1
|
Jiang C, Liu Z, Wang Y, Yao G, He J, Li S, Rong R, Liang Z, Liu J. Severity and risk to inhalation of pathogen-laden aerosol in large public spaces: Insights from fangcang shelter hospitals under multi-location release. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136695. [PMID: 39616847 DOI: 10.1016/j.jhazmat.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
The key to strengthening the inherent safety of large public spaces and implementing precise preventive measures lies in clarifying the transmission risks of respiratory infectious diseases based on multiple factors. This work innovatively improves a pathogen inhalation infection risk prediction model and attempts to apply it to a Fangcang Shelter Hospital to investigate the effect of pathogen release location on risk distribution and the role of airflow distribution in risk control mechanisms. The model used in the study improved in resolution and accuracy, shedding light on the airflow distribution mechanisms involved in pathogen transport and risk control, thus providing a quantitatively realistic landscape of the spread of respiratory infectious diseases in large indoor environments. Predictions reveal a significant unevenness in the spatial distribution of infection probabilities within the multi-patient shelter unit, which is further exacerbated by different release locations, and that extreme infection risks can reach 4 to 14 times the average. Additionally, the study noted that the infection probability in the medical staff area due to the long-distance transmission of contaminants can reach as high as 1.72 % and that patients from ward 6# could potentially infect a healthcare worker every four days.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Zhijian Liu
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, China.
| | - Yongxin Wang
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Guangpeng Yao
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Junzhou He
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Rui Rong
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jingwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
2
|
Li F, Jiang G, Chen F, Yuan W. Effects of Evaporation and Body Thermal Plume on Cough Droplet Dispersion and Exposure Risk for Queuing People. Life (Basel) 2024; 15:28. [PMID: 39859968 PMCID: PMC11766552 DOI: 10.3390/life15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The transmission of virus-containing droplets among multiple people in an outdoor environment is seldom evaluated. In this study, an Euler-Lagrange computational fluid dynamics approach was used to investigate the effects of evaporation and the body thermal plume on the dispersion of coughed droplets under various wind conditions, and the infection risk was evaluated for various arrangements of individuals queuing outdoors using virtual manikin models. The evaporation time was longer for larger droplets and in a more humid environment. Transient evaporation strongly affected the motion of droplets ranging in diameter from 60 to 150 μm. The body thermal plume affected airflow and particle dispersion under weak wind conditions, but its effect was negligible at wind speeds greater than 0.8 m/s. Droplets smaller than 100 μm could reach the head of a susceptible person, suggesting a high exposure risk. The exposure fraction and body deposition were highest in an all-male queue sequence and lowest for a male-female-male-female-male queue sequence.
Collapse
Affiliation(s)
- Fengjiao Li
- Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310012, China; (F.L.)
| | - Guoyi Jiang
- Department of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, China
| | - Fei Chen
- Department of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, China
| | - Weibin Yuan
- Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310012, China; (F.L.)
| |
Collapse
|
3
|
Xu R, Wu F, Shen L, Fan Z, Yu J, Huang Z. Experimental study on bioaerosols behavior and purification measures in a subway compartment. Sci Rep 2024; 14:22082. [PMID: 39333783 PMCID: PMC11436990 DOI: 10.1038/s41598-024-73933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Bioaerosols in public transportation systems raise critical environmental concerns, seriously threatening passenger health and safety. In this study, we investigate the spread characteristics of bioaerosols in a standard type-B subway compartment using both air sampling and sediment sampling methods. Additionally, without compromising indoor passenger comfort, two self-designed air purification devices, based on intense field dielectric (IFD) and dielectric barrier discharge (DBD) technologies, respectively, are successfully applied for the improvement of the subway air quality. The results show that bioaerosols can propagate rapidly throughout the entire compartment in 5 min via airborne transmission. Under the effect of the symmetric air ducts and compartment structure, the difference in bioaerosol concentration in the air is less than 10% between both ends of the compartment. Concurrent substantial bioaerosol deposition on the ground, seats, and windows underscores the risk of contact transmission. Furthermore, the real-time purification rates of the two devices integrated into the air conditioning system reach 59.40% and 44.98%, respectively. With their demonstrated high efficiency in purifying bioaerosols and modular design featuring low energy consumption, easy cleaning, and reusability, these devices stand out as viable long-term solutions for large traffic vehicles. These research findings provide practical equipment recommendations and installation strategies for optimizing indoor air quality in subways and are applicable to other similar transportation systems.
Collapse
Affiliation(s)
- Renze Xu
- School of Civil Engineering, Changsha University, Changsha, 410022, Hunan, China
| | - Fan Wu
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Lian Shen
- School of Civil Engineering, Changsha University, Changsha, 410022, Hunan, China.
| | - Zhiqiang Fan
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Jianci Yu
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Zhen Huang
- Design Institute of Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
4
|
Firatoglu ZA. The effect of natural ventilation on airborne transmission of the COVID-19 virus spread by sneezing in the classroom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165113. [PMID: 37391140 PMCID: PMC10306413 DOI: 10.1016/j.scitotenv.2023.165113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Since school classrooms are of vital importance due to their impact on public health in COVID-19 and similar epidemics, it is imperative to develop new ventilation strategies to reduce the risk of transmission of the virus in the classroom. To be able to develop new ventilation strategies, the effect of local flow behaviors in the classroom on the airborne transmission of the virus under the most dramatic conditions must first be determined. In this study, the effect of natural ventilation on the airborne transmission of COVID-19-like viruses in the classroom in the case of sneezing by two infected students in a reference secondary school classroom was investigated in five scenarios. Firstly, experimental measurements were carried out in the reference class to validate the computational fluid dynamics (CFD) simulation results and determine the boundary conditions. Next, the effects of local flow behaviors on the airborne transmission of the virus were evaluated for five scenarios using the Eulerian-Lagrange method, a discrete phase model, and a temporary three-dimensional CFD model. In all scenarios, immediately after sneezing, between 57 and 60.2 % of the droplets containing the virus, mostly large and medium-sized (150 μm < d < 1000 μm) settled on the infected student's desk, while small droplets continued to move in the flow field. In addition, it was determined that the effect of natural ventilation in the classroom on the travel of virus droplets in the case of Redh < 8.04 × 104 (Reynolds number, Redh=Udh/νu, dh and are fluid velocity, hydraulic diameters of the door and window sections of the class and kinematic viscosity, respectively) was negligible.
Collapse
Affiliation(s)
- Z A Firatoglu
- Department of Mechanical Engineering, University of Harran, TR-63050 Sanliurfa, Turkey.
| |
Collapse
|
5
|
Wang F, Zhang TT, You R, Chen Q. Evaluation of infection probability of Covid-19 in different types of airliner cabins. BUILDING AND ENVIRONMENT 2023; 234:110159. [PMID: 36895516 PMCID: PMC9977471 DOI: 10.1016/j.buildenv.2023.110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/09/2023]
Abstract
According to the World Health Organization (https://covid19.who.int/), more than 651 million people have been infected by COVID-19, and more than 6.6 million of them have died. COVID-19 has spread to almost every country in the world because of air travel. Cases of COVID-19 transmission from an index patient to fellow passengers in commercial airplanes have been widely reported. This investigation used computational fluid dynamics (CFD) to simulate airflow and COVID-19 virus (SARS-CoV-2) transport in a variety of airliner cabins. The cabins studied were economy-class with 2-2, 3-3, 2-3-2, and 3-3-3 seat configurations, respectively. The CFD results were validated by using experimental data from a seven-row cabin mockup with a 3-3 seat configuration. This study used the Wells-Riley model to estimate the probability of infection with SARS-CoV-2. The results show that CFD can predict airflow and virus transmission with acceptable accuracy. With an assumed flight time of 4 h, the infection probability was almost the same among the different cabins, except that the 3-3-3 configuration had a lower risk because of its airflow pattern. Flying time was the most important parameter for causing the infection, while cabin type also played a role. Without mask wearing by the passengers and the index patient, the infection probability could be 8% for a 10-h, long-haul flight, such as a twin-aisle air cabin with 3-3-3 seat configuration.
Collapse
Affiliation(s)
- Feng Wang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Tengfei Tim Zhang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Ruoyu You
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
6
|
Yan Y, Li X, Fang X, Tao Y, Tu J. A spatiotemporal assessment of occupants' infection risks in a multi-occupants space using modified Wells-Riley model. BUILDING AND ENVIRONMENT 2023; 230:110007. [PMID: 36691649 PMCID: PMC9850653 DOI: 10.1016/j.buildenv.2023.110007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/09/2023]
Abstract
Escalating demands of assessing airborne disease infection risks had been awakened from ongoing pandemics. An inhalation index linked to biomedical characteristics of pathogens (e.g. TCID 50 for coronavirus delta variant) was proposed to quantify human uptake dose. A modified Wells-Riley risk-assessment framework was then developed with enhanced capability of integrating biological and spatiotemporal features of infectious pathogens into assessment. The instantaneous transport characteristics of pathogens were traced by Eulerian-Lagrangian method. Droplets released via speaking and coughing in a conference room with three ventilation strategies were studied to assess occupants' infection risks using this framework. Outcomes revealed that speaking droplets could travel with less distance (0.5 m) than coughing droplets (1 m) due to the frequent interaction between speaking flow and thermal plume. Quantified analysis of inhalation index revealed a higher inhalation possibility of droplets with nuclei size smaller than 5 μ m , and this cut-off size was found sensitive to ventilation. With only 60-second exposure, occupants in the near-field of host started to have considerable infection risks (approximately 20%). This risk was found minimising over distance exponentially. This modified framework demonstrated the systematic analysis of airborne transmission, from quantifying particle inhalation possibility, targeting specific disease's TCID 50 , to ultimate evaluation of infection risks.
Collapse
Affiliation(s)
- Yihuan Yan
- School of Air Transportation/Flying, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xueren Li
- School of Air Transportation/Flying, Shanghai University of Engineering Science, Shanghai 201620, China
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Xiang Fang
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Yao Tao
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Jiyuan Tu
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| |
Collapse
|
7
|
Rahvard AJ, Karami S, Lakzian E. Finding the proper position of supply and return registers of air condition system in a conference hall in term of COVID-19 virus spread. REVUE INTERNATIONALE DU FROID 2023; 145:78-89. [PMID: 36281435 PMCID: PMC9581653 DOI: 10.1016/j.ijrefrig.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of the COVID-19 has affected all aspects of people's lives around the world. As air transmits the viruses, air-conditioning systems in buildings, surrounded environments, and public transport have a significant role in restricting the transmission of airborne pathogens. In this paper, a computational fluid dynamic (CFD) model is deployed to simulate the dispersion of the COVID-19 virus due to the coughing of a patient in a conference hall, and the effect of displacement of supply and return registers of the air conditioning system is investigated. A validated Eulerian-Lagrangian CFD model is used to simulate the airflow in the conference hall. The particles created by coughing are droplets of the patient's saliva that contain the virus. Three cases with different positions of supply and return registers have been compared. The simulation results show that case1 has the best performance; since after 80 s in case 1 that the inlet registers are in the longitudinal wall, the whole particles are removed from space. However, in other cases, some particles are still in space.
Collapse
Affiliation(s)
- Ahmad Jahani Rahvard
- Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Shahram Karami
- Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Esmail Lakzian
- Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
- Department of Environmental Safety and Product Quality Management, Institute of Environmental Engineering, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198 Russia
- Department of Mechanical Engineering, Andong National University, Andong, South Korea
| |
Collapse
|
8
|
Thysen JH, van Hooff T, Blocken B, van Heijst G. Airplane cabin mixing ventilation with time-periodic supply: Contaminant mass fluxes and ventilation efficiency. INDOOR AIR 2022; 32:e13151. [PMID: 36437658 DOI: 10.1111/ina.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Airplane cabin ventilation is essential to ensure passengers' well-being. The conventional ventilation method is mixing ventilation with a statistically steady supply, which, according to former studies, has reached its limits regarding, for example, the ventilation efficiency. However, the effect of a statistically unsteady (time-periodic) supply on the mixing ventilation efficiency has remained largely unexplored. This research uses computational fluid dynamics (CFD) with the large eddy simulation (LES) approach to study isothermal time-periodic mixing ventilation in a section of a single-aisle airplane cabin model, in which the air exhaled by the passengers functions as (passive) contaminants. Two time-periodic supply strategies are evaluated. The induced time-periodic airflow patterns promote an efficient delivery of fresh air to the passenger zone and affect the passengers' expiratory plumes. This results in increased mean contaminant mass fluxes, causing a strong reduction of the mean contaminant concentrations in the passenger zone (up to 23%) and an increased contaminant extraction from the cabin. Mean velocities increase with up to 55% but remain within the comfortable range. It is shown that the ventilation efficiency improves; that is, the contaminant removal effectiveness and air change efficiency (in the full cabin volume) increase with up to 20% and 7%, respectively.
Collapse
Affiliation(s)
- Jo-Hendrik Thysen
- Building Physics and Sustainable Design, Department of Civil Engineering, KU Leuven, Leuven, Belgium
| | - Twan van Hooff
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bert Blocken
- Building Physics and Sustainable Design, Department of Civil Engineering, KU Leuven, Leuven, Belgium
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - GertJan van Heijst
- Fluids and Flows, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Liu H, Liu Z, Wang Y, Hu C, Rong R. Distribution of droplets/droplet nuclei from coughing and breathing of patients with different postures in a hospital isolation ward. BUILDING AND ENVIRONMENT 2022; 225:109690. [PMID: 36246843 PMCID: PMC9547661 DOI: 10.1016/j.buildenv.2022.109690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Suspected and confirmed cases of infectious diseases such as COVID-19 are diagnosed and treated in specific hospital isolation wards, posing a challenge to preventing cross-infection between patients and healthcare workers. In this study, the Euler-Lagrange method was used to simulate the evaporation and dispersion of droplets with full-size distribution produced by fluctuating coughing and breathing activities in an isolation ward. The effects of supply air temperature and relative humidity, ventilation rates and patient postures on droplet distribution were investigated. The numerical models were validated by an aerosol experiment with an artificial saliva solution containing E. coli bacteria conducted in a typical isolation ward. The results showed that the small size group of droplets (initial size ≤87.5 μm) exhibited airborne transmission in the isolation ward, while the large size group (initial size ≥112.5 μm) were rapidly deposited by gravitational effects. The ventilation rate had a greater effect on the diffusion of droplet nuclei than the supply air temperature and relative humidity. As the air changes per hour (ACH) increased from 8 to 16, the number fraction of suspended droplet nuclei reduced by 14.2% and 6.4% in the lying and sitting cases, respectively, while the number fraction of escaped droplet nuclei increased by 16.2% and 14.6%. Regardless of whether the patient was lying or sitting, the amount of droplet nuclei deposited on the ceiling was highest at lower ventilation rates. These results may provide some guidance for routine disinfection and ventilation strategies in hospital isolation wards.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Yongxin Wang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Chenxing Hu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Rong
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| |
Collapse
|
10
|
Sarhan AAR, Naser P, Naser J. Numerical study of when and who will get infected by coronavirus in passenger car. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57232-57247. [PMID: 35349056 PMCID: PMC8960670 DOI: 10.1007/s11356-022-19824-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 05/30/2023]
Abstract
In light of the COVID-19 pandemic, it is becoming extremely necessary to assess respiratory disease transmission in passenger cars. This study numerically investigated the human respiration activities' effects, such as breathing and speaking, on the transport characteristics of respiratory-induced contaminants in passenger car. The main objective of the present study is to accurately predict when and who will get infected by coronavirus while sharing a passenger car with a patient of COVID-19 or similar viruses. To achieve this goal, transient simulations were conducted in passenger car. We conducted a 3D computational fluid dynamics (CFD)-based investigation of indoor airflow and the associated aerosol transport in a passenger car. The Eulerian-Eulerian flow model coupled with k-ε turbulence approach was used to track respiratory contaminants with diameter ≥ 1 μm that were released by different passengers within the passenger car. The results showed that around 6.38 min, this is all that you need to get infected with COVID-19 when sharing a poorly ventilated car with a driver who got coronavirus. It also has been found that enhancing the ventilation system of the passenger car will reduce the risk of contracting Coronavirus. The predicted results could be useful for future engineering studies aimed at designing public transport and passenger cars to face the spread of droplets that may be contaminated with pathogens.
Collapse
Affiliation(s)
- Abd Alhamid R Sarhan
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| | - Parisa Naser
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jamal Naser
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
11
|
Wang CT, Xu JC, Chan KC, Lee HH, Tso CY, Lin CSK, Chao CYH, Fu SC. Infection control measures for public transportation derived from the flow dynamics of obstructed cough jet. JOURNAL OF AEROSOL SCIENCE 2022; 163:105995. [PMID: 35382445 PMCID: PMC8971108 DOI: 10.1016/j.jaerosci.2022.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
During the COVID-19 pandemic, WHO and CDC suggest people stay 1 m and 1.8 m away from others, respectively. Keeping social distance can avoid close contact and mitigate infection spread. Many researchers suspect that suggested distances are not enough because aerosols can spread up to 7-8 m away. Despite the debate on social distance, these social distances rely on unobstructed respiratory activities such as coughing and sneezing. Differently, in this work, we focused on the most common but less studied aerosol spread from an obstructed cough. The flow dynamics of a cough jet blocked by the backrest and gasper jet in a cabin environment was characterized by the particle image velocimetry (PIV) technique. It was proved that the backrest and the gasper jet can prevent the front passenger from droplet spray in public transportation where maintaining social distance was difficult. A model was developed to describe the cough jet trajectory due to the gasper jet, which matched well with PIV results. It was found that buoyancy and inside droplets almost do not affect the short-range cough jet trajectory. Infection control measures were suggested for public transportation, including using backrest/gasper jet, installing localized exhaust, and surface cleaning of the backrest.
Collapse
Affiliation(s)
- C T Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - J C Xu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - K C Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - H H Lee
- Department of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - C Y Tso
- Department of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Carol S K Lin
- Department of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Christopher Y H Chao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- Department of Building Environment and Energy Engineering & Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - S C Fu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Transport Characteristics and Transmission Risk of Virus-Containing Droplets from Coughing in Outdoor Windy Environment. TOXICS 2022; 10:toxics10060294. [PMID: 35736903 PMCID: PMC9230890 DOI: 10.3390/toxics10060294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
Particle dispersions have been widely studied inside rooms, but few databases have examined the transmission risk of respiratory droplets outdoors. This study investigated the wind effect on the dispersion of coughed droplets and the influence of social distancing on the infection risk in different susceptible persons using computational fluid dynamics simulations. Infection risk was evaluated based on direct depositions and exposure fractions. The results indicated that a reverse and upward flow formed in front of an infected man, and it enhanced as the wind strengthened, which transported more medium particles higher and increased the deposition on both infected and susceptible persons. Small particles moved above the neck, and they rarely deposited on the body. Medium particles larger than 60 μm were more likely to deposit and could reach the head of a healthy person under stronger winds. The exposure fraction achieved peak values when numerous particles passed the breathing zone. Although longer social distancing could alleviate the particle deposition on the face and delay the most dangerous time, its effect on infection risk was ambiguous. The infection risk was larger for a shorter susceptible person because more particles were deposited on the face, and the exposure fraction contributed by particles above the neck was larger.
Collapse
|
13
|
Droplets Transmission Mechanism in a Commercial Wide-Body Aircraft Cabin. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COVID-19 is a respiratory infectious disease that spreads readily between people, and an urgent issue of passengers’ exposure risk assessment in commercial aircraft has been raised because an aircraft cabin as a confined space may carry and transmit the disease worldwide. In this study, the droplets transmission process under different ventilation systems in a twin-aisle wide-body aircraft was studied using CFD simulations and the infection risk of passengers was assessed by the improved Wells–Riley model. Numerical results found that the transmission mechanism of droplets in the aircraft cabin was different depending on the type of ventilation systems and the location of the infectious source. Annular airflow could effectively enhance the ability of droplets transmission, while direct airflow, represented by displacement ventilation, could significantly inhibit droplets transmission. Accordingly, a new type of ventilation system was proposed based on the concept that the overall space is organized by annular airflow and the local area is direct airflow. Compared with sidewall mixing ventilation system, the infection risk of the new ventilation system presented in this study is reduced by 27%.
Collapse
|
14
|
Shang Y, Dong J, Tian L, He F, Tu J. An improved numerical model for epidemic transmission and infection risks assessment in indoor environment. JOURNAL OF AEROSOL SCIENCE 2022; 162:105943. [PMID: 35034977 PMCID: PMC8748225 DOI: 10.1016/j.jaerosci.2021.105943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 05/08/2023]
Abstract
Social distance will remain the key measure to contain COVID-19 before the global widespread vaccination coverage expected in 2024. Containing the virus outbreak in the office is prioritised to relieve socio-economic burdens caused by COVID-19 and potential pandemics in the future. However, "what is the transmissible distance of SARS-CoV-2" and "what are the appropriate ventilation rates in the office" have been under debate. Without quantitative evaluation of the infection risk, some studies challenged the current social distance policies of 1-2 m adopted by most countries and suggested that longer social distance rule is required as the maximum transmission distance of cough ejected droplets could reach 3-10 m. With the emergence of virus variants such as the Delta variant, the applicability of previous social distance rules are also in doubt. To address the above problem, this study conducted transient Computational Fluid Dynamics (CFD) simulations to evaluate the infection risks under calm and wind scenarios. The calculated Social Distance Index (SDI) indicates that lower humidity leads to a higher infection risk due to weaker evaporation. The infection risk in office was found more sensitive to social distance than ventilation rate. In standard ventilation conditions, social distance of 1.7 m-1.8 m is sufficient distances to reach low probability of infection (PI) target in a calm scenario when coughing is the dominant transmission route. However in the wind scenario (0.25 m/s indoor wind), distance of 2.8 m is required to contain the wild virus type and 3 m is insufficient to contain the spread of the Delta variant. The numerical methods developed in this study provide a framework to evaluate the COVID-19 infection risk in indoor environment. The predicted PI will be beneficial for governments and regulators to make appropriate social-distance and ventilation rules in the office.
Collapse
Affiliation(s)
- Yidan Shang
- College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jingliang Dong
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Lin Tian
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Fajiang He
- College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jiyuan Tu
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| |
Collapse
|
15
|
Coughing Intensity and Wind Direction Effects on the Transmission of Respiratory Droplets: A Computation with Euler–Lagrange Method. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on droplet transmission are needed to understand the infection mechanism of SARS-CoV-2. This research investigated the effects of coughing intensity and wind direction on respiratory droplets transportation using the Euler–Lagrange method. The results revealed that both coughing intensity and wind conditions considerably influence the transmission of small and medium droplets but had little effect on large droplets. A stronger coughing intensity resulted in small and medium droplets traveling farther in a calm wind and spreading widely and rapidly in a windy environment. The droplets do not travel far in the absence of ambient wind, even with stronger coughing. Medium droplets spread in clusters, and small droplets drifted out of the domain in the band area in different wind conditions except for 60° and 90° wind directions, in which cases, the droplets were blown directly downstream. In 0° wind direction, many droplets were deposited on the human body. The fast and upward movement of particles in 60° and 90° directions could cause infection risk with short exposure. In 180° wind direction, droplets spread widely and traveled slowly because of the reverse flow downstream, prolonged exposure can result in a high risk of infection.
Collapse
|
16
|
Wang F, You R, Zhang T, Chen Q. Recent progress on studies of airborne infectious disease transmission, air quality, and thermal comfort in the airliner cabin air environment. INDOOR AIR 2022; 32:e13032. [PMID: 35481932 PMCID: PMC9111434 DOI: 10.1111/ina.13032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 05/08/2023]
Abstract
Airborne transmission of infectious diseases through air travel has become a major concern, especially during the COVID-19 pandemic. The flying public and crew members have long demanded better air quality and thermal comfort in commercial airliner cabins. This paper reviewed studies related to the airliner cabin air environment that have been published in scientific journals since 2000, to understand the state-of-the-art in cabin air environment design and the efforts made to improve this environment. In this critical review, this paper discusses the challenges and opportunities in studying the cabin air environment. The literature review concluded that current environmental control systems for airliner cabins have done little to stop the airborne transmission of infectious diseases. There were no reports of significant air quality problems in cabins, although passengers and crew members have complained of some health-related issues. The air temperature in cabins needs to be better controlled, and therefore, better thermal comfort models for airliners should be developed. Low humidity is a major complaint from passengers and crew members. Gaspers are used by passengers to adjust thermal comfort, but they do not improve air quality. Various personalized and displacement ventilation systems have been developed to improve air quality and thermal comfort. Air cleaning technologies need to be further developed. Good tools are available for designing a better cabin air environment.
Collapse
Affiliation(s)
- Feng Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong SARChina
| | - Ruoyu You
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong SARChina
| | - Tengfei Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong SARChina
| |
Collapse
|
17
|
Mirzaei PA, Moshfeghi M, Motamedi H, Sheikhnejad Y, Bordbar H. A simplified tempo-spatial model to predict airborne pathogen release risk in enclosed spaces: An Eulerian-Lagrangian CFD approach. BUILDING AND ENVIRONMENT 2022; 207:108428. [PMID: 34658495 PMCID: PMC8511599 DOI: 10.1016/j.buildenv.2021.108428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 05/19/2023]
Abstract
COVID19 pathogens are primarily transmitted via airborne respiratory droplets expelled from infected bio-sources. However, there is a lack of simplified accurate source models that can represent the airborne release to be utilized in the safe-social distancing measures and ventilation design of buildings. Although computational fluid dynamics (CFD) can provide accurate models of airborne disease transmissions, they are computationally expensive. Thus, this study proposes an innovative framework that benefits from a series of relatively accurate CFD simulations to first generate a dataset of respiratory events and then to develop a simplified source model. The dataset has been generated based on key clinical parameters (i.e., the velocity of droplet release) and environmental factors (i.e., room temperature and relative humidity) in the droplet release modes. An Eulerian CFD model is first validated against experimental data and then interlinked with a Lagrangian CFD model to simulate trajectory and evaporation of numerous droplets in various sizes (0.1 μm-700 μm). A risk assessment model previously developed by the authors is then applied to the simulation cases to identify the horizontal and vertical spread lengths (risk cloud) of viruses in each case within an exposure time. Eventually, an artificial neural network-based model is fitted to the spread lengths to develop the simplified predictive source model. The results identify three main regimes of risk clouds, which can be fairly predicted by the ANN model.
Collapse
Affiliation(s)
- P A Mirzaei
- Architecture & Built Environment Department, University of Nottingham, University Park, Nottingham, UK
| | - M Moshfeghi
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - H Motamedi
- Department of Mechanical Engineering, Tarbiat Modares University, Iran
| | - Y Sheikhnejad
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- PICadvanced SA, Creative Science Park, Via do Conhecimento, Ed. Central, 3830-352, Ílhavo, Portugal
| | - H Bordbar
- School of Engineering, Aalto University, Finland
| |
Collapse
|
18
|
Wang W, Wang F, Lai D, Chen Q. Evaluation of SARS-COV-2 transmission and infection in airliner cabins. INDOOR AIR 2022; 32:e12979. [PMID: 35048429 DOI: 10.1111/ina.12979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Commercial airliners have played an important role in spreading the SARS-CoV-2 virus worldwide. This study used computational fluid dynamics (CFD) to simulate the transmission of SARS-CoV-2 on a flight from London to Hanoi and another from Singapore to Hangzhou. The dispersion of droplets of different sizes generated by coughing, talking, and breathing activities in a cabin by an infected person was simulated by means of the Lagrangian method. The SARS-CoV-2 virus contained in expiratory droplets traveled with the cabin air distribution and was inhaled by other passengers. Infection was determined by counting the number of viral copies inhaled by each passenger. According to the results, our method correctly predicted 84% of the infected/uninfected cases on the first flight. The results also show that wearing masks and reducing conversation frequency between passengers could help to reduce the risk of exposure on the second flight.
Collapse
Affiliation(s)
- Wensi Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Feng Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Dayi Lai
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
19
|
Liu S, Zhao X, Nichols SR, Bonilha MW, Derwinski T, Auxier JT, Chen Q. Evaluation of airborne particle exposure for riding elevators. BUILDING AND ENVIRONMENT 2022; 207:108543. [PMID: 34776597 PMCID: PMC8574099 DOI: 10.1016/j.buildenv.2021.108543] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 05/05/2023]
Abstract
Social distancing is a key factor for health during the COVID-19 pandemic. In many indoor spaces, such as elevators, it is difficult to maintain social distancing. This investigation used computational-fluid-dynamics (CFD) to study airborne particle exposure in riding an elevator in a typical building with 35 floors. The elevator traveled from the ground floor to the 35th floor with two stops on floor 10 and floor 20, comprising 114 s. The CFD simulated the dispersion of the aerosolized particles exhaled by an index person while breathing in both lobby and elevator areas. The study calculated the accumulated dose of susceptible riders riding in elevators with the index person under different conditions including different ventilation rates, air supply methods, and elevator cab geometries. This investigation also studied a case with a single cough from the index person as the person entered the elevator. The results show that, due to the short duration of the average elevator ride, the number of particles inhaled by a susceptible rider was low. For the reference case with a 72 ACH (air changes per hour) ventilation rate, the highest accumulated particle dose by a susceptible passenger close to the index person was only 1.59. The cough would cause other riders to inhale approximately 8 orders of magnitude higher particle mass than from continuous breathing by the index person for the whole duration of the ride.
Collapse
Affiliation(s)
- Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xingwang Zhao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Stephen R Nichols
- Otis Elevator Company, Global Engineering, Five Farm Springs Road, Farmington, CT, 06032, USA
| | - Murilo W Bonilha
- Otis Elevator Company, Global Engineering, Five Farm Springs Road, Farmington, CT, 06032, USA
| | - Tricia Derwinski
- Otis Elevator Company, Global Engineering, Five Farm Springs Road, Farmington, CT, 06032, USA
| | - James T Auxier
- Otis Elevator Company, Global Engineering, Five Farm Springs Road, Farmington, CT, 06032, USA
| | - Qingyan Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
20
|
Zheng K, Ortner P, Lim YW, Zhi TJ. Ventilation in worker dormitories and its impact on the spread of respiratory droplets. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103327. [PMID: 34545319 PMCID: PMC8443870 DOI: 10.1016/j.scs.2021.103327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 05/29/2023]
Abstract
Most of the COVID-19 cases in Singapore have primarily come from foreign worker dormitories. This people group is especially vulnerable partly because of behavioural habits, but the built environment they live in also plays a significant role. These dormitories are typically densely populated, so the living conditions are cramped. The short lease given to most dormitories also means the design does not typically focus on environmental performance, like good natural ventilation. This paper seeks to understand how these dormitories' design affects natural ventilation and, subsequently, the spread of the COVID-19 particles by looking at two existing worker dorms in Singapore. Findings show that some rooms are poorly orientated against the prevailing wind directions, so there is dominant stagnant air in these rooms, leading to respiratory droplets' long residence times. These particles can hover in the air for 10 min and more. Interventions like increased bed distance and removing upper deck beds only showed limited ventilation improvements in some rooms. Comparatively, internal wind scoops' strategic placement was more effective at directing wind towards more stagnant zones. Large canyon aspect ratios were also effective at removing particles from higher elevations.
Collapse
Affiliation(s)
- Kai Zheng
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Peter Ortner
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Yu Wen Lim
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Tay Jing Zhi
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
21
|
Hassan AM, Megahed NA. COVID-19 and urban spaces: A new integrated CFD approach for public health opportunities. BUILDING AND ENVIRONMENT 2021; 204:108131. [PMID: 34305269 PMCID: PMC8273043 DOI: 10.1016/j.buildenv.2021.108131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 05/30/2023]
Abstract
Safe urban public spaces are vital owing to their impacts on public health, especially during pandemics such as the ongoing COVID-19 pandemic. Urban public spaces and urbanscape elements must be designed with the risk of viral transmission in mind. This work therefore examines how the design of urbanscape elements can be revisited to control COVID-19 transmission dynamics. Nine proposed models of urban public seating were thus presented and assessed using a transient three-dimensional computational fluid dynamics (CFD) model, with the Eulerian-Lagrangian method and discrete phase model (DPM). The proposed seating models were evaluated by their impact on the normalized air velocity, the diameter of coughing droplets, and deposition fraction. Each of the proposed models demonstrated an increase in the normalized velocity, and a decrease in the deposition fraction by >29%. Diagonal cross linear and curved triangle configurations demonstrated an improved airflow momentum and turbulent flow, which decreased the droplets deposition fraction by 68%, thus providing an improved, healthier urban public seating option.
Collapse
Affiliation(s)
- Asmaa M Hassan
- Architectural Engineering and Urban Planning Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Naglaa A Megahed
- Architectural Engineering and Urban Planning Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| |
Collapse
|
22
|
Al Assaad D, Yang S, Licina D. Particle release and transport from human skin and clothing: A CFD modeling methodology. INDOOR AIR 2021; 31:1377-1390. [PMID: 33896029 DOI: 10.1111/ina.12840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 05/04/2023]
Abstract
Particle release from human skin and clothing has been identified as an important contributor to particulate matter burden indoors. However, knowledge about modeling the coarse particle release from skin and clothing is limited. This study developed a new empirically validated CFD modeling methodology for particle release and transport from seated occupants in an office setting. We tested three modeling approaches for particle emissions: Uniform; Uniform + Localized; and Uniform + Localized with Body Motion; applied to four office scenarios involving a single occupant and two occupants facing each other at 1- and 2-m distances. Uniform particle emissions from skin and clothing underpredicted personal inhalation exposure by as much as 55%-80%. Combining uniform with localized emissions from the armpits drastically reduced the error margin to <10%. However, this modeling approach heavily underestimated particle mass exchange (cross-contamination) between the occupants. Accounting for the occupant's body motion-by applying the momentum theory method-yielded the most accurate personal exposure and cross-contamination results, with errors below 12%. The study suggests that for accurate modeling of particle release and transport from seated occupants indoors, localized body emissions in combination with simplified bodily movements need to be taken into account.
Collapse
Affiliation(s)
- Douaa Al Assaad
- Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon
| | - Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
The Role of HVAC Design and Windows on the Indoor Airflow Pattern and ACH. SUSTAINABILITY 2021. [DOI: 10.3390/su13147931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of heating, ventilation, and air conditioning (HVAC) systems are to create optimum thermal comfort and appropriate indoor air quality (IAQ) for occupants. Air ventilation systems can significantly affect the health risk in indoor environments, especially those by contaminated aerosols. Therefore, the main goal of the study is to analyze the indoor airflow patterns in the heating, ventilation, and air conditioning (HVAC) systems and the impact of outlets/windows. The other goal of this study is to simulate the trajectory of the aerosols from a human sneeze, investigate the impact of opening windows on the number of air changes per hour (ACH) and exhibit the role of dead zones with poor ventilation. The final goal is to show the application of computational fluid dynamics (CFD) simulation in improving the HVAC design, such as outlet locations or airflow rate, in addition to the placement of occupants. In this regard, an extensive literature review has been combined with the CFD method to analyze the indoor airflow patterns, ACH, and the role of windows. The airflow pattern analysis shows the critical impact of inflow/outflow and windows. The results show that the CFD model simulation could exhibit optimal placement and safer locations for the occupants to decrease the health risk. The results of the discrete phase simulation determined that the actual ACH could be different from the theoretical ACH as the short circuit and dead zones affect the ACH.
Collapse
|
24
|
CFD Investigation of Vehicle’s Ventilation Systems and Analysis of ACH in Typical Airplanes, Cars, and Buses. SUSTAINABILITY 2021. [DOI: 10.3390/su13126799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The simulation of the ventilation and the heating, ventilation, and air conditioning (HVAC) systems of vehicles could be used in the energy demand management of vehicles besides improving the air quality inside their cabins. Moreover, traveling by public transport during a pandemic is a concerning factor, and analysis of the vehicle’s cabin environments could demonstrate how to decrease the risk and create a safer journey for passengers. Therefore, this article presents airflow analysis, air changes per hour (ACH), and respiration aerosols’ trajectory inside three vehicles, including a typical car, bus, and airplane. In this regard, three vehicles’ cabin environment boundary conditions and the HVAC systems of the selected vehicles were determined, and three-dimensional numerical simulations were performed using computational fluid dynamic (CFD) modeling. The analysis of the airflow patterns and aerosol trajectories in the selected vehicles demonstrate the critical impact of inflow, outflow, and passenger’s locations in the cabins. The CFD model results exhibited that the lowest risk could be in the airplane and the highest in the bus because of the location of airflows and outflows. The discrete CFD model analysis determined the ACH for a typical car of about 4.3, a typical bus of about 7.5, and in a typical airplane of about 8.5, which were all less than the standard protocol of infection prevention, 12 ACH. According to the results, opening windows in the cars could decrease the aerosol loads and improve the low ACH by the HVAC systems. However, for the buses, a new design for the outflow location or an increase in the number of outflows appeared necessary. In the case of airplanes, the airflow paths were suitable, and by increasing the airflow speed, the required ACH might be achieved. Finally, in the closed (recirculating) systems, the role of filters in decreasing the risk appeared critical.
Collapse
|
25
|
Gil A, Martínez M, Quintero P, Medina A. Computational evaluation of rebreathing and effective dead space on a helmet-like interface during the COVID-19 pandemic. J Biomech 2021; 118:110302. [PMID: 33578054 PMCID: PMC7857993 DOI: 10.1016/j.jbiomech.2021.110302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/07/2020] [Accepted: 01/23/2021] [Indexed: 01/10/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is a potentially severe acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2. The potential for transmission of this disease has led to an important scarcity of health-care resources. Consequently, alternative solutions have been explored by many physicians and researchers. Non-invasive Ventilation has been revealed as one alternative for patients with associated acute respiratory distress syndrome. This technique is being used in combination with helmet-like interfaces because of their versatility and affordability. However, these interfaces could experience important problems of CO2 rebreathing, especially under low flow rate conditions. This work proposes a Computational Fluid Dynamics method to accurately characterize the fluid flow in a pre-design environment of helmet-like interfaces. Parameters as effective dead space, rebreathing, pressure, or temperature field distribution are quantified and analysed in detail in order to study the performance and feasibility of such devices to relieve the effects of respiratory infections.
Collapse
Affiliation(s)
- A Gil
- CMT-Motores Térmicos, Universitat Politècnica de Valpencia, Camino de Vera, s/n, Valencia 46022, Spain
| | - M Martínez
- Hospital General Universitari de Castelló, Avinguda de Benicàssim, 128, 12004 Castellón de la Plana, Castellón, Spain
| | - P Quintero
- CMT-Motores Térmicos, Universitat Politècnica de Valpencia, Camino de Vera, s/n, Valencia 46022, Spain.
| | - A Medina
- Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
26
|
Zhang S, Ai Z, Lin Z. Occupancy-aided ventilation for both airborne infection risk control and work productivity. BUILDING AND ENVIRONMENT 2021; 188:107506. [PMID: 33311839 PMCID: PMC7718782 DOI: 10.1016/j.buildenv.2020.107506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/10/2023]
Abstract
Reducing airborne infectious risk is crucial for controlling infectious respiratory diseases (e.g., COVID-19). The airborne transmissibility of COVID-19 is high so that the common ventilation rate may be insufficient to dilute the airborne pathogens, particularly in public buildings with a relatively large occupancy density. Reducing occupancy can reduce the pathogen load thereby reducing airborne infection risk. However, reduced occupancy deteriorates work productivity due to the lost hours of work. This study proposes an occupancy-aided ventilation strategy for constraining the airborne infection risk and minimizing the loss of work productivity. Firstly, two mechanisms of occupancy schedule (alternative changeovers between normal occupancy and reduced occupancy) for reducing the airborne infection risk and loss of work productivity are revealed based on analyzing features of the indoor concentration profile of exhaled aerosols. Secondly, optimization of the occupancy schedule is developed to maximize the total time length of normal occupancy for the minimum loss in work productivity while satisfying the constraint on airborne infection risk (e.g., with the reproduction number less than one). The airborne infection risk is evaluated with the rebreathed fraction model. Case studies on COVID-19 in a classroom demonstrate that the proposed occupancy-aided ventilation is effective with an earning ratio of 1.67 (the ratio of the improvement in health outcome to the loss in work productivity) and is robust to the variable occupancy loads and occupancy flexibilities.
Collapse
Affiliation(s)
- Sheng Zhang
- Division of Building Science and Technology, City University of Hong Kong, Hong Kong, China
| | - Zhengtao Ai
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha, China
| | - Zhang Lin
- Division of Building Science and Technology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|