1
|
Ameen F, Alsarraf MJ, Stephenson SL. Bioremediation petroleum wastewater and oil-polluted soils by the non-toxigenic indigenous fungi. World J Microbiol Biotechnol 2024; 40:336. [PMID: 39358660 DOI: 10.1007/s11274-024-04146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Soil and wastewater samples contaminated by petroleum-related industries were collected from various locations in Saudi Arabia, a country known for its vast oil reserves. The samples were analyzed for their physicochemical properties, including the presence of metals, petroleum hydrocarbons, and aromatic compounds. A total of 264 fungal isolates were analyzed and categorized into eight groups of Aspergillus (194 isolates) and four groups of Penicillium (70 isolates). The potential of these fungal groups to grow in oil or its derivatives was investigated. Two isolates, Aspergillus tubingensis FA-KSU5 and A. niger FU-KSU69, were utilized in two remediation experiments-one targeting wastewater and the other focusing on polluted soil. The FA-KSU5 strain demonstrated complete removal of Fe3+, As3+, Cr6+, Zn2+, Mn2+, Cu2+ and Cd2+, with bioremediation efficiency for petroleum hydrocarbons in the wastewater from these sites ranging between 90.80 and 98.58%. Additionally, the FU-KSU69 strain achieved up to 100% reduction of Co2+, Ba2+, B3+, V+, Ni2+, Pb2+ and Hg2+, with removal efficiency ranging from 93.17 to 96.02% for aromatic hydrocarbons after 180 min of wastewater treatment. After 21 days of soil incubation with Aspergillus tubingensis FA-KSU5, there was a 93.15% to 98.48% reduction in total petroleum hydrocarbons (TPHs) and an 88.11% to 97.31% decrease in polycyclic aromatic hydrocarbons (PAHs). This strain exhibited the highest removal rates for Cd2+ and As3+ followed by Fe3+, Zn2+, Cr6+, Se4+ and Cu2+. Aspergillus niger FU-KSU69 achieved a 90.37% to 94.90% reduction in TPHs and a 95.13% to 98.15% decrease in PAHs, with significant removal of Ni2+, Pb2+ and Hg2+, followed by Co2+, V+, Ba2+ and B3+. The enzymatic activity in the treated soils increased by 1.54- to 3.57-fold compared to the polluted soil. Although the mixture of wastewater and polluted soil exhibited high cytotoxicity against normal human cell lines, following mycoremediation, all treated soils and effluents with the dead fungal biomass showed no toxicity against normal human cell lines at concentrations up to 500 µL/mL, with IC50 values ≥ 1000 µL/mL. SEM and IR analysis revealed morphological and biochemical alterations in the biomass of A. tubingensis FA-KSU5 and A. niger FA-KSU69 when exposed to petroleum effluents. This study successfully introduces non-toxigenic and environmentally friendly fungal strains play a crucial role in the bioremediation of contaminated environments. Both strains serve as low-cost and effective adsorbents for bio-remediating petroleum wastewater and oil-contaminated soil. Heavy metals and hydrocarbons, the primary pollutants, were either completely removed or reduced to permissible levels according to international guidelines using the dead biomass of FA-KSU5 and FA-KSU69 fungi. Consequently, the environments associated with this globally significant industry are rendered biologically safe, particularly for humans, as evidenced by the absence of cytotoxicity in samples treated with A. tubingensis FA-KSU5 and A. niger FA-KSU69 on various human cell types.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad J Alsarraf
- Department of Science, College of Basic Education, The Public Authority of Applied Education and Training (PAAET), P.O. Box 23167, 13092, Safat, Kuwait
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
2
|
Rezaei Z, Moghimi H. Fungal-bacterial consortia: A promising strategy for the removal of petroleum hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116543. [PMID: 38833981 DOI: 10.1016/j.ecoenv.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Nowadays, petroleum hydrocarbon pollution is one of the most widespread types of contamination that poses a serious threat to both public health and the environment. Among various physicochemical methods, bioremediation is an eco-friendly and cost-effective way to eliminate petroleum hydrocarbon pollutants. The successful degradation of all hydrocarbon components and the achievement of optimal efficiency are necessary for the success of this process. Using potential microbial consortia with rich metabolic networks is a promising strategy for addressing these challenges. Mixed microbial communities, comprising both fungi and bacteria, exhibit diverse synergistic mechanisms to degrade complex hydrocarbon contaminants, including the dissemination of bacteria by fungal hyphae, enhancement of enzyme and secondary metabolites production, and co-metabolism of pollutants. Compared to pure cultures or consortia of either fungi or bacteria, different studies have shown increased bioremediation of particular contaminants when combined fungal-bacterial treatments are applied. However, antagonistic interactions, like microbial competition, and the production of inhibitors or toxins can observed between members. Furthermore, optimizing environmental factors (pH, temperature, moisture, and initial contaminant concentration) is essential for consortium performance. With the advancements in synthetic biology and gene editing tools, it is now feasible to design stable and robust artificial microbial consortia systems. This review presents an overview of using microbial communities for the removal of petroleum pollutants by focusing on microbial degradation pathways, and their interactions. It also highlights the new strategies for constructing optimal microbial consortia, as well as the challenges currently faced and future perspectives of applying fungal-bacterial communities for bioremediation.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Dohare S, Rawat HK, Bhargava Y, Kango N. Characterization of Diesel Degrading Indigenous Bacterial Strains, Acinetobacter pittii and Pseudomonas aeruginosa, Isolated from Oil Contaminated Soils. Indian J Microbiol 2024; 64:749-757. [PMID: 39011005 PMCID: PMC11246406 DOI: 10.1007/s12088-024-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, 13 diesel degrading bacteria were isolated from the oil contaminated soils and the promising strains identified as Acinetobacter pittii ED1 and Pseudomonas aeruginosa BN were evaluated for their diesel degrading capabilities. These strains degraded the diesel optimally at 30 °C, pH 7.0 and 1% diesel concentration. Both the strains produced biofilm at 1% diesel concentration indicating their ability to tolerate diesel induced abiotic stress. Gravimetric analysis of the spent medium after 7 days of incubation showed that A. pittii ED1 and P. aeruginosa BN degraded 68.61% and 76% diesel, respectively, while biodegradation reached more than 90% after 21 days. Fourier Transform Infrared (FTIR) analysis of the degraded diesel showed 1636.67 cm-1 (C=C stretch, N-H bond) peak corresponding to alkenes and primary amines, while GC-TOF-MS analysis showed decline in hydrocarbon intensities after 7 days of incubation. The present study revealed that newly isolated A. pittii ED1 and P. aeruginosa BN were able to degrade diesel hydrocarbons (C11-C18, and C19-C24) efficiently and have potential for bioremediation of the oil-contaminated sites. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01317-3.
Collapse
Affiliation(s)
- Sonam Dohare
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Hemant Kumar Rawat
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Yogesh Bhargava
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Naveen Kango
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| |
Collapse
|
4
|
Yan D, Yin K, He Y, Liu Y, Wang L, Deng Q, He J, Awan SU, Khalil ASG. Recent advances in functional micro/nanomaterials for removal of crude oil via thermal effects. NANOSCALE 2024; 16:7341-7362. [PMID: 38511991 DOI: 10.1039/d4nr00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Crude oil is one of the most widely used energy and industrial raw materials that is crucial to the world economy, and is used to produce various petroleum products. However, crude oil often spills during extraction, transportation and use, causing negative impacts on the environment. Thus, there is a high demand for products to remediate leaked crude oil. Among them, oleophilic and hydrophobic adsorbents can absorb crude oil through thermal effects and are research hotspots. In this review, we first present an overview of wettability theory, the heating principles of various thermal effects, and the theory of reducing crude oil viscosity by heating. Then we discuss adsorbents based on different heating methods including the photothermal effect, Joule heating effect, alternating magnetic field heating effect, and composite heating effect. Preparation methods and oil adsorption performance of adsorbents are summarized. Finally, the advantages and disadvantages of various heating methods are briefly summarized, as well as the prospects for future research.
Collapse
Affiliation(s)
- Duanhong Yan
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yuchun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Yao Liu
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Saif Ullah Awan
- Department of Electrical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 54000, Pakistan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria, Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
5
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
6
|
Gaid M, Pöpke D, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Characterization of the Mycoremediation of n-Alkanes and Branched-Chain Alkanes by Filamentous Fungi from Oil-Polluted Soil Samples in Kazakhstan. Microorganisms 2023; 11:2195. [PMID: 37764039 PMCID: PMC10534712 DOI: 10.3390/microorganisms11092195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
For decades, researchers have focused on containing terrestrial oil pollution. The heterogeneity of soils, with immense microbial diversity, inspires them to transform pollutants and find cost-effective bioremediation methods. In this study, the mycoremediation potentials of five filamentous fungi isolated from polluted soils in Kazakhstan were investigated for their degradability of n-alkanes and branched-chain alkanes as sole carbon and energy sources. Dry weight estimation and gas chromatography-mass spectrometry (GC-MS) monitored the growth and the changes in the metabolic profile during degradation, respectively. Penicillium javanicum SBUG-M1741 and SBUG-M1742 oxidized medium-chain alkanes almost completely through mono- and di-terminal degradation. Pristane degradation by P. javanicum SBUG-M1741 was >95%, while its degradation with Purpureocillium lilacinum SBUG-M1751 was >90%. P. lilacinum SBUG-M1751 also exhibited the visible degradation potential of tetradecane and phytane, whereby in the transformation of phytane, both the mono- and di-terminal degradation pathways as well as α- and ß-oxidation steps could be described. Scedosporium boydii SBUG-M1749 used both mono- and di-terminal degradation pathways for n-alkanes, but with poor growth. Degradation of pristane by Fusarium oxysporum SBUG-M1747 followed the di-terminal oxidation mechanism, resulting in one dicarboxylic acid. These findings highlight the role of filamentous fungi in containing oil pollution and suggest possible degradation pathways.
Collapse
Affiliation(s)
- Mariam Gaid
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Doreen Pöpke
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| |
Collapse
|
7
|
Fenibo EO, Selvarajan R, Abia ALK, Matambo T. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162951. [PMID: 36948313 DOI: 10.1016/j.scitotenv.2023.162951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme di‑iron monooxygenase (AlkB) with a di‑iron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Akebe Luther King Abia
- Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa; Environmental Research Foundation, Westville 3630, South Africa
| | - Tonderayi Matambo
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa.
| |
Collapse
|
8
|
Daâssi D, Almaghrabi FQ. Petroleum-Degrading Fungal Isolates for the Treatment of Soil Microcosms. Microorganisms 2023; 11:1351. [PMID: 37317325 DOI: 10.3390/microorganisms11051351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
The main purpose of this study was to degrade total petroleum hydrocarbons (TPHs) from contaminated soil in batch microcosm reactors. Native soil fungi isolated from the same petroleum-polluted soil and ligninolytic fungal strains were screened and applied in the treatment of soil-contaminated microcosms in aerobic conditions. The bioaugmentation processes were carried out using selected hydrocarbonoclastic fungal strains in mono or co-cultures. Results demonstrated the petroleum-degrading potential of six fungal isolates, namely KBR1 and KBR8 (indigenous) and KBR1-1, KB4, KB2 and LB3 (exogenous). Based on the molecular and phylogenetic analysis, KBR1 and KB8 were identified as Aspergillus niger [MW699896] and tubingensis [MW699895], while KBR1-1, KB4, KB2 and LB3 were affiliated with the genera Syncephalastrum sp. [MZ817958], Paecilomyces formosus [MW699897], Fusarium chlamydosporum [MZ817957] and Coniochaeta sp. [MW699893], respectively. The highest rate of TPH degradation was recorded in soil microcosm treatments (SMT) after 60 days by inoculation with Paecilomyces formosus 97 ± 2.54%, followed by bioaugmentation with the native strain Aspergillus niger (92 ± 1.83%) and then by the fungal consortium (84 ± 2.21%). The statistical analysis of the results showed significant differences.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia
| | - Fatimah Qabil Almaghrabi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia
| |
Collapse
|
9
|
Meknassi K, Aït Abderrahim L, Taïbi K, Sassi M, Boussaid M. Isolation and characterization of fungi and bacteria able to grow on media containing gasoline and diesel fuel. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Petroleum products are significant environmental pollutants. This study aimed to isolate microorganisms able to grow on media containing gasoline and diesel fuel. Microorganisms were isolated from soils sampled near gasoline and diesel pumps. Bacterial isolates were characterized and tested on media containing concentrations ranging from 10 to 100 % gasoline and diesel fuel and combinations of both 50/50 % and 25/25/50 % (gasoline/ diesel/ Mueller Hinton broth). Results showed that microbial isolates belong to the genera Pseudomonas, Bacillus, Staphylococcus, Micrococcus, Flavobacterium, Actinobacteria, Penicillium, Hansfordia and Alternaria. Pseudomonas spp. and Bacillus spp. showed the ability to grow on both products up to the concentration of 80 %. However, no growth was noticed above that concentration and on both mixtures. Throughout this study, it has been shown that using a selective screening method for microorganisms able to grow on pollutants can present a significant advantage for bioremediation.
Keywords: Pollution; gasoline; diesel; microorganisms.
Collapse
Affiliation(s)
- Khadidja Meknassi
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | | | - Khaled Taïbi
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Mohamed Sassi
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Mohamed Boussaid
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| |
Collapse
|
10
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
11
|
Kumar V, Kumar H, Vishal V, Lal S. Studies on the morphology, phylogeny, and bioremediation potential of Penicillium citrinum and Paecilomyces variotii (Eurotiales) from oil-contaminated areas. Arch Microbiol 2023; 205:50. [PMID: 36598589 DOI: 10.1007/s00203-022-03383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Crude oil pollution is one of the most arduous issues to address, as it is hazardous to both public health and the environment. The discovery of novel biosurfactants-producing fungi and bacteria is in high demand due to their excellent properties and wide range of applications. The aim of this research is to isolate a powerful biosurfactant-producing fungus from the crude oil site near Barauni oil refinery in Bihar, India. Standard protocols were used to collect samples from the site. An integrative taxonomic approach was used, which included morphological, molecular, and phylogenetic analysis. The use of plating samples on Bushnell-Hass (BH) media aided in the isolation of a fungal strain from an enrichment culture. Two fungal strains isolated from contaminated soils, Penicillium citrinum and Paecilomyces variotti, showed potent oil degrading activity in a single culture. For preliminary biosurfactants screening, drop collapse assays, oil spreading, and emulsification activity tests were used. The results showed that the cultures performed well in the screening test and were further evaluated for degradation capacity. Different treatment periods (0, 3, 6, 9, 12, and 15 days) were used to observe degradation in single cultures. A steady drop in pH, an alteration in optical density and an increase in carbon dioxide release showed the ability of fungal strain to degrade the crude oil in a single culture. Fungi mycelia provide a larger surface area for absorption and degradation of the pollutants in contaminated environment. They produce extracellular enzymes to degrade the oil, and at the same time absorb and utilise carbon, allowing them to remove toxic substances from the oil. Thus, they could be candidates for bioremediation of a hydrocarbon-contaminated site.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India
| | - Harsh Kumar
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India
| | - Vineet Vishal
- Department of Botany, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India.,Department of Botany, Bangabasi Evening College, Kolkata, West Bengal, 700009, India
| | - Shalini Lal
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India. .,Department of Botany, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India.
| |
Collapse
|
12
|
Genomics and degradation law of Acinetobacter junii in response to petroleum pollution. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Dmitrieva ED, Grinevich VI, Gertsen MM. Degradation of Oil and Petroleum Products by Biocompositions Based on Humic Acids of Peats and Oil-Degrading Microorganisms. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Biodegradation of Petroleum Hydrocarbons by Drechsleraspicifera Isolated from Contaminated Soil in Riyadh, Saudi Arabia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196450. [PMID: 36234987 PMCID: PMC9572601 DOI: 10.3390/molecules27196450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022]
Abstract
Currently, the bioremediation of petroleum hydrocarbons employs microbial biosurfactants because of their public acceptability, biological safety, and low cost. These organisms can degrade or detoxify organic-contaminated areas, such as marine ecosystems. The current study aimed to test the oil-biodegradation ability of the fungus Drechslera spicifera, which was isolated from contaminated soil samples in Riyadh, Saudi Arabia. We used hydrocarbon tolerance, scanning electron microscopy, DCPIP, drop-collapse, emulsification activity, recovery of biosurfactants, and germination assays to assess the biodegradation characteristics of the D. spicifera against kerosene, crude, diesel, used, and mixed oils. The results of DCPIP show that the highest oxidation (0.736 a.u.) was induced by crude oil on the 15th day. In contrast, kerosene and used oil had the highest measurements in emulsification activity and drop-collapse assays, respectively. Meanwhile, crude and used oils produced the highest amounts of biosurfactants through acid precipitation and solvent extraction assays. Furthermore, the biosurfactants stimulated the germination of tomato seeds by more than 50% compared to the control. These findings highlight the biodegradation ability of D. spicifera, which has been proven in the use of petroleum oils as the sole source of carbon. That might encourage further research to demonstrate its application in the cleaning of large, contaminated areas.
Collapse
|
15
|
Bakri M. Assessing some
Cladosporium
species in the biodegradation of petroleum hydrocarbon for treating oil contamination. J Appl Microbiol 2022; 133:3296-3306. [DOI: 10.1111/jam.15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Marwah Bakri
- Department of Biology Jazan University Jizan Saudi Arabia
| |
Collapse
|
16
|
Perera M, Wijesundera S, Wijayarathna CD, Seneviratne G, Jayasena S. Identification of long-chain alkane-degrading (LadA) monooxygenases in Aspergillus flavus via in silico analysis. Front Microbiol 2022; 13:898456. [PMID: 36110294 PMCID: PMC9468676 DOI: 10.3389/fmicb.2022.898456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Efficient degradation of alkanes in crude oil by the isolated Aspergillus flavus MM1 alluded to the presence of highly active alkane-degrading enzymes in this fungus. A long-chain alkane-degrading, LadA-like enzyme family in A. flavus was identified, and possible substrate-binding modes were analyzed using a computational approach. By analyzing publicly available protein databases, we identified six uncharacterized proteins in A. flavus NRRL 3357, of which five were identified as class LadAα and one as class LadAβ, which are eukaryotic homologs of bacterial long-chain alkane monooxygenase (LadA). Computational models of A. flavus LadAα homologs (Af1-Af5) showed overall structural similarity to the bacterial LadA and the unique sequence and structural elements that bind the cofactor Flavin mononucleotide (FMN). A receptor-cofactor-substrate docking protocol was established and validated to demonstrate the substrate binding in the A. flavus LadAα homologs. The modeled Af1, Af3, Af4, and Af5 captured long-chain n-alkanes inside the active pocket, above the bound FMN. Isoalloxazine ring of reduced FMN formed a π–alkyl interaction with the terminal carbon atom of captured alkanes, C16–C30, in Af3–Af5 and C16–C24 in Af1. Our results confirmed the ability of identified A. flavus LadAα monooxygenases to bind long-chain alkanes inside the active pocket. Hence A. flavus LadAα monooxygenases potentially initiate the degradation of long-chain alkanes by oxidizing bound long-chain alkanes into their corresponding alcohol.
Collapse
Affiliation(s)
- Madushika Perera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sulochana Wijesundera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Sharmila Jayasena
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- *Correspondence: Sharmila Jayasena,
| |
Collapse
|
17
|
Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. CHEMOSPHERE 2022; 293:133572. [PMID: 35016966 DOI: 10.1016/j.chemosphere.2022.133572] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Petroleum hydrocarbons (PHs) are used as raw materials in many industries and primary energy sources. However, excessive PHs act as soil pollutants, posing serious threats to living organisms. Various ex-situ or in-situ chemical and biological methods are applied to restore polluted soil. However, most of the chemical treatment methods are expensive, environmentally unfriendly, and sometimes inefficient. That attracts scientists and researchers to develop and select new strategists to remediate polluted soil through risk-based analysis and eco-friendly manner. This review discusses the sources of PHs, properties, distribution, transport, and fate in the environment, internal and external factors affecting the soil remediation and restoration process, and its effective re-utilization for agriculture. Bioremediation is an eco-friendly method for degrading PHs, specifically by using microorganisms. Next-generation sequencing (NGS) technologies are being used to monitor contaminated sites. Currently, these new technologies have caused a paradigm shift by giving new insights into the microbially mediated biodegradation processes by targeting rRNA are discussed concisely. The recent development of risk-based management for soil contamination and its challenges and future perspectives are also discussed. Furthermore, nanotechnology seems very promising for effective soil remediation, but its success depends on its cost-effectiveness. This review paper suggests using bio-electrochemical systems that utilize electro-chemically active microorganisms to remediate and restore polluted soil with PHs that would be eco-friendlier and help tailor-made effective and sustainable remediation technologies.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Alif Chebbi
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Francesca Formicola
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
18
|
Atakpa EO, Zhou H, Jiang L, Ma Y, Liang Y, Li Y, Zhang D, Zhang C. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. CHEMOSPHERE 2022; 290:133337. [PMID: 34933030 DOI: 10.1016/j.chemosphere.2021.133337] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Microbial remediation has proven to be an effective technique for the cleanup of crude-oil contaminated sites. However, limited information exists on the dynamics involved in defined co-cultures of biosurfactant-producing bacteria and fungi in bioremediation processes. In this study, a fungal strain (Scedosporium sp. ZYY) capable of degrading petroleum hydrocarbons was isolated and co-cultured with biosurfactant-producing bacteria (Acinetobacter sp. Y2) to investigate their combined effect on crude-oil degradation. Results showed that the surface tension of the co-culture decreased from 63.12 to 47.58 mN m-1, indicating the secretion of biosurfactants in the culture. Meanwhile, the degradation rate of total petroleum hydrocarbon increased from 23.36% to 58.61% at the end of the 7-d incubation period. In addition, gas chromatography - mass spectrometry analysis showed a significant (P < 0.05) degradation from 3789.27 mg/L to 940.33 mg/L for n-alkanes and 1667.33 μg/L to 661.5 μg/L for polycyclic aromatic hydrocarbons. Moreover, RT-qPCR results revealed the high expression of alkB and CYP52 genes by Acinetobacter sp. Y2 and Scedosporium sp. ZYY respectively in the co-culture, which corelated positively (P < 0.01) with n-alkane removal. Finally, microbial growth assay which corresponded with Fluorescein diacetate hydrolysis activity, highlighted the synergistic behavior of both strains in tackling the crude oil. Findings in this study suggest that the combination of fungal strain and biosurfactant-producing bacteria effectively enhances the degradation of petroleum hydrocarbons, which could shed new light on the improvement of bioremediation strategies.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yinghui Ma
- Microbiology Institute of Shaanxi, Xi'an, 710043, Shaanxi, China
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
19
|
Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia. Sci Rep 2022; 12:2940. [PMID: 35190624 PMCID: PMC8861096 DOI: 10.1038/s41598-022-07016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
2,6-Dichlorophenol (2,6-DCP) is an aromatic compound with industrial importance in making insecticides, herbicides, and other organic compounds. However, it poses serious health and ecological problems. Microbial degradation of 2,6-DCP has been widely applied due to its effectiveness and eco-friendly characteristics. In this study, Trichoderma longibraciatum was isolated from an industrial soil sample in Dammam, Saudi Arabia using the enrichment method of mineral salt's medium (MSM) amended with 2,6-DCP. Morphological and molecular identification (using the internal transcribed spacer rRNA gene sequencing) of the 2,6-DCP tolerating fungal isolate were charactraized. The fungal isolate has demonstrated a tolerance to 2,6-DCP up to 300 mg/L. Mycelial growth and fungal sporulation were reduced with increasing 2,6-DCP concentrations up to 96 h incubation period. However, after 168 h incubation period, the fungal isolate recorded maximum growth at all the tested 2,6-DCP concentrations up to 150 mg/L. Carboxy methyl cellulase production by tested fungus was decreased by increasing 2,6-DCP concentration up to 75 mg/L. The biodegradation pattern of 2,6-DCP in GM liquid medium using GC–mass analysis as well as the degradation pathway was presented. This study provides a promising fungal isolate that could be used in the bioremediation process for chlorinated phenols in soil.
Collapse
|
20
|
Bilen Ozyurek S, Avcioglu NH, Seyis Bilkay I. Mycoremediation potential of Aspergillus ochraceus NRRL 3174. Arch Microbiol 2021; 203:5937-5950. [PMID: 34599404 DOI: 10.1007/s00203-021-02490-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
Mycoremediation is an important process that targets the removal of petroleum hydrocarbons by fungi. Fungi have advantages with their extensive enzymatic systems, rapid adaptation to toxic organic pollutants, and to adverse environmental conditions. In this study, the colorimetric method was used for the preliminary investigation of petroleum degradation with ten fungal strains. Petroleum degradation ability of spore suspension, live biomass (fungal pellet and disc) and cell-free culture supernatant of the potent A. ochraceus strain were investigated by gravimetric analysis. It was found that the fungal disc (94%) was more successful than the spore suspension (87%) in petroleum degradation under physiological conditions determined as pH:5.0, 1% of petroleum concentration, 5% (v/v) of inoculum concentration (with spore suspension) and 1 g/100 mL of inoculum amount (with fungal disc) and 7 days of the incubation period. The degradation rate constant and half-life period of spore suspension were calculated as 0.291 day-1 and t1/2 = 0.340 and of the fungal disc were 0.401 day-1 and t1/2 = 0.247. Although, 7.5% and 10% (v/v) concentration of cell-free culture supernatant achieved more than 80% petroleum removal, it was not as effective as a fungal disc. According to gas chromatography/mass spectrometry analysis, the fungal disc of A. ochraceus strain degraded long-chain n-alkanes such as C35 and C36 more effectively than n-alkanes in the range of C22-C34. The fact that the A. ochraceus NRRL 3174 strain has a high petroleum degradation capacity as well as being a potent biosurfactant producer will provide a different perspective to advanced mycoremediation studies.
Collapse
Affiliation(s)
- Sezen Bilen Ozyurek
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey.
| | - Nermin Hande Avcioglu
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Isil Seyis Bilkay
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| |
Collapse
|
21
|
Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021; 11:291. [PMID: 34109094 DOI: 10.1007/s13205-021-02807-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
A bacterial strain was isolated from an oil-contaminated site and on its' further characterization, exhibited the potential of synthesising metabolites and the ability to degrade crude oil. Its' morphological, biochemical and 16S rRNA analysis suggested that the bacterium belongs to Dietzia maris AURCCBT01. This strain rapidly grew in the medium supplemented with n-alkanes C14, C18, C20, C28 and C32 utilizing them as a sole carbon source and produced a maximum canthaxanthin pigment of 971.37 µg/L in the n-C14 supplemented medium and produced the lowest pigment yield of 389.48 µg/L in the n-C-32 supplemented medium. Moreover, the strain effectively degraded 91.87% of crude oil in 7 days. The emulsification activity of the strain was 25% with the highest cell surface hydrophobicity (70.26%) and it showed a decrease in surface tension, indicating that the biosurfactant production lowers the surface tension. This is the first report on the characterization of the strain, Dietzia maris AURCCBT01 and its' novelty of alkane degradation and simultaneous production of canthaxanthin pigment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02807-7.
Collapse
|
22
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN, Singh K, Singh J, Sayyed RZ, Arora NK, Saxena AK. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24917-24939. [PMID: 33768457 DOI: 10.1007/s11356-021-13252-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/28/2021] [Indexed: 05/21/2023]
Abstract
Over the past few decades, the rapid development of agriculture and industries has resulted in contamination of the environment by diverse pollutants, including heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals. Their presence in the environment is of great concern due to their toxicity and non-biodegradable nature. Their interaction with each other and coexistence in the environment greatly influence and threaten the ecological environment and human health. Furthermore, the presence of these pollutants affects the soil quality and fertility. Physicochemical techniques are used to remediate such environments, but they are less effective and demand high costs of operation. Bioremediation is an efficient, widespread, cost-effective, and eco-friendly cleanup tool. The use of microorganisms has received significant attention as an efficient biotechnological strategy to decontaminate the environment. Bioremediation through microorganisms appears to be an economically viable and efficient approach because it poses the lowest risk to the environment. This technique utilizes the metabolic potential of microorganisms to clean up contaminated environments. Many microbial genera have been known to be involved in bioremediation, including Alcaligenes, Arthrobacter, Aspergillus, Bacillus, Burkholderia, Mucor, Penicillium, Pseudomonas, Stenotrophomonas, Talaromyces, and Trichoderma. Archaea, including Natrialba and Haloferax, from extreme environments have also been reported as potent bioresources for biological remediation. Thus, utilizing microbes for managing environmental pollution is promising technology, and, in fact, the microbes provide a useful podium that can be used for an enhanced bioremediation model of diverse environmental pollutants.
Collapse
Affiliation(s)
- Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Manali Singh
- Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, Uttar Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Dehradun, Uttarakhand, India
| | - Jyoti Singh
- Department of Microbiology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Ajay Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India.
| | - Karan Singh
- Department of Chemistry, Indira Gandhi University, Haryana, 122502, Meerpur, Rewari, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Riyaz Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, Maharashtra, India
| | - Naveen Kumar Arora
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Rae Bareli Road, Uttar Pradesh, 226025, Lucknow, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, 275103, India
| |
Collapse
|
24
|
de la Cruz-Izquierdo RI, Paz-González AD, Reyes-Espinosa F, Vazquez-Jimenez LK, Salinas-Sandoval M, González-Domínguez MI, Rivera G. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa, Mexico. Lett Appl Microbiol 2021; 72:542-555. [PMID: 33423286 DOI: 10.1111/lam.13451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds generated mainly by anthropogenic sources. They are considered toxic to mammals, since they have carcinogenic, mutagenic and genotoxic properties, among others. Although mycoremediation is an efficient, economical and eco-friendly technique for degrading PAHs, the fungal degradation potential of the phylum Ascomycota has not been widely studied. In this work, we evaluated different fungal strains from the polluted soil of 'La Escondida' lagoon in Reynosa, Mexico to know their potential to degrade phenanthrene (PHE). Forty-three soil isolates with the capacity to grow in the presence of PHE (0·1% w/v) were obtained. The fungi Aspergillus oryzae MF13 and Aspergillus flavipes QCS12 had the best potential to degrade PHE. Both fungi germinated and grew at PHE concentrations of up to 5000 mg l-1 and degraded 235 mg l-1 of PHE in 28 days, with and without an additional carbon source. These characteristics indicate that A. oryzae MF13 and A. flavipes QCS12 could be promising organisms for the remediation of sites contaminated with PAHs and detoxification of recalcitrant xenobiotics.
Collapse
Affiliation(s)
- R I de la Cruz-Izquierdo
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - A D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - F Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico.,Tecnológico Nacional de México, ITS de Comalcalco, División de Ingeniería Ambiental, Tabasco, Mexico
| | - L K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - M Salinas-Sandoval
- Laboratorios de Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - M I González-Domínguez
- Laboratorios de Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - G Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| |
Collapse
|
25
|
Mycoremediation Through Redox Mechanisms of Organic Pollutants. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Fei JJ, Wan YY, He XY, Zhang ZH, Ying YX. Unitary and binary remediations by plant and microorganism on refining oil-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41253-41264. [PMID: 32677018 DOI: 10.1007/s11356-020-10025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Refining oil contaminants are complex and cause serious harm to the environment. Remediation of refining oil-contaminated soil is challenging but has significant impact in China. Two plant species Agropyron fragile (Roth) P. Candargy and Avena sativa L. and one bacterium Bacillus tequilensis ZJ01 were used to investigate their efficiency in remediating the refining oil-polluted soil sampled from an oil field in northern China. The simulated experiments of remediations by A. fragile or A. sativa alone and A. fragile or A. sativa combined with B. tequilensis ZJ01 for 39 days and by B. tequilensis ZJ01 alone for 7 days were performed in the laboratory, with B. tequilensis ZJ01 added before or after the germination of seeds. Seed germination rates and morphological characteristics of the plants, along with the varieties of oil hydrocarbons in the soil, were recorded to reflect the remediation efficiency. The results showed that the contamination was weakened in all experimental groups. A. sativa was more sensitive to the pollutants than A. fragile, and A. fragile was much more resistant to the oil hydrocarbons, especially to aromatic hydrocarbons. Adding B. tequilensis ZJ01 before the germination of seeds could restrain the plant growth while adding after the germination of A. fragile seeds notably improved the remediation efficiency. The degradation rate of oil hydrocarbons by B. tequilensis ZJ01 alone was also considerable. Together, our results suggest that the unitary remediation by B. tequilensis ZJ01 and the binary remediation by A. fragile combined with B. tequilensis ZJ01 added after the germination of seeds are recommended for future in situ remediations.
Collapse
Affiliation(s)
- Jia Jia Fei
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yun Yang Wan
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Xin Yue He
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhi Huan Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Yu Xi Ying
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
27
|
Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186564. [PMID: 32916946 PMCID: PMC7560104 DOI: 10.3390/ijerph17186564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/24/2023]
Abstract
Background: This research work focuses on the utilization of indigenous fungi for in situ bioremediation of crude oil in the presence of silver nanoparticles. Methods: Two fungi belonging to two different genera showed promising crude oil-degrading abilities. Fungal isolates were identified based on internal transcribed spacer rDNA sequence analysis. Gas chromatography-mass spectrometry analysis of the crude oil remaining in the culture medium after seven days was performed. The response surface method (RSM) designed by Box-Behnken was used to establish a mathematical model. Inter-simple sequence repeat (ISSR) primers were used to examine the genetic variation of fungal isolates. Results: Gas chromatography-mass spectrometry (GC-MS) analysis after seven days showed that the optimum biodegradation of crude oil was 57.8%. The crude oil degradation rate was significantly affected by a temperature of 30 °C, pH value of 7, crude oil concentration of 4 g/L, a 1:1 ratio between A. flavus AF15 and T. harzianum TH07, and an silver nanoparticle (AgNP) concentration of 0.05 g. Molecular characterization in fungal isolates is extremely valuable when using ISSR markers. Conclusions: Two fungal isolates showed promising crude oil-degrading abilities with positive effect of low concentrations of AgNPs on biodegradation. RSM is an efficient mathematical method to optimize the microbial biodegradation of crude oil.
Collapse
|
28
|
Naeem U, Qazi MA. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27370-27382. [PMID: 31392621 DOI: 10.1007/s11356-019-06124-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/29/2019] [Indexed: 05/21/2023]
Abstract
There is a worldwide concern regarding soil pollution caused by contamination of petroleum hydrocarbon, released during oil processing or production. Once a spill occurs, it disturbs the marine and freshwater ecosystem and greatly threatens human health. It usually requires complex technologies to remove it from soil. Petroleum hydrocarbons contain a range of chemicals which are extremely toxic and carcinogenic in nature. Although physical or chemical methods are widely employed for remediation, numerous studies revealed that bioremediation is a sustainable approach. Bioremediation is often preferred as clean and carbon-neutral solution. This review aims to provide series of sustainable solution for petroleum hydrocarbon degradation without exploiting the environment as well as opportunity to reuse treated media. Integrated and enhanced bioremediation technologies are more effective than natural degradation of petroleum hydrocarbons in terms of shorter time period and percent removal efficiency. It comprehensively illustrates bioremediation assisted with bacteria, fungi, and algae either by integrated technologies or by enhancing the process. Most recent application methods of petroleum hydrocarbon bioremediation (in situ and ex situ) are also reported. There is dire need to explore different cost-effective biotechnological resources for degradation of petroleum hydrocarbon by the screening of novel microbial strains or by the creation of genetically engineered bacteria to survive in harsh environment.
Collapse
Affiliation(s)
- Urooj Naeem
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | | |
Collapse
|
29
|
Highlighting the Crude Oil Bioremediation Potential of Marine Fungi Isolated from the Port of Oran (Algeria). DIVERSITY 2020. [DOI: 10.3390/d12050196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While over hundreds of terrestrial fungal genera have been shown to play important roles in the biodegradation of hydrocarbons, few studies have so far focused on the fungal bioremediation potential of petroleum in the marine environment. In this study, the culturable fungal communities occurring in the port of Oran in Algeria, considered here as a chronically-contaminated site, have been mainly analyzed in terms of species richness. A collection of 84 filamentous fungi has been established from seawater samples and then the fungi were screened for their ability to utilize and degrade crude oil. A total of 12 isolates were able to utilize crude oil as a unique carbon source, from which 4 were defined as the most promising biodegrading isolates based on a screening test using 2,6-dichlorophenol indophenol as a proxy to highlight their ability to metabolize crude oil. The biosurfactant production capability was also tested and, interestingly, the oil spreading and drop-collapse tests highlighted that the 4 most promising isolates were also those able to produce the highest quantity of biosurfactants. The results generated in this study demonstrate that the most promising fungal isolates, namely Penicillium polonicum AMF16, P. chrysogenum AMF47 and 2 isolates (AMF40 and AMF74) affiliated to P. cyclopium, appear to be interesting candidates for bioremediation of crude oil pollution in the marine environment within the frame of bioaugmentation or biostimulation processes.
Collapse
|
30
|
Diversity of Soil Filamentous Fungi Influenced by Marine Environment in São Luís, Maranhão, Brazil. ScientificWorldJournal 2020; 2020:3727453. [PMID: 32410905 PMCID: PMC7211247 DOI: 10.1155/2020/3727453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/01/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction In recent decades, there has been an intensification of environmental problems, which are becoming increasingly critical and frequent due to population growth. Microorganisms, including soilborne fungi, play an essential role in maintaining and balancing the environment. One of the most impacted ecosystems in São Luís, Maranhão, Brazil, is the Jansen Lagoon State Park, an important tourist spot, which has suffered anthropogenic actions such as the dumping of household waste (sewage) in its body of water. As a consequence, these pollutants can accumulate in the adjacent soil, since the body of water is near this substrate. The objectives were to isolate and identify filamentous fungi from the soil of the Jansen Lagoon State Park. Methods Monthly soil samples were collected and later processed using the modified suspension technique according to Clark (1965). Results The isolated genera were Aspergillus, Penicillium, Trichoderma, Absidia, and Fusarium. Aspergillus is the fungal genus of greater dominance in the soil of the Jansen Lagoon State Park. Aspergillus niger was the dominant species (37%), followed by A. tamarii (21.6%). Conclusion The main isolated fungi from the Jansen Lagoon State Park were Aspergillus niger and Aspergillus tamrii. These fungi can be used as biological markers of pollution and as biodegraders and/or bioremediators to improve the area studied.
Collapse
|
31
|
Isolation and Characterization of Bacteria from Refinery Effluent for Degradation of Petroleum Crude Oil in Seawater. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
Bilen Ozyurek S, Seyis Bilkay I. Comparison of petroleum biodegradation efficiencies of three different bacterial consortia determined in petroleum-contaminated waste mud pit. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2044-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
Al-Hawash AB, Al-Qurnawi WS, Abbood HA, Hillo NA, Ghalib HB, Zhang X, Ma F. Pyrene-Degrading Fungus Ceriporia lacerata RF-7 from Contaminated Soil in Iraq. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1713183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adnan B. Al-Hawash
- Department of Marine Chemistry and Environmental Pollution, Marine Science Center, University of Basrah, Basra, Iraq
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Hayder A. Abbood
- Material Engineering, College of Engineering, University of Basrah, Basrah, Iraq
| | | | | | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Bidja Abena MT, Li T, Shah MN, Zhong W. Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. CHEMOSPHERE 2019; 234:864-874. [PMID: 31252358 DOI: 10.1016/j.chemosphere.2019.06.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation is an emerging and sustainable technique that can either occur naturally or be enhanced by introducing nutrients or bacteria able to degrade specific contaminants. In this study, the efficiencies of natural attenuation with nutrients, and bioaugmentation with nutrients and a consortium of five exogenous bacteria, were evaluated for total petroleum hydrocarbon (TPH) degradation in five highly contaminated soils from China, and Kuwait. The bioaugmentation treatment exhibited better efficiencies than the natural attenuation, and reached 48.10% of TPH degradation with a half-life of 41.76 d. The addition of exogenous bacteria also increased the removal of TPH in the highest contaminated soil sample. The concentration of TPH in that soil was reduced from 236, 500 mg kg-1 of dry soil to 176, 566 mg kg-1 of dry soil in 40 d, which was equivalent to 25.4% degradation of TPH. The degradation rate (1501.8 mg kg-1d-1 of TPH) was higher than those reported in previous studies with a lower concentration of TPH. The bioaugmented strains could withstand high concentrations of TPH and thrive in five different types of soils. Consequently, these strains can be used to remediate soils that are heavily contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Marie Thérèse Bidja Abena
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; International College, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Tongtong Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | | | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
35
|
Richardson E, Bass D, Smirnova A, Paoli L, Dunfield P, Dacks JB. Phylogenetic Estimation of Community Composition and Novel Eukaryotic Lineages in Base Mine Lake: An Oil Sands Tailings Reclamation Site in Northern Alberta. J Eukaryot Microbiol 2019; 67:86-99. [PMID: 31432582 DOI: 10.1111/jeu.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
Abstract
Reclamation of anthropogenically impacted environments is a critical issue worldwide. In the oil sands extraction industry of Alberta, reclamation of mining-impacted areas, especially areas affected by tailings waste, is an important aspect of the mining life cycle. A reclamation technique currently under study is water-capping, where tailings are capped by water to create an end-pit lake (EPL). Base Mine Lake (BML) is the first full-scale end-pit lake in the Alberta oil sands region. In this study, we sequenced eukaryotic 18S rRNA genes recovered from 92 samples of Base Mine Lake water in a comprehensive sampling programme covering the ice-free period of 2015. The 565 operational taxonomic units (OTUs) generated revealed a dynamic and diverse community including abundant Microsporidia, Ciliata and Cercozoa, though 41% of OTUs were not classifiable below the phylum level by comparison to 18S rRNA databases. Phylogenetic analysis of five heterotrophic phyla (Cercozoa, Fungi, Ciliata, Amoebozoa and Excavata) revealed substantial novel diversity, with many clusters of OTUs that were more similar to each other than to any reference sequence. All of these groups are entirely or mostly heterotrophic, as a relatively small number of definitively photosynthetic clades were amplified from the BML samples.
Collapse
Affiliation(s)
- Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - David Bass
- Department of Life Sciences, The Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, United Kingdom.,Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Rd, Weymouth, DT4 8UB, Dorset, United Kingdom
| | - Angela Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Lucas Paoli
- Department of Biology, École normale supérieure, 46 Rue d'Ulm, 75005, Paris, France.,Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Peter Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Joel B Dacks
- Department of Life Sciences, The Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, United Kingdom.,Division of Infectious Diseases, Department of Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
36
|
Mat-Shayuti MS, Tuan Ya TMYS, Abdullah MZ, Megat Khamaruddin PNF, Othman NH. Progress in ultrasonic oil-contaminated sand cleaning: a fundamental review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26419-26438. [PMID: 31327143 DOI: 10.1007/s11356-019-05954-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Steady efforts in using ultrasonic energy to treat oil-contaminated sand started in the early 2000s until today, although pilot studies on the area can be traced to even earlier dates. Owing to the unique characteristics of the acoustic means, the separation of oil from sand has been showing good results in laboratories. This review provides the compilation of researches and insights into the mechanism of separation thus far. Related topics in the areas of oil-contaminated sand characterizations, fundamental ultrasonic cleaning, and cavitation effects are also addressed. Nevertheless, many of the documented works are only at laboratory or pilot-scale level, and the comprehensive interaction between ultrasonic parameters towards cleaning efficiencies may not have been fully unveiled. Gaps and opportunities are also presented at the end of this article.
Collapse
Affiliation(s)
- Muhammad Shafiq Mat-Shayuti
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | | | - Mohamad Zaki Abdullah
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | | | - Nur Hidayati Othman
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
37
|
|
38
|
Richardson E, Dacks JB. Microbial Eukaryotes in Oil Sands Environments: Heterotrophs in the Spotlight. Microorganisms 2019; 7:microorganisms7060178. [PMID: 31248111 PMCID: PMC6617064 DOI: 10.3390/microorganisms7060178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
Hydrocarbon extraction and exploitation is a global, trillion-dollar industry. However, for decades it has also been known that fossil fuel usage is environmentally detrimental; the burning of hydrocarbons results in climate change, and environmental damage during extraction and transport can also occur. Substantial global efforts into mitigating this environmental disruption are underway. The global petroleum industry is moving more and more into exploiting unconventional oil reserves, such as oil sands and shale oil. The Albertan oil sands are one example of unconventional oil reserves; this mixture of sand and heavy bitumen lying under the boreal forest of Northern Alberta represent one of the world’s largest hydrocarbon reserves, but extraction also requires the disturbance of a delicate northern ecosystem. Considerable effort is being made by various stakeholders to mitigate environmental impact and reclaim anthropogenically disturbed environments associated with oil sand extraction. In this review, we discuss the eukaryotic microbial communities associated with the boreal ecosystem and how this is affected by hydrocarbon extraction, with a particular emphasis on the reclamation of tailings ponds, where oil sands extraction waste is stored. Microbial eukaryotes, or protists, are an essential part of every global ecosystem, but our understanding of how they affect reclamation is limited due to our fledgling understanding of these organisms in anthropogenically hydrocarbon-associated environments and the difficulties of studying them. We advocate for an environmental DNA sequencing-based approach to determine the microbial communities of oil sands associated environments, and the importance of studying the heterotrophic components of these environments to gain a full understanding of how these environments operate and thus how they can be integrated with the natural watersheds of the region.
Collapse
Affiliation(s)
- Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
39
|
Cipullo S, Negrin I, Claveau L, Snapir B, Tardif S, Pulleyblank C, Prpich G, Campo P, Coulon F. Linking bioavailability and toxicity changes of complex chemicals mixture to support decision making for remediation endpoint of contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2150-2163. [PMID: 30290356 DOI: 10.1016/j.scitotenv.2018.09.339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
A six-month laboratory scale study was carried out to investigate the effect of biochar and compost amendments on complex chemical mixtures of tar, heavy metals and metalloids in two genuine contaminated soils. An integrated approach, where organic and inorganic contaminants bioavailability and distribution changes, along with a range of microbiological indicators and ecotoxicological bioassays, was used to provide multiple lines of evidence to support the risk characterisation and assess the remediation end-point. Both compost and biochar amendment (p = 0.005) as well as incubation time (p = 0.001) significantly affected the total and bioavailable concentrations of the total petroleum hydrocarbons (TPH) in the two soils. Specifically, TPH concentration decreased by 46% and 30% in Soil 1 and Soil 2 amended with compost. These decreases were accompanied by a reduction of 78% (Soil 1) and 6% (Soil 2) of the bioavailable hydrocarbons and the most significant decrease was observed for the medium to long chain aliphatic compounds (EC16-35) and medium molecular weight aromatic compounds (EC16-21). Compost amendment enhanced the degradation of both the aliphatic and aromatic fractions in the two soils, while biochar contributed to lock the hydrocarbons in the contaminated soils. Neither compost nor biochar affected the distribution and behaviour of the heavy metals (HM) and metalloids in the different soil phases, suggesting that the co-presence of heavy metals and metalloids posed a low risk. Strong negative correlations were observed between the bioavailable hydrocarbon fractions and the ecotoxicological assays suggesting that when bioavailable concentrations decreased, the toxicity also decreased. This study showed that adopting a combined diagnostic approach can significantly help to identify optimal remediation strategies and contribute to change the over-conservative nature of the current risk assessments thus reducing the costs associated with remediation endpoint.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - I Negrin
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - L Claveau
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - B Snapir
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - S Tardif
- University of Copenhagen, Department of Plant and Environmental Sciences Microbial Ecology and Biotechnology, Denmark
| | - C Pulleyblank
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK; Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland
| | - G Prpich
- University of Virginia, Department of Chemical Engineering, United States of America
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
40
|
Al-Hawash AB, Zhang J, Li S, Liu J, Ghalib HB, Zhang X, Ma F. Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:398-408. [PMID: 30142606 DOI: 10.1016/j.ecoenv.2018.08.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Fungi can use n-hexadecane (HXD) as a sole carbon source. But the mechanism of HXD degradation remains unclear. This work mainly aimed to study the degradation of HXD by Aspergillus sp. RFC-1 obtained from oil-contaminated soil. The HXD content, medium acidification and presence of hexadecanoic acid in the medium were determined by gas chromatography-mass spectrometry, and fungal growth was observed. Enzyme and gene expression assays suggested the involvement of an alkane hydroxylase, an alcohol dehydrogenase, and a P450 enzyme system in HXD degradation. A biosurfactant produced by the strain RFC-1 was also characterized. During 10 days of incubation, 86.3% of HXD was degraded by RFC-1. The highest activities of alkane hydroxylase (125.4 µmol mg-1 protein) and alcohol dehydrogenase (12.5 µmol mg-1 proteins) were recorded. The expression level of cytochrome P450 gene associated with oxidation was induced (from 0.94-fold to 5.45-fold) under the HXD condition by Real-time PCR analysis. In addition, HXD accumulated in inclusion bodies of RFC-1with the maximum of 5.1 g L-1. Results of blood agar plate and thin-layer chromatography analysis showed RFC-1 released high lipid and emulsification activity in the fungal culture. Induced cell surface hydrophobicity and reduced surface tension also indicated the RFC-1-mediated biosurfactant production, which facilitated the HXD degradation and supported the degradation process.
Collapse
Affiliation(s)
- Adnan B Al-Hawash
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education, Directorate of Education, Basra 61001, Iraq
| | - Jialong Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shue Li
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiashu Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hussein B Ghalib
- Department of Geology, College of Sciences, University of Basrah, Basra 61001, Iraq
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
41
|
Spini G, Spina F, Poli A, Blieux AL, Regnier T, Gramellini C, Varese GC, Puglisi E. Molecular and Microbiological Insights on the Enrichment Procedures for the Isolation of Petroleum Degrading Bacteria and Fungi. Front Microbiol 2018; 9:2543. [PMID: 30425689 PMCID: PMC6218658 DOI: 10.3389/fmicb.2018.02543] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
Autochthonous bioaugmentation, by exploiting the indigenous microorganisms of the contaminated environment to be treated, can represent a successful bioremediation strategy. In this perspective, we have assessed by molecular methods the evolution of bacterial and fungal communities during the selective enrichment on different pollutants of a soil strongly polluted by mixtures of aliphatic and polycyclic hydrocarbons. Three consecutive enrichments were carried out on soil samples from different soil depths (0-1, 1-2, 2-3 m), and analyzed at each step by means of high-throughput sequencing of bacterial and fungal amplicons biomarkers. At the end of the enrichments, bacterial and fungal contaminants degrading strains were isolated and identified in order to (i) compare the composition of enriched communities by culture-dependent and culture-independent molecular methods and to (ii) obtain a collection of hydrocarbon degrading microorganisms potentially exploitable for soil bioremediation. Molecular results highlighted that for both bacteria and fungi the pollutant had a partial shaping effect on the enriched communities, with paraffin creating distinct enriched bacterial community from oil, and polycyclic aromatic hydrocarbons generally overlapping; interestingly neither the soil depth or the enrichment step had significant effects on the composition of the final enriched communities. Molecular analyses well-agreed with culture-dependent analyses in terms of most abundant microbial genera. A total of 95 bacterial and 94 fungal strains were isolated after selective enrichment procedure on different pollutants. On the whole, isolated bacteria where manly ascribed to Pseudomonas genus followed by Sphingobacterium, Bacillus, Stenothrophomonas, Achromobacter, and Serratia. As for fungi, Fusarium was the most abundant genus followed by Trichoderma and Aspergillus. The species comprising more isolates, such as Pseudomonas putida, Achromobacter xylosoxidans and Ochromobactrum anthropi for bacteria, Fusarium oxysporum and Fusarium solani for fungi, were also the dominant OTUs assessed in Illumina.
Collapse
Affiliation(s)
- Giulia Spini
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Federica Spina
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Turin, Turin, Italy
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Turin, Turin, Italy
| | | | | | | | - Giovanna C. Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Turin, Turin, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
42
|
Al-Hawash AB, Zhang X, Ma F. Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen 2018; 8:e00619. [PMID: 29577679 PMCID: PMC6341139 DOI: 10.1002/mbo3.619] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022] Open
Abstract
Petroleum pollution inevitably occurs at any stage of oil production and exerts a negative impact on the environment. Some microorganisms can degrade petroleum hydrocarbons (PHs). Polluted sludge of Rumaila oil field was use to isolate the highly efficient hydrocarbon‐degrading fungal strain. Aspergillus sp. RFC‐1 was obtained and its degradation ability for petroleum hydrocarbons was evaluated through surface adsorption, cell uptake, hydrophobicity, surface tension, biosurfactant production, and emulsification activity. In addition, the degradation mechanism was investigated. The results indicated the strain RFC‐1 showed high removal activity for PHs, including biodegradation, adsorption, and emulsifiability. On the day 7 of incubation, the removal efficiencies of crude oil, naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) reached 60.3%, 97.4%, 84.9%, and 90.7%, respectively. Biodegradation efficiencies of crude oil, NAP, PHE, and PYR were 51.8%, 84.6%, 50.3%, and 55.1%, respectively. Surface adsorption and cell absorption by live mycelial pellets followed a decreasing order: PYR ≥ PHE > NAP > crude oil. Adsorption by heat‐killed mycelial pellets increased within 40 and 10 min for crude oil and PAHs, respectively, and remained constant thereafter. Effects of cell surface hydrophobicity, surface tension, and emulsification index were discussed. Intra‐ and extracellular enzymes of strain RFC‐1 played important roles in PHs degradation. The strain RFC‐1 is a prospective strain for removing PHs from aqueous environments.
Collapse
Affiliation(s)
- Adnan B Al-Hawash
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education, Directorate of Education, Basra, Iraq
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|