species and their potential biotechnological applications. Here, we collected sediment samples from 16 salt lakes at pH values that ranged from pH 4 to 9, distributed across 48,000 km2 of the Archaean Yilgarn Craton in southwestern Australia to identify associations between environmental factors and microbial community composition, and used a high throughput culturing approach to identify the limits of salt and pH tolerance during iron and sulfur oxidation in these microbial communities. Geographical distance between lakes was the primary contributor to variation in microbial community composition, with pH identified as the most important geochemical contributor to variation in microbial community composition. Microbial community composition split into two clear groups by pH: Bacillota dominated microbial communities in acidic saline lakes, whereas Euryarchaeota dominated microbial communities in alkaline saline lakes. Iron oxidation was observed at salinities up to 160 g L-1 NaCl at pH values as low as pH 1.5, and sulfur oxidation was observed at salinities up to 160 g L-1 NaCl between pH values 2-10, more than doubling previously observed tolerances to NaCl salinity amongst cultivable iron and sulfur oxidizers at these extreme pH values. OTU level diversity in the salt lake microbial communities emerged as the major indicator of iron- and sulfur-oxidizing capacity and environmental tolerances to extremes of pH and salinity. Overall, when bioprospecting for novel microbial functional capacity and environmental tolerances, our study supports sampling from remote, previously unexplored, and maximally distant locations, and prioritizing for OTU level diversity rather than present geochemical conditions.
Collapse
Affiliation(s)
- Talitha C. Santini
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Lucy Gramenz
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Carla Zammit
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
9
|
Tian Y, Hu X, Song X, Yang A. Bioleaching of rare earths elements from phosphate rock using Acidothiobacillus ferrooxidans. Lett Appl Microbiol 2022; 75:1111-1121. [PMID: 35611559 DOI: 10.1111/lam.13745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Phosphate rock containing rare earth elements (REEs) is considered one of the most promising potential secondary sources of REEs, as evidenced by large tonnages of phosphate rock mined annually. The bioleaching of REEs from phosphate rock using A. ferrooxidans was done for the first time in this study, and it was found to be greater than abiotic leaching and was more environmentally friendly. The result showed that the total leaching rate of REEs in phosphate rock was 28.46% under the condition of 1% pulp concentration and pH=2, and the leaching rates of four key rare earths, Y, La, Ce, and Nd, were 35.7%, 37.03%, 27.92%, and 32.53%, respectively. The bioleaching process was found to be accomplished by bacterial contact and Fe2+ oxidation. The blank control group which contained Fe2+ was able to leach some of the rare earths, indicating that the oxidation of Fe2+ may affect the leaching of rare earths. X-Ray Diffraction (XRD)analysis showed that the minerals were significantly altered and the intensity of the diffraction peaks of dolomite and apatite decreased significantly after microbial action compared to the blank control, and it was observed that bacteria adhere to the mineral surface and the minerals become smooth and angular after bioleaching by Scanning electron microscope (SEM), indicating that bacteria have a further effect on the rock based on Fe2+ oxidation.Finally.Fourier Transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3DEEM) fluorescence spectra analysis showed that extracellular polymeric substances (EPS) participate in the bioleaching process.
Collapse
Affiliation(s)
- Yi Tian
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Xia Hu
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Xia Song
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Aijiang Yang
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
10
|
Liu X, Li Y, Cao J, Zeng Z, Liu X, Zhang R, Li Q, Sand W. Bioleaching of Chalcopyrite Waste Rock in the Presence of the Copper Solvent Extractant LIX984N. Front Microbiol 2022; 13:820052. [PMID: 35369491 PMCID: PMC8972061 DOI: 10.3389/fmicb.2022.820052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Heap bioleaching, the solubilization of metal ions from metal sulfides by microbial oxidation, is often combined with solvent extraction (SX) and electrowinning to recover, e.g., copper from low-grade ores. After extraction, the leaching solution is recycled, but the entrained organic solvents may be toxic to the microorganisms. Here Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Sulfobacillus thermosulfidooxidans were selected to perform bioleaching of chalcopyrite waste rock in the presence of the SX reagent (2.5% v/v LIX984N in kerosene). Possibly inhibitory effects have been evaluated by copper extraction, bacterial activity, number of actively Fe(II)-oxidizing cells, and biofilm formation. Microcalorimetry, most probable number determination, and atomic force microscopy combined with epifluorescence microscopy were applied. The results show that 100 and 300 mg/L SX reagent could hardly inhibit At. ferrooxidans from oxidizing Fe2+, but they seriously interfered with the biofilm formation and the oxidization of sulfur, thereby hindering bioleaching. L. ferrooxidans was sensitive to 50 mg/L SX reagent, which inhibited its bioleaching completely. Sb. thermosulfidooxidans showed different metabolic preferences, if the concentration of the SX reagent differed. With 10 mg/L LIX984N Sb. thermosulfidooxidans preferred to oxidize Fe2+ and extracted the same amount of copper as the assay without LIX984N. With 50 mg/L extractant the bioleaching stopped, since Sb. thermosulfidooxidans preferred to oxidize reduced inorganic sulfur compounds.
Collapse
Affiliation(s)
- Xiaohui Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuhong Li
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Jianfeng Cao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiaorong Liu
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Ruiyong Zhang
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Wolfgang Sand
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Interdisciplinary Ecological Centre, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
11
|
Impregnating biochar with Fe and Cu by bioleaching for fabricating catalyst to activate H 2O 2. Appl Microbiol Biotechnol 2022; 106:2249-2262. [PMID: 35246693 DOI: 10.1007/s00253-022-11853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Biochar is an excellent support material for heterogeneous catalyst in Fenton reaction. However, fabrication of heterogeneous catalyst supported by biochar normally adopts chemical impregnation which is costly and difficult in post-treatment. Here, impregnation by bioleaching driven by Acidithiobacillus ferrooxidans was developed. Bioleaching was particularly effective in loading iron to biochar. Iron loading amount was 225.5 mg/g after 10-g biochar was treated in bioleaching containing 40-g FeSO4·7H2O for 60 h. When copper was added into bioleaching, simultaneous impregnation with iron and copper could be achieved. Impregnation mechanism for iron was jarosite formation on biochar surface and adsorption for copper. For the high metal content, after pyrolysis, the final composites could activate hydrogen peroxide to decolorize dye effectively. With 15 mg as-synthesized Cu-Fe@biochar containing 254.3 mg/g iron and 33.4 mg/g copper, 50 mg/L reactive red 3BS or methylene blue could be decolorized completely in 20 min in a 100-mL solution by 16-mM H2O2 at pH 2.5. Compared with existing impregnation methods, bioleaching was facile, cheap and green, and deserved more concern. KEY POINTS: • High amount of Fe is loaded to biochar uniformly as jarosite by bioleaching. • Cu is adsorbed onto biochar during bioleaching. • Synthesized Cu-Fe@biochar is an excellent photo-Fenton catalyst.
Collapse
|
12
|
Moazzam P, Boroumand Y, Rabiei P, Baghbaderani SS, Mokarian P, Mohagheghian F, Mohammed LJ, Razmjou A. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. CHEMOSPHERE 2021; 277:130196. [PMID: 33784558 DOI: 10.1016/j.chemosphere.2021.130196] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Sorour Salehi Baghbaderani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parastou Mokarian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fereshteh Mohagheghian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Layth Jasim Mohammed
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
13
|
Piervandi Z, Khodadadi Darban A, Mousavi SM, Abdollahy M, Asadollahfardi G, Funari V, Dinelli E, Webster RD, Sillanpää M. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings. CHEMOSPHERE 2020; 258:127288. [PMID: 32947659 DOI: 10.1016/j.chemosphere.2020.127288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The discharge of toxic elements from tailings soils in the aquatic environments occurs chiefly in the presence of indigenous bacteria. The biotic components may interact in the opposite direction, leading to the formation of a passivation layer, which can inhibit the solubility of the elements. In this work, the influence of jarosite on the bio-immobilization of toxic elements was studied by native bacteria. In batch experiments, the bio-immobilization of heavy metals by an inhibitory layer was examined in the different aquatic media using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. A variety of analyses also investigated the mechanisms of metals bio-immobilization. Among different tests, the highest metal solubility yielded 99% Mn, 91% Cr, 95% Fe, and 78% Cu using A. ferrooxidans in 9KFe medium after ten days. After 22 days, these percentages decreased down to 30% Mn and about 20% Cr, Fe, and Cu, likely due to metal immobilization by biogenic jarosite. The formation of jarosite was confirmed by an electron probe micro-analyzer (EPMA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The mechanisms of metal bio-immobilization by biogenic jarosite from tailings soil confirmed three main steps: 1) the dissolution of metal sulfides in the presence of Acidithiobacillus bacteria; 2) the nucleation of jarosite on the surface of sulfide minerals; 3) the co-precipitation of dissolved elements with jarosite during the bio-immobilization process, demonstrated by a structural study for jarosite. Covering the surface of soils by the jarosite provided a stable compound in the acidic environment of mine-waste.
Collapse
Affiliation(s)
- Zeinab Piervandi
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran
| | - Ahmad Khodadadi Darban
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modarres University, Tehran, Iran.
| | - Mahmoud Abdollahy
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran
| | | | - Valerio Funari
- Department of Earth System Science and Environmental Technologies, National Research Council ISMAR-CNR Bologna Research Area, Bologna, Italy
| | - Enrico Dinelli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Richard David Webster
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Mika Sillanpää
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia; Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
14
|
Srichandan H, Mohapatra RK, Singh PK, Mishra S, Parhi PK, Naik K. Column bioleaching applications, process development, mechanism, parametric effect and modelling: A review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Compositional Analysis of Chalcopyrite Using Calibration-Free Laser-Induced Breakdown Spectroscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article presents elemental analysis of an economically important mineral (chalcopyrite) of local origin. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) methodology based on the assumption of optically thin plasma and local thermodynamic equilibrium was employed for quantitative analysis. Plasma on the surface of the chalcopyrite target was generated by an Nd:YAG laser beam of wavelength 532 nm, pulse width 5 ns, and operated at repetition rate of 10 Hz. A LIBS2000+ detection system, comprised of five spectrometers, covering the spectral range from 200–720 nm, was used to record the signal of the optical emission from the chalcopyrite plasma. Recorded optical spectrum revealed the presence of Cu and Fe as the major elements while Ca and Na were recognized as the minor elements in the target sample. Quantitative analysis has shown that the relative concentrations of Cu, Fe, and Ca in the sample under study were 58.9%, 40.2%, and 0.9% by weight respectively. However, Na was not quantified due to the unavailability of suitable spectral lines, required for CF-LIBS analysis. Results obtained by CF-LIBS were validated by X-ray fluorescence (XRF) analysis, which showed the presence of five compositional elements viz. Cu, Fe, Si, Se and Ag with weight percentages of 58.1%, 35.4%, 5.7%, 0.7%, and 0.1% respectively. These results endorse the effectiveness of the CF-LIBS technique for quantitative analysis of major elements, however, its usefulness in case of minor and trace elements needs further improvement.
Collapse
|
16
|
Huynh D, Norambuena J, Boldt C, Kaschabek SR, Levicán G, Schlömann M. Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans. Front Microbiol 2020; 11:2102. [PMID: 33013767 PMCID: PMC7516052 DOI: 10.3389/fmicb.2020.02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.
Collapse
Affiliation(s)
- Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Javiera Norambuena
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christin Boldt
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Stefan R. Kaschabek
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Gloria Levicán
- Biology Department, Universidad de Santiago de Chile, Santiago, Chile
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
17
|
Fomchenko NV, Muravyov MI. Bioleaching of Sulfide Concentrates with Different Copper and Zinc Contents and Evaluation of Bioleach Residue Grade. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Mechanism for the Bio-Oxidation and Decomposition of Pentlandite: Implication for Nickel Bioleaching at Elevated pH. MINERALS 2020. [DOI: 10.3390/min10030289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work investigated the effects of Fe3+, H+ and adsorbed leaching bacteria on the bioleaching of pentlandite. Collectively, an integrated model for the oxidation and decomposition of pentlandite was built to describe the behaviors of different components in a bioleaching system. Proton ions and ferric ions could promote the break and oxidation of Ni-S and Fe-S bonds. The iron-oxidizing microorganisms could regenerate ferric ions and maintain a high Eh value. The sulfur-oxidizing microorganisms showed significant importance in the oxidation of polysulfide and elemental sulfur. The atoms in pentlandite show different modification pathways during the bioleaching process: iron transformed through a (Ni,Fe)9S8 → Fe2+ → Fe3+ → KFe3(SO4)2(OH)6 pathway; nickel experienced a transformation of (Ni,Fe)9S8 → NiS → Ni2+; sulfur modified through the pathway of S2−/S22− → Sn2− → S0 → SO32− → SO42−. During bioleaching, a sulfur-rich layer and jarosite layer formed on the mineral surface, and the rise of pH value accelerated the process. However, no evidence for the inhibition of the layers was shown in the bioleaching of pentlandite at pH 3.00. This study provides a novel method for the extraction of nickel from pentlandite by bioleaching at elevated pH values.
Collapse
|
19
|
Habibi A, Shamshiri Kourdestani S, Hadadi M. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:232-244. [PMID: 31918634 DOI: 10.1177/0734242x19895321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nowadays, large amount of municipal solid waste is because of electrical scraps (i.e. waste electrical and electronic equipment) that contain large quantities of electrical conductive metals like copper and gold. Recovery of these metals decreases the environmental effects of waste electrical and electronic equipment (also called E-waste) disposal, and as a result, the extracted metals can be used for future industrial purposes. Several studies reported in this review, demonstrated that the biohydrometallurgical processes were successful in efficient extraction of metals from electrical and electronic wastes. The main advantages of biohydrometallurgy are lower operation cost, less energy input, skilled labour, and also less environmental effect in comparison with pyro-metallurgical and hydrometallurgical processes. This study concentrated on fundamentals and technical aspects of biohydrometallurgy. Some points of drawbacks and research directions to develop the process in the future are highlighted in brief.
Collapse
Affiliation(s)
- Alireza Habibi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | | | - Malihe Hadadi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
20
|
Liu R, Chen Y, Tian Z, Mao Z, Cheng H, Zhou H, Wang W. Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2019; 287:121416. [PMID: 31103940 DOI: 10.1016/j.biortech.2019.121416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/09/2023]
Abstract
A new strategy of three-step adaptive laboratory evolution (ALE) was developed to enhance the bioleaching performance of moderately thermophilic consortia. Through consortium construction, directed evolution and chemostat selection, an improved consortium (ALEend) that composed of Leptospirillum ferriphilum (80.32%), Sulfobacillus thermosulfidooxidans (15.82%) and Ferroplasma thermophilum (3.86%) was obtained, showing ferrous iron oxidation rate of 500 mgL-1h-1 and biomass production of 2.0 × 108 cells/mL at pH 0.75. During batch culturing, the ALEend consortium exhibited stable ferrous iron oxidation in wider conditions. PCA indicated that the communities were similar under fluctuating culture conditions, which demonstrated the stable community structure and the reinforced synergistic interactions resulting in the enhanced community performance. Pyrite bioleaching conducted at pH 1.5 and 0.75 revealed that the ALEend consortium extracted 26% and 55% more total iron relative to the original consortium. These findings indicated that the modified ALE may be a promising strategy for microbial community modification to enhance bioleaching.
Collapse
Affiliation(s)
- Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yanzhi Chen
- South China Institute of Environmental Sciences, Guangzhou, China
| | - Zhuang Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenghua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| | - Wei Wang
- South China Institute of Environmental Sciences, Guangzhou, China
| |
Collapse
|
21
|
Huang Z, Feng S, Tong Y, Yang H. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:11-21. [PMID: 31026798 DOI: 10.1016/j.jenvman.2019.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In order to enhance the "contact mechanism" governing the interaction of extracellular polymeric substances (EPS) with low-grade copper-bearing sulfide ore for the bioleaching of copper, moderately thermophilic Acidithiobacillus caldus was subjected to exogenous intervention with iron and sulfur. The enhancement of the contact mechanism was systematically investigated by evaluating the attached cells/EPS dynamics, intracellular adenosine triphosphate (ATP), cell functional groups, gene transcriptional level, and ore characteristics. Confocal laser scanning microscopy (CLSM) revealed that exogenous intervention with iron and sulfur led to the production of a denser EPS layer and faster adsorption of the attached cells to the ore based on differential fluorescence staining, which indicated enhancement of the "contact mechanism". The increased intracellular ATP content of the attached cells in the exogenous substrate system provided the required energy for the adsorption processes associated with the "contact mechanism". Fourier-transform infrared spectroscopic (FTIR) analysis of the attached cells and the ore showed a dramatic shift of the NH and COS peaks (associated with EPS formation), whereas the FTIR peaks of SO and SO42- associated with sulfur metabolism were also significantly influenced. Moreover, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the expression of genes related to cellular energy metabolism (nuoB, nuoC, atpE, atpF), sulfur metabolism (sor, sqr, sdo, soxA), biofilm formation (pgaA, pgaB), and cell colonization (acfA, acfB, acfC, acfD) was up-regulated after exogenous intervention, verifying enhancement of the "contact mechanism" at the transcriptional level. In addition, scanning electron microscopy (SEM) indicated more obvious adsorption traces on the ore surface. X-ray diffraction (XRD) indicated the presence of more complex derivatives, such as Fe3(SO4)4, FeSO4, Fe2(SO4)3, and Cu2S, which is suggestive of more active iron/sulfur metabolism with addition of the exogenous iron and sulfur. Overall, a model for bioleaching of low-grade copper-bearing sulfide ore by moderately thermophilic A. caldus was constructed. The results of this investigation should provide a guide for similar industrial bioleaching processes.
Collapse
Affiliation(s)
- Zhuangzhuang Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University), Ministry of Education, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, PR China; School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Shoushuai Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University), Ministry of Education, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, PR China; School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Yanjun Tong
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hailin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University), Ministry of Education, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, PR China; School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
22
|
Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region. METALS 2019. [DOI: 10.3390/met9010081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The use of biotechnology to explore low-grade ore deposits and mining tailings is one of the most promising alternatives to reduce environmental impacts and costs of copper extraction. However, such technology still depends on improvements to be fully applied in Brazil under industrial scale. In this way, the bioleaching, by Acidithiobacillus ferrooxidans, in columns and stirred reactors were evaluated regarding to copper extraction of a mineral sulfide and a weathered ore from the Brazilian Amazon region. Samples (granulometry of 2.0/4.75 mm) were characterized by X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF) spectrometry and scanning electrons microscopy (SEM). The pH and Oxidation-reduction potential (Eh) were daily monitored and leachate samples were collected for copper extraction determination by EDXRF. After 47 days, the columns bioleaching efficiency was 1% (1298 mg Cu·L−1) and 0.95% (985 mg Cu·L−1) for 2.00/4.75 mm sulfide ore, respectively, whereas the stirred reactors bioleaching resulted in 4% (348 mg Cu·L−1) for the mineral sulfide and 47% (295.5 mg Cu·L−1) for the weathered ore.
Collapse
|
23
|
Fomchenko NV, Muravyov MI. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:270-277. [PMID: 30121463 DOI: 10.1016/j.jenvman.2018.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Polymetallic concentrates obtained during ore beneficiation pose a significant problem for the mining and metallurgy industry due to an increase in load on subsequent comminution steps and a high loss of metals in slag during smelting. Storage of such slag can lead to pollution of groundwater due to weathering. Biohydrometallurgy is an option for the processing of sulfidic raw materials that has a low impact on the environment. Processing of sulfidic concentrates of copper-zinc ore via bioleaching techniques was studied in this paper. Three mixed microbial cultures of acidophilic microorganisms were enriched from industrial mining sites: two autotrophic mesophilic cultures containing Acidithiobacillus ferroxidans and Leptospirillum spp. (grown at 30 and 35 °C), and a mixotrophic moderate thermophilic culture containing Sulfobacillus thermotolerans, Leptospirillum ferriphilum, as well as the archaea Ferroplasma acidiphilum and Acidiplasma spp. (grown at 40 °C). The autotrophic microbial culture growing at 30 °C was used to generate an iron-containing biosolution for ferric leaching of a copper-zinc concentrate. Zinc and iron extracted into solution faster than copper during high-temperature (80 °C) ferric leaching of the concentrate due to galvanic interactions between minerals, redox conditions of the medium, and differences between mineral oxidation mechanisms. Weight loss of the leach residue was 34.0%, with relative copper content increased by 1.0%, zinc content decreased by 6.18%, and iron content decreased by 15.1%. Biooxidation of ferrous iron in the pregnant leach solution by three microbial cultures was also studied. The most effective culture was moderate thermophilic. The results of studies on the bioregeneration of leaching solutions are relevant to the development of a two-step biohydrometallurgical technology for processing of copper-zinc concentrate with a closed cycle of technological flows. The ferrous iron biooxidation rate by the moderate thermophilic culture reached 20 g L-1 day-1. The leach residue obtained can be considered a high-grade copper concentrate able to be processed via smelting. This bioleaching process would make it possible to reduce pollution of groundwater by some toxic metals stored in slags. An environmentally friendly technology flow sheet for copper-zinc sulfidic ore processing using two-step bioleaching treatment was proposed.
Collapse
Affiliation(s)
- Natalya V Fomchenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, Bld. 2, Moscow, 119071, Russia.
| | - Maxim I Muravyov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, Bld. 2, Moscow, 119071, Russia
| |
Collapse
|
24
|
A Geometallurgical Approach to Tailings Management: An Example from the Savage River Fe-Ore Mine, Western Tasmania. MINERALS 2018. [DOI: 10.3390/min8100454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At the Old Tailings Dam (OTD), Savage River, Western Tasmania, 38 Mt of pyritic tailings were deposited (1967 to 1982) and have since been generating acid and metalliferous drainage (AMD). Mineral chemistry analysis confirmed high concentrations of refractory cobalt in pyrite (up to 3 wt %). This study sought to determine, through a series of bench scale tests, if Co could be liberated using biohydrometallurgical techniques. Four bulk tailings samples were collected across the OTD, from up to 1.5 m depth, targeting three sulphide-bearing facies. The study was conducted in four stages: (1) bacterial adaption using BIOX® bacteria; (2) biooxidation optimization with pH, temperature and Fe medium parameters tested; (3) flotation test work to produce a sulphide concentrate followed by biooxidation; and (4) Fe and Co precipitation tests. The BIOX® culture adapted to the bulk composite (containing 7 wt % pyrite) in ~10 days, with biooxidation occurring most efficiently at pH 1.5–1.6 and 40 °C whilst the Fe medium concentration was identified as a less-controlling parameter. Flotation produced a 71% pyrite concentrate with total oxidation occurring after 14 days of biooxidation with 99% of Co leached. At pH 3, Co was effectively separated from Fe, however Ni and Cu were also present in the pregnant liquor solution and therefore required refining before production of cobalt hydroxide, the intermediate saleable product. This study shows that adopting a geometallurgical approach to tailings characterisation can identify if mine waste has commodity potential and how best to extract it therefore unlocking the potential for unconventional rehabilitation of AMD affected sites.
Collapse
|
25
|
|
26
|
Venäläinen SH, Hartikainen H. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1608-1613. [PMID: 28531968 DOI: 10.1016/j.scitotenv.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO42- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO42- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO42-. The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO42- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges.
Collapse
Affiliation(s)
- Salla H Venäläinen
- University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland.
| | - Helinä Hartikainen
- University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland.
| |
Collapse
|
27
|
Feng S, Yang H, Wang W. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages. BIORESOURCE TECHNOLOGY 2016; 200:186-193. [PMID: 26492170 DOI: 10.1016/j.biortech.2015.09.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, People's Republic of China.
| | - Wu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, People's Republic of China
| |
Collapse
|
28
|
Anawar HM. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 158:111-121. [PMID: 25979297 DOI: 10.1016/j.jenvman.2015.04.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage.
Collapse
Affiliation(s)
- Hossain Md Anawar
- School of Earth and Environment (M087), The University of Western Australia, Crawley WA 6009, Australia.
| |
Collapse
|