1
|
Li J, Fu Y, Zhang H, Ma H. Molecular and pathological landscape of the AT-rich interaction domain 1A (ARID1A) mutation in hepatocellular carcinoma. Pathol Res Pract 2024; 266:155763. [PMID: 39706068 DOI: 10.1016/j.prp.2024.155763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with complex etiological factors and a diverse genetic landscape. Among the critical genetic mutations in HCC, the AT-rich interaction domain 1 A (ARID1A) gene, a key component of the SWI/SNF chromatin remodeling complex, stands out due to its significant role in both tumor suppression and oncogenesis. This review comprehensively examines the molecular and pathological impacts of ARID1A mutations in HCC. ARID1A mutations, which occur in approximately 7.9 % of HCC cases, predominantly involve truncating mutations leading to loss of function. These mutations are associated with various aggressive cancer features, including larger tumor size, higher rates of metastasis, and poor prognosis. The dual role of ARID1A in HCC is context-dependent, acting as a tumor suppressor by regulating cell cycle control, DNA damage repair, and gene expression, while also displaying oncogenic properties in specific contexts by promoting early tumorigenesis through oxidative stress pathways. Understanding the molecular mechanisms of ARID1A, including its interactions with key cellular pathways such as PI3K/AKT/mTOR, β-catenin, and PD-L1, provides insights into its complex role in HCC pathogenesis. Furthermore, ARID1A's impact on cancer stem cell maintenance, metabolic reprogramming, and immune evasion underscores its potential as a therapeutic target. This review highlights the need for context-specific therapeutic strategies targeting ARID1A, which could lead to more effective treatments for HCC, addressing both its tumor-suppressive and oncogenic activities.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China.
| | - Yuxia Fu
- Department of Ultrasound, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hong Ma
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
2
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
3
|
Zou W, Fang Z, Feng Y, Gong S, Li Z, Li M, Sun Y, Ruan X, Fang X, Qu H, Li H. Transcriptomic and genomic characteristics of intrahepatic metastases of primary liver cancer. BMC Cancer 2024; 24:672. [PMID: 38824541 PMCID: PMC11144329 DOI: 10.1186/s12885-024-12428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.
Collapse
Affiliation(s)
- Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meng Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Chen Z, Liu T, Yuan H, Sun H, Liu S, Zhang S, Liu L, Jiang S, Tang Y, Liu Z. Bioinformatics integration reveals key genes associated with mitophagy in myocardial ischemia-reperfusion injury. BMC Cardiovasc Disord 2024; 24:183. [PMID: 38539069 PMCID: PMC10967080 DOI: 10.1186/s12872-024-03834-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 11/14/2024] Open
Abstract
BACKGROUND Myocardial ischemia is a prevalent cardiovascular disorder associated with significant morbidity and mortality. While prompt restoration of blood flow is essential for improving patient outcomes, the subsequent reperfusion process can result in myocardial ischemia-reperfusion injury (MIRI). Mitophagy, a specialized autophagic mechanism, has consistently been implicated in various cardiovascular disorders. However, the specific connection between ischemia-reperfusion and mitophagy remains elusive. This study aims to elucidate and validate central mitophagy-related genes associated with MIRI through comprehensive bioinformatics analysis. METHODS We acquired the microarray expression profile dataset (GSE108940) from the Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) using GEO2R. Subsequently, these DEGs were cross-referenced with the mitophagy database, and differential nucleotide sequence analysis was performed through enrichment analysis. Protein-protein interaction (PPI) network analysis was employed to identify hub genes, followed by clustering of these hub genes using cytoHubba and MCODE within Cytoscape software. Gene set enrichment analysis (GSEA) was conducted on central genes. Additionally, Western blotting, immunofluorescence, and quantitative polymerase chain reaction (qPCR) analyses were conducted to validate the expression patterns of pivotal genes in MIRI rat model and H9C2 cardiomyocytes. RESULTS A total of 2719 DEGs and 61 mitophagy-DEGs were identified, followed by enrichment analyses and the construction of a PPI network. HSP90AA1, RPS27A, EEF2, EIF4A1, EIF2S1, HIF-1α, and BNIP3 emerged as the seven hub genes identified by cytoHubba and MCODE of Cytoscape software. Functional clustering analysis of HIF-1α and BNIP3 yielded a score of 9.647, as determined by Cytoscape (MCODE). In our MIRI rat model, Western blot and immunofluorescence analyses confirmed a significant elevation in the expression of HIF-1α and BNIP3, accompanied by a notable increase in the ratio of LC3II to LC3I. Subsequently, qPCR confirmed a significant upregulation of HIF-1α, BNIP3, and LC3 mRNA in the MIRI group. Activation of the HIF-1α/BNIP3 pathway mediates the regulation of the degree of Mitophagy, thereby effectively reducing apoptosis in rat H9C2 cardiomyocytes. CONCLUSIONS This study has identified seven central genes among mitophagy-related DEGs that may play a pivotal role in MIRI, suggesting a correlation between the HIF-1α/BNIP3 pathway of mitophagy and the pathogenesis of MIRI. The findings highlight the potential importance of mitophagy in MIRI and provide valuable insights into underlying mechanisms and potential therapeutic targets for further exploration in future studies.
Collapse
Affiliation(s)
- Zhian Chen
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Tianying Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Hao Yuan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Han Sun
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Sitong Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuai Zhang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Li Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuang Jiang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Yong Tang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| | - Zhi Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| |
Collapse
|
5
|
Xu L, Wang P, Li L, Li L, Huang Y, Zhang Y, Zheng X, Yi P, Zhang M, Xu M. circPSD3 is a promising inhibitor of uPA system to inhibit vascular invasion and metastasis in hepatocellular carcinoma. Mol Cancer 2023; 22:174. [PMID: 37884951 PMCID: PMC10601121 DOI: 10.1186/s12943-023-01882-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Vascular invasion is a major route for intrahepatic and distant metastasis in hepatocellular carcinoma (HCC) and is a strong negative prognostic factor. Circular RNAs (circRNAs) play important roles in tumorigenesis and metastasis. However, the regulatory functions and underlying mechanisms of circRNAs in the development of vascular invasion in HCC are largely unknown. METHODS High throughput sequencing was used to screen dysregulated circRNAs in portal vein tumor thrombosis (PVTT) tissues. The biological functions of candidate circRNAs in the migration, vascular invasion, and metastasis of HCC cells were examined in vitro and in vivo. To explore the underlying mechanisms, RNA sequencing, MS2-tagged RNA affinity purification, mass spectrometry, and RNA immunoprecipitation assays were performed. RESULTS circRNA sequencing followed by quantitative real-time PCR (qRT-PCR) revealed that circRNA pleckstrin and Sect. 7 domain containing 3 (circPSD3) was significantly downregulated in PVTT tissues. Decreased circPSD3 expression in HCC tissues was associated with unfavourable characteristics and predicted poor prognosis in HCC. TAR DNA-binding protein 43 (TDP43) inhibited the biogenesis of circPSD3 by interacting with the downstream intron of pre-PSD3. circPSD3 inhibited the intrahepatic vascular invasion and metastasis of HCC cells in vitro and in vivo. Serpin family B member 2 (SERPINB2), an endogenous bona fide inhibitor of the urokinase-type plasminogen activator (uPA) system, is the downstream target of circPSD3. Mechanistically, circPSD3 interacts with histone deacetylase 1 (HDAC1) to sequester it in the cytoplasm, attenuating the inhibitory effect of HDAC1 on the transcription of SERPINB2. In vitro and in vivo studies demonstrated that circPSD3 is a promising inhibitor of the uPA system. CONCLUSIONS circPSD3 is an essential regulator of vascular invasion and metastasis in HCC and may serve as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Liangliang Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Peng Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lian Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yang Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaobo Zheng
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengsheng Yi
- Department of Hepato-biliary-pancrease, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Ming Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| | - Mingqing Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China.
- Department of Hepatopancreatobiliary Surgery, Meishan City People's Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, 620000, China.
| |
Collapse
|
6
|
Zhang M, Ding Q, Bian C, Su J, Xin Y, Jiang X. Progress on the molecular mechanism of portal vein tumor thrombosis formation in hepatocellular carcinoma. Exp Cell Res 2023; 426:113563. [PMID: 36944406 DOI: 10.1016/j.yexcr.2023.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, with poor prognosis and high mortality. Early-stage HCC has no obvious clinical symptoms, and most patients are already at an advanced stage when they are diagnosed. Portal vein tumor thrombus (PVTT) is the most common complication and a poor prognostic factor for HCC, which frequently leads to portal vein hypertension, ascites, gastrointestinal bleeding, and tumor metastasis. The formation of PVTT is related to the complex structure and hemodynamic changes of the portal vein and is closely related to changes at the cellular and molecular levels. The differentially-expressed genes (DEGs) between PVTT and primary tumor (PT) suggest that the two tissues may have different clonal origins. Epigenetic and proteomic analyses also suggest complex and diverse mechanisms for the formation of PVTT. In addition, the tumor microenvironment and energy metabolism pathways are interrelated in regulating the invasion and progression of PVTT. Aerobic glycolysis and the tumor immune microenvironment have been the focus of recent studies on PVTT. In this review, we summarize the mechanism of PVTT formation at the cellular and molecular levels to provide information to guide better prevention and treatment of PVTT in the clinic.
Collapse
Affiliation(s)
- Min Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Qiuhui Ding
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Zhou XH, Li JR, Zheng TH, Chen H, Cai C, Ye SL, Gao B, Xue TC. Portal vein tumor thrombosis in hepatocellular carcinoma: molecular mechanism and therapy. Clin Exp Metastasis 2023; 40:5-32. [PMID: 36318440 DOI: 10.1007/s10585-022-10188-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Portal vein tumor thrombosis (PVTT), a common complication of advanced hepatocellular carcinoma (HCC), remains the bottleneck of the treatments. Liver cancer cells potentially experienced multi-steps during PVTT process, including cancer cells leave from cancer nest, migrate in extracellular matrix, invade the vascular barrier, and colonize in the portal vein. Accumulated evidences have revealed numerous of molecular mechanisms including genetic and epigenetic regulation, cancer stem cells, immunosuppressive microenvironment, hypoxia, et al. contributed to the PVTT formation. In this review, we discuss state-of-the-art PVTT research on the potential molecular mechanisms and experimental models. In addition, we summarize PVTT-associated clinical trials and current treatments for PVTT and suppose perspectives exploring the molecular mechanisms and improving PVTT-related treatment for the future.
Collapse
Affiliation(s)
- Xing-Hao Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Jing-Ru Li
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Tang-Hui Zheng
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Hong Chen
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Chen Cai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Sheng-Long Ye
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai Medical College, Shanghai, 200032, China.
| | - Tong-Chun Xue
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Guo WX, Yang SY, Guo L, Feng JK, Xue J, Shi J, Lau WY, Yu D, Cheng SQ. A new and rare type of hepatocellular carcinoma: Survival and gene analysis of portal vein tumour thrombus-type hepatocellular carcinoma. Pathol Res Pract 2023; 241:154260. [PMID: 36509007 DOI: 10.1016/j.prp.2022.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Portal vein tumour thrombus (PVTT) in patients with hepatocellular carcinoma (HCC) is known as a major complication associated with poor survival. We clinically defined a new and rare type of HCC, PVTT-type HCC (PVTT-HCC), in a small group of HCC patients with HCC presenting only as PVTT without a demonstrable parenchyma tumour. The clinicopathological and biological features of PVTT-HCC are not clear. METHODS The data for patients who had PVTT-HCC with histologically confirmed HCC from January 2004 to December 2012 at the Eastern Hepatobiliary Surgery Hospital were retrospectively analysed. The survival outcomes of patients with PVTT-HCC were compared with those of HCC patients with PVTT (HCC-PVTT). Propensity score matching (PSM) analysis was performed to match patients at a ratio of 1:3. Then, we performed RNA-Seq analysis of liver samples from PVTT-HCC and HCC-PVTT patients to identify and compare differentially expressed genes and biological pathways between the two groups. RESULTS We observed and collected 10 rare cases of PVTT-HCC and performed a prospective cohort study to compare overall survival (OS) between PVTT-HCC and HCC-PVTT. PVTT invaded the main portal vein in 10 PVTT-HCC patients. Univariate and multivariate analyses demonstrated that ChildPugh (A/B), different treatments (LR/non-LR), and different groups were independent risk factors for OS. The median OS was 10.3 months (95 % CI = 6.7-13.8) in the HCC-PVTT group and 7.5 months (95 % CI = 2.8-12.1) in the PVTT-HCC group (P = 0.042). From RNA-Seq, 1630 differentially expressed genes were obtained, of which 731 were upregulated and 899 downregulated in PVTT-HCC compared with HCC-PVTT. CONCLUSIONS The survival outcomes of patients with PVTT-HCC were worse than those of patients with HCC-PVTT. RNA-Seq demonstrated differential gene expression between PVTT-HCC and HCC-PVTT, indicating that the former may have distinguishing biological characteristics and be a new and rare type of HCC.
Collapse
Affiliation(s)
- Wei-Xing Guo
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shi-Ye Yang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Guo
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jie Xue
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wan Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dong Yu
- Center for Translational Medicine, Second Military Medical University, Shanghai, China.
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
9
|
Xie RT, Li QY, Sun XC, Zhi QJ, Huang XX, Zhu XC, Miao QZ, Zhou DZ, Han DY. Hypomethylation of Thyroid Peroxidase as a Biomarker for Hepatocellular Carcinoma with Tumor Thrombosis. Curr Med Sci 2022; 42:1248-1255. [PMID: 36542322 DOI: 10.1007/s11596-022-2643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thyroid hormones (THs) regulate multiple physiological activities in the liver, including cellular metabolism, differentiation, and cell growth, and play important roles in the pathogenesis of hepatocellular carcinoma (HCC). Thyroid peroxidase (TPO) is a key molecule involved in the THs synthesis and signaling pathway. As an epigenetic modification, DNA methylation has a critical role in tumorigenesis with diagnostic potential. However, the connection between THs and DNA methylation has been rarely investigated. METHODS The methylation of key TH-related genes was analyzed by in-house epigenome-wide scanning, and we further analyzed the methylation levels of the TPO promotor in 164 sample pairs of HCC and adjacent non-cancerous tissues by Sequenom EpiTYPER assays, and evaluated their clinical implications. RESULTS We identified that the methylation of the TPO promoter was downregulated in the HCC tissues (P<0.0001) with a mean difference ranging from 18.5% to 22.3%. This methylation pattern correlated with several clinical factors, including a multi-satellite tumor, fibrous capsule, and the presence of tumor thrombus. The receiver operator characteristic (ROC) curve analysis further confirmed that the percent methylated reference (PMR) values for TPO were predictive of the tumor [the area under the curve (AUC) ranged from 0.755 to 0.818] and the thrombosis in the HCC patients (the AUC ranged from 0.706 to 0.777). CONCLUSION These findings demonstrated that epigenetic alterations of TPO, as indicated by the PMR values, were a potential biomarker for HCC patients with tumor thrombosis.
Collapse
Affiliation(s)
- Ru-Ting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xue-Chen Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing-Jun Zhi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiang-Xiang Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xing-Chen Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qi-Zeng Miao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dai-Zhan Zhou
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Dong-Yan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
10
|
Wang X, Huang Y, Li S, Zhang H. Integrated machine learning methods identify FNDC3B as a potential prognostic biomarker and correlated with immune infiltrates in glioma. Front Immunol 2022; 13:1027154. [PMID: 36275754 PMCID: PMC9582524 DOI: 10.3389/fimmu.2022.1027154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent discoveries have revealed that fibronectin type III domain containing 3B (FNDC3B) acts as an oncogene in various cancers; however, its role in glioma remains unclear. Methods In this study, we comprehensively investigated the expression, prognostic value, and immune significance of FNDC3B in glioma using several databases and a variety of machine learning algorithms. RNA expression data and clinical information of 529 patients from the Cancer Genome Atlas (TCGA) and 1319 patients from Chinese Glioma Genome Atlas (CGGA) databases were downloaded for further investigation. To evaluate whether FNDC3B expression can predict clinical prognosis of glioma, we constructed a clinical nomogram to estimate long-term survival probabilities. The predicted nomogram was validated by CGGA cohorts. Differentially expressed genes (DEGs) were detected by the Wilcoxon test based on the TCGA-LGG dataset and the weighted gene co-expression network analysis (WGCNA) was implemented to identify the significant module associated with the expression level of FNDC3B. Furthermore, we investigated the correlation between FNDC3B with cancer immune infiltrates using TISIDB, ESTIMATE, and CIBERSORTx. Results Higher FNDC3B expression displayed a remarkably worse overall survival and the expression level of FNDC3B was an independent prognostic indicator for patients with glioma. Based on TCGA LGG dataset, a co-expression network was established and the hub genes were identified. FNDC3B expression was positively correlated to the tumor-infiltrating lymphocytes and immune infiltration score, and high FNDC3B expression was accompanied by the increased expression of B7-H3, PD-L1, TIM-3, PD-1, and CTLA-4. Moreover, expression of FNDC3B was significantly associated with infiltrating levels of several types of immune cells and most of their gene markers in glioma. Conclusion This study demonstrated that FNDC3B may be involved in the occurrence and development of glioma and can be regarded as a promising prognostic and immunotherapeutic biomarker for the treatment of glioma.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shanshan Li
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Hong Zhang,
| |
Collapse
|
11
|
Roles of fusion genes in digestive system cancers: dawn for cancer precision therapy. Crit Rev Oncol Hematol 2022; 171:103622. [PMID: 35124200 DOI: 10.1016/j.critrevonc.2022.103622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
For advanced and advanced tumors of the digestive system, personalized, precise treatment could be a lifesaving medicine. With the development of next-generation sequencing technology, detection of fusion genes in solid tumors has become more extensive. Some fusion gene targeting therapies have been written into the guidelines for digestive tract tumors, such as for neurotrophic receptor tyrosine kinase, fibroblast growth factor receptor 2. There are also many fusion genes being investigated as potential future therapeutic targets. This review focuses on the current detection methods for fusion genes, fusion genes written into the digestive system tumor guidelines, and potential fusion gene therapy targets in different organs to discuss the possibility of clinical treatments for these targets in digestive system tumors.
Collapse
|
12
|
Tian L, Jabbari JS, Thijssen R, Gouil Q, Amarasinghe SL, Voogd O, Kariyawasam H, Du MRM, Schuster J, Wang C, Su S, Dong X, Law CW, Lucattini A, Prawer YDJ, Collar-Fernández C, Chung JD, Naim T, Chan A, Ly CH, Lynch GS, Ryall JG, Anttila CJA, Peng H, Anderson MA, Flensburg C, Majewski I, Roberts AW, Huang DCS, Clark MB, Ritchie ME. Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing. Genome Biol 2021; 22:310. [PMID: 34763716 PMCID: PMC8582192 DOI: 10.1186/s13059-021-02525-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
A modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.
Collapse
Affiliation(s)
- Luyi Tian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Jafar S Jabbari
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Shanika L Amarasinghe
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Oliver Voogd
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Hasaru Kariyawasam
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Mei R M Du
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jakob Schuster
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Changqing Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Shian Su
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Xueyi Dong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Charity W Law
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Alexis Lucattini
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Yair David Joseph Prawer
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jin D Chung
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Audrey Chan
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Chi Hai Ly
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Present address: Department of Neurology, Stanford University, Stanford, CA, USA
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - James G Ryall
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Present address: VOW, North Parramatta, NSW, Australia
| | - Casey J A Anttila
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Hongke Peng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Christoffer Flensburg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ian Majewski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Yang Y, Ma Y, Yuan M, Peng Y, Fang Z, Wang J. Identifying the biomarkers and pathways associated with hepatocellular carcinoma based on an integrated analysis approach. Liver Int 2021; 41:2485-2498. [PMID: 34033190 DOI: 10.1111/liv.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. The molecular mechanism underlying HCC is still unclear. In this study, we conducted a comprehensive analysis to explore the genes, pathways and their interactions involved in HCC. METHODS We analysed the gene expression datasets corresponding to 488 samples from 10 studies on HCC and identified the genes differentially expressed in HCC samples. Then, the genes were compared against Phenolyzer and GeneCards to screen those potentially associated with HCC. The features of the selected genes were explored by mapping them onto the human protein-protein interaction network, and a subnetwork related to HCC was constructed. Hub genes in this HCC specific subnetwork were identified, and their relevance with HCC was investigated by survival analysis. RESULTS We identified 444 differentially expressed genes (177 upregulated and 267 downregulated) related to HCC. Functional enrichment analysis revealed that pathways like p53 signalling and chemical carcinogenesis were eriched in HCC genes. In the subnetwork related to HCC, five disease modules were detected. Further analysis identified six hub genes from the HCC specific subnetwork. Survival analysis showed that the expression levels of these genes were negatively correlated with survival rate of HCC patients. CONCLUSIONS Based on a systems biology framework, we identified the genes, pathways, as well as the disease specific network related to HCC. We also found novel biomarkers whose expression patterns were correlated with progression of HCC, and they could be candidates for further investigation.
Collapse
Affiliation(s)
- Yichen Yang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yuequn Ma
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonglin Peng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Zhonghai Fang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Zhou W, Fang DL, He Y. Screening potential prognostic biomarkers for portal vein emboli in patients with hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1927-1938. [PMID: 34532139 DOI: 10.21037/jgo-21-433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 01/27/2023] Open
Abstract
Background The formation of portal vein tumor thrombus (PVTT) is closely related to the prognosis of patients with hepatocellular carcinoma (HCC). However, the mechanisms by which PVTTs form and the biomarkers involved are still little understood. Methods The Genome Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to obtain transcriptome data from normal tissue, HCC tissue, primary tumors (PTs) of HCC, and paired PVTT tissue. Differentially expressed genes (DEGs) in PTs and PVTTs were analyzed. The differentially expressed immune genes were further investigated in terms of their prognostic significance, immune infiltration, function. Finally, we explored the relationship between risk scores and drug sensitivity based on the R package. Results In the two datasets, there were 458 DEGs identified in the PT and PVTT tissues, of which, 58 were immune-related genes. The differentially expressed immune genes may promote the progression of PVTT by participating in the regulation of non-cellular components such as the extracellular matrix, inflammatory factors, and chemokines. Furthermore, the immune genes KDR, AKT3, FCGR2B, KIAA1429, and TPT1 were correlated with the prognosis of HCC in patients with PVTT. Using this data, a model was constructed to predict the prognosis of patients, thus allowing for the identification of high- and low-risk patients. Conclusions This study demonstrated that immune-related genes may be involved in the regulation of the extracellular matrix and acellular components, and subsequently, in the formation of PVTT. These five genes KDR, AKT3, FCGR2B, KIAA1429, and TPT1 may be potential prognostic biomarkers and treatment targets for HCC patients with PVTT.
Collapse
Affiliation(s)
- Weijie Zhou
- Clinical Laboratory, Baise People's Hospital, Baise, China
| | - Da Lang Fang
- Department of Breast and Thyroid Surgery, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yongfei He
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Khan AR, Wei X, Xu X. Portal Vein Tumor Thrombosis and Hepatocellular Carcinoma - The Changing Tides. J Hepatocell Carcinoma 2021; 8:1089-1115. [PMID: 34522691 PMCID: PMC8434852 DOI: 10.2147/jhc.s318070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Portal vein involvement is considered one of the most fearful complications of hepatocellular carcinoma (HCC). Portal vein tumor thrombosis (PVTT) is associated with aggressive tumor biology (high grade), high tumor burden (number and size of lesions), high levels of serum markers (AFP), poor liver function (deranged LFT), and poor performance status of patients. The Barcelona Clinic Liver Cancer staging system places HCC patients with PVTT in advanced stage (BCLC Stage-C). This group contains a fairly heterogeneous patient population, previously considered candidates for palliative systemic therapy with sorafenib. However, this provided modest overall survival (OS) benefit. The results of a recent Phase III (IMbrave150) trial favor the combination of atezolizumab and bevacizumab over sorafenib as a standard of care in advanced unresectable HCC. While only lenvatinib proved to be non-inferior against sorafenib in a phase III (REFLECT trial), regorafenib (RESORCE trial), ramucirumab (REACH-2), and cabozantinib (CELESTIAL) have been approved second-line therapy in phase III clinical trials. Recently, the data on the prospect of other modalities in the management of HCC with PVTT is mounting with favorable results. Targeting multiple pathways in the HCC cascade using a combination of drugs and other modalities such as RT, TACE, TARE, and HAIC appear effective for systemic and loco-regional control. The quest for the ideal combination therapy and the sequence set is still widely unanswered and prospective trials are lacking. With the armament of available therapeutic options and the advances and refinements in the delivery system, down-staging patients to make them eligible for curative resection has been reported. In a rapidly evolving treatment landscape, performing surgery when appropriate, in the form of LR and even LT to achieve cure does not seem farfetched. Likewise, adjuvant therapy and prompt management of the recurrences holds the key to prolong OS and DFS. This review discusses the management options of HCC patients with PVTT.
Collapse
Affiliation(s)
- Abdul Rehman Khan
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, People's Republic of China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, People's Republic of China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, People's Republic of China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, People's Republic of China
| |
Collapse
|
16
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
17
|
Zheng X, Wang P, Li L, Yu J, Yu C, Xu L, Li L, Dai F, Feng L, Zou H, Chen X, Zhang M, Xu M. Cancer-Associated Fibroblasts Promote Vascular Invasion of Hepatocellular Carcinoma via Downregulating Decorin-integrin β1 Signaling. Front Cell Dev Biol 2021; 9:678670. [PMID: 34504839 PMCID: PMC8421641 DOI: 10.3389/fcell.2021.678670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide, and the high ratio of recurrence and metastasis remains the main cause of its poor prognosis. Vascular invasion of HCC includes microvascular invasion (MVI) and portal vein tumor thrombosis (PVTT) and is regarded as a common roadmap of intrahepatic metastasis in HCC. However, the molecular mechanism underlying vascular invasion of HCC is largely unknown. Here, we analyzed the transcriptomes of primary tumors, PVTT tissues, and tumor tissues with or without MVI. We found that extracellular matrix-related pathways were involved in vascular invasion of HCC and that decorin secreted by cancer-associated fibroblasts was gradually downregulated from normal to tumor tissues and more so in PVTT tissues. We also established that low-level decorin expression is an independent risk factor for MVI and it is associated with a poor prognosis. Decorin downregulated integrin β1 and consequently inhibited HCC cell invasion and migration in vitro. Co-staining DCN and integrin β1 revealed that DCN dynamically regulated integrin β1 protein expression. Integrin β1 knockdown significantly inhibited HCC invasion and migration, and decorin combined with such knockdown synergistically augmented the anti-metastatic effects. Co-IP assay confirmed the direct interaction of decorin with integrin β1. Our findings showed that targeting cancer-associated fibroblast-related decorin is not only a promising strategy for inhibiting HCC vascular invasion and metastasis but also provides insight into the clinical treatment of patients with PVTT.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Yu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chune Yu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fuzhen Dai
- Department of General Surgery, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Lei Feng
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zou
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- General Surgery Center of PLA, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaobo Chen
- Department of Hepatopancreatobiliary Surgery, Meishan City People’s Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, Mianzhu Hospital of West China hospital, Sichuan University, Mianzhu, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatopancreatobiliary Surgery, Meishan City People’s Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, China
| |
Collapse
|
18
|
Lin T, Lin Z, Mai P, Zhang E, Peng L. Identification of prognostic biomarkers associated with the occurrence of portal vein tumor thrombus in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:11786-11807. [PMID: 33878734 PMCID: PMC8109071 DOI: 10.18632/aging.202876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/14/2021] [Indexed: 04/28/2023]
Abstract
The occurrence of portal vein tumor thrombus (PVTT) is strongly correlated to the staging and poor prognosis of hepatocellular carcinoma (HCC) patients. However, the mechanisms of PVTT formation remain unclear. This study aimed to investigate differentially expressed genes (DEGs) between primary tumor (PT) and PVTT tissues and comprehensively explored the underlying mechanisms of PVTT formation. The DEGs between PT and paired PVTT tissues were analyzed using transcriptional data from the Gene Expression Omnibus (GEO) database. The expression, clinical relevance, prognostic significance, genetic alternations, DNA methylation, correlations with immune infiltration, co-expression correlations, and functional enrichment analysis of the DEGs were explored using multiple databases. As result, 12 DEGs were commonly down-expressed in PVTT compared with PT tissues among three datasets. The expression of DCN, CCL21, IGJ, CXCL14, FCN3, LAMA2, and NPY1R was progressively decreased from normal liver, PT, to PVTT tissues, whose up-expression associated with favorable survivals of HCC patients. The genetic alternations and DNA methylation of the DEGs frequently occurred, and several methylated CpG sites of the DEGs significantly correlated with outcomes of HCC patients. The immune infiltration in the tumor microenvironment of HCC was correlated with the expression level of the DEGs. Besides, the DEGs and their co-expressive genes participated in the biological processes of extracellular matrix (ECM) organization and focal adhesion. In summary, this study indicated the dysregulation of ECM and focal adhesion might contribute to the formation of PVTT. And the above seven genes might serve as potential biomarkers of PVTT occurrence and prognosis of HCC patients.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peipei Mai
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - E Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
19
|
Wang D, Ning Z, Zhu Z, Zhang C, Wang P, Meng Z. LHPP suppresses tumorigenesis of intrahepatic cholangiocarcinoma by inhibiting the TGFβ/smad signaling pathway. Int J Biochem Cell Biol 2021; 132:105845. [PMID: 33401010 DOI: 10.1016/j.biocel.2020.105845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a histidine phosphatase, plays an important role in tumor progression and metastasis as a tumor suppressor. Here, we investigate the effect of LHPP in intrahepatic cholangiocarcinoma (ICC). We discovered that LHPP was downregulated in tumor tissues and low levels of LHPP predicted poor survival. LHPP inhibited ICC cell growth, cell invasion and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Mechanically, LHPP deactivated transforming growth factor‑beta (TGFβ) signaling pathway, and low level LHPP upregulated the expression of TGFβ and phosphorylation of smad2/3. Moreover, inhibition of this pathway reversed the biofunction of LHPP. In summary, these findings demonstrated that LHPP suppressed ICC through inhibiting the activation of TGFβ/smad signaling. Our results indicated that LHPP is a potential therapeutic target in ICC.
Collapse
Affiliation(s)
- Dan Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenfeng Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Bedon L, Dal Bo M, Mossenta M, Busato D, Toffoli G, Polano M. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients. Int J Mol Sci 2021; 22:1075. [PMID: 33499054 PMCID: PMC7865606 DOI: 10.3390/ijms22031075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although extensive advancements have been made in treatment against hepatocellular carcinoma (HCC), the prognosis of HCC patients remains unsatisfied. It is now clearly established that extensive epigenetic changes act as a driver in human tumors. This study exploits HCC epigenetic deregulation to define a novel prognostic model for monitoring the progression of HCC. We analyzed the genome-wide DNA methylation profile of 374 primary tumor specimens using the Illumina 450 K array data from The Cancer Genome Atlas. We initially used a novel combination of Machine Learning algorithms (Recursive Features Selection, Boruta) to capture early tumor progression features. The subsets of probes obtained were used to train and validate Random Forest models to predict a Progression Free Survival greater or less than 6 months. The model based on 34 epigenetic probes showed the best performance, scoring 0.80 accuracy and 0.51 Matthews Correlation Coefficient on testset. Then, we generated and validated a progression signature based on 4 methylation probes capable of stratifying HCC patients at high and low risk of progression. Survival analysis showed that high risk patients are characterized by a poorer progression free survival compared to low risk patients. Moreover, decision curve analysis confirmed the strength of this predictive tool over conventional clinical parameters. Functional enrichment analysis highlighted that high risk patients differentiated themselves by the upregulation of proliferative pathways. Ultimately, we propose the oncogenic MCM2 gene as a methylation-driven gene of which the representative epigenetic markers could serve both as predictive and prognostic markers. Briefly, our work provides several potential HCC progression epigenetic biomarkers as well as a new signature that may enhance patients surveillance and advances in personalized treatment.
Collapse
Affiliation(s)
- Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| |
Collapse
|
21
|
Xia Y, Li J, Li S, Khodahemmati S, Ghaffar M, Chen S, Sheng W. Identification of pathways and genes in the process of E6/E7-induced carcinogenesis of esophageal epithelial cells. J Med Virol 2020; 92:3736-3742. [PMID: 31916268 DOI: 10.1002/jmv.25667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2020] [Indexed: 11/12/2022]
Abstract
Human papillomavirus (HPV) infection was associated with some carcinomas, especially malignant tumors in upper digestive tract, upper respiratory tract, and genitourinary system. The mechanism of the viral transformation of normal cells is still not very clear. To investigate the tumorigenesis of epithelial cells, E6/E7-induced malignant transformation model cells were used for expression profiling analysis by performing RNA expression microarray detection. Bioinformatics analysis was applied to investigate the cellular process changes along with the E6/E7 expression in SHEE cells. The differentially expressed genes were further grouped and uploaded for Search Tool for the Retrieval of Interacting Genes analysis. The protein-protein interaction results were visualized. The hub genes and their first-neighbors genes were selected, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The obtained results demonstrated that tumor-related biological processes began to emerge during the carcinogenesis process from 48th passage to 76th passage of SHEE cells after E6/E7 expression. Ten hub genes were identified and analyzed during the E6/E7-induced tumorigenesis. This study explores the gene expression network in the progressive transformation of immortalized esophageal epithelial cells induced by E6/E7 expression. Understanding the biological processes and hub genes that first appear during the transformation will provide some clues to the mechanism of E6/E7-induced carcinogenesis of esophageal epithelial cells.
Collapse
Affiliation(s)
- Yang Xia
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
- School of Materials Science and Engineering, South China University of Technology, Guangdong, China
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Shuying Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Hebei, China
| | - Sara Khodahemmati
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Maliha Ghaffar
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
- Department of Biology/Zoology, University of Okara, Okara, Pakistan
| | - Su Chen
- Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Hubei, China
| | - Wang Sheng
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| |
Collapse
|
22
|
Li M, Liu C, Xu X, Liu Y, Jiang Z, Li Y, Lv Y, Lu S, Hu C, Mao H. Grass carp (Ctenopharyngodon idella) GPATCH3 initiates IFN 1 expression via the activation of STING-IRF7 signal axis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103781. [PMID: 32645337 DOI: 10.1016/j.dci.2020.103781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
GPATCH3, a protein with G-patch domain, is known to participate in innate immune response and organ development in mammals. However, there are few reports on GPATCH3 in fish. Here the cDNA sequence of GPATCH3 was cloned from Ctenopharyngodon idella (CiGPATCH3, MN149902) and was determined its character. A cDNA sequence of CiGPATCH3 is 1646 bp and contains an ORF of 1221 bp translating a protein of 407 amino acids. Phylogenetic analysis uncovered that CiGPATCH3 possesses a relatively high degree of homology with Cyprinus carpio GPATCH3. The mRNA level of CiGPATCH3 was increased following the intracellular stimulation of poly (I:C) into CIK cells. In vivo, over-expression of CiGPATCH3 can significantly up-regulate IFN 1 and ISG15 expression at mRNA and protein levels. To investigate the molecular mechanism by which GPATCH3 initiates the innate immune response in fish, co-IP experiments were performed to analyze the substrates of CiGPATCH3. The results showed that CiGPATCH3 directly interacted with CiSTING, but not with CiIRF3, CiIRF7, CiTBK1 or CiIPS-1. As compared with the single transfection of CO cells with either CiGPATCH3 or CiSTING, the expression of IFN 1 was more significantly up-regulated in cells under treatment with dual transfection of CiGPATCH3 and CiSTING. Knockdown of CiGPATCH3 inhibited STING-mediated IFN 1 expression in fish cells. Over-expression of CiGPATCH3 and CiSTING facilitated the phosphorylation and cytoplasmic-to-nuclear translocation of CiIRF7. These results explicitly showed that CiGPATCH3 up-regulates IFN 1 and ISG15 expression via the activation of STING-IRF7 signal axis in vivo.
Collapse
Affiliation(s)
- Meifeng Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Changxin Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yapeng Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zeying Jiang
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yinping Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yangfeng Lv
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shina Lu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiling Mao
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
23
|
Fan X, Li Y, Yi X, Chen G, Jin S, Dai Y, Cui B, Dai B, Lin H, Zhou D. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia 2020; 22:630-643. [PMID: 33059309 PMCID: PMC7566847 DOI: 10.1016/j.neo.2020.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant methylation is a hallmark of hepatocellular carcinoma and plays an important role in tumor initiation and progression. However, the epigenome-wide methylation patterns of portal vein tumor thrombosis (PVTTs) have not been fully explored. Here, we performed epigenome-wide DNA methylation of adjacent normal tissues (ANTs), paired tumor tissues and paired PVTTs using an Infinium HumanMethylation450 array (n = 11) and conducted the Sequenom EpiTYPER assays to confirm the aberrantly methylated genes. MTS and apoptosis assay were used to assess the synergistic effect of two drugs on the HCC cell lines. We found the mean global methylation levels of HCC tissues and PVTTs were significantly lower than ANTs (P < 0.01). A total of 864 differentially methylated CpG sites annotated in 532 genes were identified between HCC tissues and paired PVTTs (|mean methylation difference|>10%, P < 0.005). The pathway analysis based on hypermethylated genes in PVTT tissues was interestingly enriched in regulation of actin cytoskeleton pathway (P = 4.48E−5). We found 23 genes whose methylation levels were gradually alternated in HCC tissues and PVTTs. Aberrant methylation status of TNFRSF10A, ZC3H3 and SLC9A3R2 were confirmed in a validation cohort (n = 48). The functional experiments demonstrated the combination of decitabine (DAC) and tumor necrosis factor-related apoptosis-inducing ligand (rh-TRAIL) could synergistically suppress the proliferation and induce apoptosis in SK-Hep-1 and Huh7 cell lines. Together, our findings indicated that DNA methylation plays an important role in the PVTT formation through regulating the metastasis-related pathways. The combination of DAC and rh-TRAIL might be a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Yi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Cui
- College of Life Science and Technology, Nanyang Normal University, Nanyang, China
| | - Binghua Dai
- Department of Special Treatment Ⅰ and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Construction of an miRNA-mRNA regulatory network in colorectal cancer with bioinformatics methods. Anticancer Drugs 2020; 30:588-595. [PMID: 30601194 DOI: 10.1097/cad.0000000000000745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. This study aimed to explore the regulatory mechanisms of miRNAs in CRC. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in CRC tissue samples compared with control samples in mRNA and miRNA datasets were screened. Functional and pathway enrichment analysis of the DEGs was carried out. Targets of the DEMs were identified. Overlaps between the DEGs and targets of DEMs were selected. The miRNA-mRNA regulatory network of these overlaps was constructed and visualized. The candidate genes selected were validated by quantitative real-time PCR. DEGs were identified and considered DEGs-1 and DEGs-2. A total of 584 genes in DEGs-1 and 527 genes in DEGs-2 were obtained, including 465 overlaps, and 44 DEMs were identified. The overlaps were enriched in 46 Gene Ontology terms and 19 Kyoto Encyclopedia of Genes and Genomes pathways. Moreover, 137 overlapped genes between targets of the DEMs and the 465 overlaps were obtained. The miRNA-mRNA regulating network of the 137 overlapped genes was constructed. Extracellular matrix-related proteins and pathways might play critical roles in the development of CRC. The quantitative real-time PCR results of the candidates were in agreement with the bioinformatics analysis. miR-128, miR-182, and miR-143 might be key miRNAs regulating cell proliferation and metastasis of CRC.
Collapse
|
25
|
Cui B, Fan X, Zhou D, He L, Li Y, Li D, Lin H. CSF1R methylation is a key regulatory mechanism of tumor-associated macrophages in hepatocellular carcinoma. Oncol Lett 2020; 20:1835-1845. [PMID: 32724427 PMCID: PMC7377184 DOI: 10.3892/ol.2020.11726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are important in tumor microenvironments and are closely associated with cancer occurrence, metastasis and progression. Colony stimulating factor 1 receptor (CSF1R) serves a crucial role in TAM formation. Whether CSF1R expression is regulated by DNA methylation in hepatocellular carcinoma (HCC) has not been fully elucidated. In the current study, HCC and adjacent non-cancerous tissue (ANT) samples were collected from 160 patients with HCC. CSF1R methylation levels were analyzed using a Mass ARRAY Analyzer to establish the potential impact of CSF1R methylation alternations on HCC clinicopathological characteristics. The mean methylation level of the CSF1R promoter (chr 5:149492491-149492958) was demonstrated to be significantly higher in ANTs compared with HCC tissues (65.3±7.5% vs. 57.3±14.4%, respectively; P<0.0001). CSF1R also exhibited decreased expression in HCC tissues compared with ANTs (P=0.0026). However, CSF1R expression was negatively correlated with CSF1R methylation levels in ANTs (r>0.4; P<0.0001). Further analysis indicated that patients with diabetes exhibited lower methylation levels in ANTs compared with HCC tissues (P=0.0062). Furthermore, CSF1R hypomethylation in ANTs was associated with a larger number of tumors (P=0.0332), larger tumor size (P=0.0494) and higher tumor grade (P=0.0244). Therefore, methylation alternation of the CSF1R promoter region analyzed in the present study was a key regulatory mechanism on CSF1R expression and ANT hypomethylation indicated poor clinicopathological characteristics of HCC. CSF1R may be a potential immunological therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Cui
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
26
|
Shen Y, Chu Q, Yin X, He Y, Bai P, Wang Y, Fang W, Timko MP, Fan L, Jiang W. TOD-CUP: a gene expression rank-based majority vote algorithm for tissue origin diagnosis of cancers of unknown primary. Brief Bioinform 2020; 22:2106-2118. [PMID: 32266390 DOI: 10.1093/bib/bbaa031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/19/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Gene expression profiling holds great potential as a new approach to histological diagnosis and precision medicine of cancers of unknown primary (CUP). Batch effects and different data types greatly decrease the predictive performance of biomarker-based algorithms, and few methods have been widely applied to identify tissue origin of CUP up to now. To address this problem and assist in more precise diagnosis, we have developed a gene expression rank-based majority vote algorithm for tissue origin diagnosis of CUP (TOD-CUP) of most common cancer types. Based on massive tissue-specific RNA-seq data sets (10 553) found in The Cancer Genome Atlas (TCGA), 538 feature genes (biomarkers) were selected based on their gene expression ranks and used to predict tissue types. The top scoring pairs (TSPs) classifier of the tumor type was optimized by the TCGA training samples. To test the prediction accuracy of our TOD-CUP algorithm, we analyzed (1) two microarray data sets (1029 Agilent and 2277 Affymetrix/Illumina chips) and found 91% and 94% prediction accuracy, respectively, (2) RNA-seq data from five cancer types derived from 141 public metastatic cancer tumor samples and achieved 94% accuracy and (3) a total of 25 clinical cancer samples (including 14 metastatic cancer samples) were able to classify 24/25 samples correctly (96.0% accuracy). Taken together, the TOD-CUP algorithm provides a powerful and robust means to accurately identify the tissue origin of 24 cancer types across different data platforms. To make the TOD-CUP algorithm easily accessible for clinical application, we established a Web-based server for tumor tissue origin diagnosis (http://ibi. zju.edu.cn/todcup/).
Collapse
Affiliation(s)
- Yifei Shen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University and the Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, USA
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, China
| | - Xinxin Yin
- Institute of Bioinformatics, Zhejiang University, China
| | - Yinjun He
- College of Medicine, Zhejiang University, China
| | - Panpan Bai
- Institute of Bioinformatics, Zhejiang University, China
| | - Yunfei Wang
- Zhejiang Sheng Ting Biotechnology Co., China
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, China
| | - Michael P Timko
- Department of Biology & Public Health Sciences, University of Virginia, USA
| | - Longjiang Fan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, China
| | - Weiqin Jiang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, China
| |
Collapse
|
27
|
Brumwell A, Fell L, Obress L, Uniacke J. Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs. RNA (NEW YORK, N.Y.) 2020; 26:361-371. [PMID: 31911497 PMCID: PMC7025504 DOI: 10.1261/rna.070318.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ribosomes were once considered static in their composition because of their essential role in protein synthesis and kingdom-wide conservation. The existence of tolerated mutations in select ribosomal proteins (RPs), such as in Diamond-Blackfan anemia, is evidence that not all ribosome components are essential. Heterogeneity in the protein composition of eukaryotic ribosomes is an emerging concept with evidence that different pools of ribosomes exist with transcript-specificity. Here, we show that the polysome association of ribosomal proteins is altered by low oxygen (hypoxia), a feature of the tumor microenvironment, in human cells. We quantified ribosomal protein abundance in actively translating polysomes of normoxic and hypoxic HEK293 cells by tandem mass tags mass spectrometry. Our data suggest that RPS12 (eS12) is enriched in hypoxic monosomes, which increases the heavy polysome association of structured transcripts APAF-1 and XIAP. Furthermore, hypoxia induced five alternative splicing events within a subset of RP mRNAs in cell lines. One of these events in RPS24 (eS24 protein) alters the coding sequence to produce two protein isoforms that can incorporate into ribosomes. This splicing event is greatly induced in spheroids and correlates with tumor hypoxia in human prostate cancer. Our data suggest that hypoxia may influence the composition of the human ribosome through changes in RP incorporation and the production of hypoxia-specific RP isoforms.
Collapse
Affiliation(s)
- Andrea Brumwell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Leslie Fell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lindsay Obress
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
28
|
Chen G, Fan X, Li Y, He L, Wang S, Dai Y, Bin C, Zhou D, Lin H. Promoter aberrant methylation status of ADRA1A is associated with hepatocellular carcinoma. Epigenetics 2020; 15:684-701. [PMID: 31933413 DOI: 10.1080/15592294.2019.1709267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of our study was to explore the relationship between the methylation status of the alpha-1A adrenergic receptor (ADRA1A) gene and hepatocellular carcinoma (HCC). We combined our in-house data-set with the Cancer Genome Atlas (TCGA) data-set to screen and identify the methylation status and expression of adrenergic receptor (AR) genes in HCC. Immunohistochemistry and western blot were performed to assess the expression of ADRA1A in HCC cell lines and tissues. We further evaluated the methylation levels of the ADRA1A promoter region in 160 HCC patients using the Sequenom MassARRAY® platform and investigated the association between methylation of ADRA1A and clinical characteristics. The expression levels of ADRA1A mRNA and protein were significantly decreased in HCC tissues. Compared with that in paired normal tissues, the mean methylation level of the ADRA1A promoter region was significantly increased in tumour tissues from 160 HCC patients (25.2% vs. 17.0%, P < 0.0001). We found that a DNA methyltransferase inhibitor (decitabine) could increase the expression of ADRA1A mRNA in HCC cell lines. Moreover, hypermethylation of the ADRA1A gene in HCC samples was associated with clinical characteristics, including alcohol intake (P = 0.0097) and alpha-fetoprotein (P = 0.0411). Receiver operator characteristic (ROC) curve analysis demonstrated that the mean methylation levels of ADRA1A could discriminate between HCC tissues and adjacent non-cancerous tissues (AUC = 0.700, P < 0.0001). mRNA sequencing indicated that the main enriched pathways were pathways in cancer, cytokine-cytokine receptor interaction and metabolic pathways (P < 0.01). ADRA1A gene hypermethylation might contribute to HCC initiation and is a promising biomarker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Shanjuan Wang
- Department of gastroenterology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences , Shanghai, China
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Cui Bin
- College of life science and technology, Nanyang Normal University , Nanyang, China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
29
|
Ying H, Ji L, Xu Z, Fan X, Tong Y, Liu H, Zhao J, Cai X. TRIM59 promotes tumor growth in hepatocellular carcinoma and regulates the cell cycle by degradation of protein phosphatase 1B. Cancer Lett 2019; 473:13-24. [PMID: 31875525 DOI: 10.1016/j.canlet.2019.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Tripartite motif 59 (TRIM59) is a member of Tripartite motif protein family, which is frequently increased in many human cancers. However, the molecular mechanism of TRIM59 in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we report that TRIM59 plays an essential role in growth of HCC. We analyzed RNA sequencing data to explore abnormally expressed TRIM59 in HCC. The effects of TRIM59 on HCC were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, xenograft model, immunohistochemistry, immunofluorescence and western blot). The mechanism of TRIM59 action was explored through co-immunoprecipitation, immunofluorescence, mass spectrometry and bioinformatics. TRIM59 expression is up-regulated in HCC tissues. A high level of TRIM59 expression is correlated with poor overall and disease-free survival of HCC patients. Knockdown of TRIM59 attenuated proliferation, induced cells arrested at G1/S phase and reduced tumor growth in the mouse xenograft model. Ectopic expression of TRIM59 had the opposite results. Mechanistically, TRIM59 promoted growth and regulated cell cycle. Further studies indicated that TRIM59 might interacted physically with PPM1B, which has been reported to negatively regulate CDKs phosphorylation. We also discovered that TRIM59 increased degradation of PPM1B. TRIM59 overexpression in HCC patients correlated with reduced expression of PPM1B and increased CDKs phosphorylation and cell cycle proteins. Our findings demonstrate that TRIM59 promotes growth by PPM1B/CDKs signaling pathway, indicating a new prognostic biomarker candidate and a potential antitumor target for HCC.
Collapse
Affiliation(s)
- Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Liu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhao
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Wang D, Zhu Y, Tang J, Lian Q, Luo G, Wen W, Zhang MQ, Wang H, Chen L, Gu J. Integrative molecular analysis of metastatic hepatocellular carcinoma. BMC Med Genomics 2019; 12:164. [PMID: 31722693 PMCID: PMC6854708 DOI: 10.1186/s12920-019-0586-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Intrahepatic metastasis, such as portal vein tumor thrombosis (PVTT), strongly indicates poor prognosis of HCC. But now, there are limited understandings of the molecular features and mechanisms of those metastatic HCCs. Methods To characterize the molecular alterations of the metastatic HCCs, we implemented an integrative analysis of the copy number variations (CNVs), DNA methylations and transcriptomes of matched adjacent normal, primary tumor and PVTT samples from 19 HCC patients. Results CNV analysis identified a frequently amplified focal region chr11q13.3 and a novel deletion peak chr19q13.41 containing three miRNAs. The integrative analysis with RNA-seq data suggests that CNVs and differential promoter methylations regulate distinct oncogenic processes. Then, we used individualized differential analysis to identify the differentially expressed genes between matched primary tumor and PVTT of each patient. Results show that 5 out of 19 studied patients acquire evidential progressive alterations of gene expressions (more than 1000 differentially expressed genes were identified in each patient). While, another subset of eight patients have nearly identical gene expressions between the corresponding matched primary tumor and PVTT. Twenty genes were found to be recurrently and progressively differentially expressed in multiple patients. These genes are mainly associated with focal adhesion, xenobiotics metabolism by cytochrome P450 and amino acid metabolism. For several differentially expressed genes in metabolic pathways, their expressions are significantly associated with overall survivals and vascular invasions of HCC patients. The following transwell assay experiments validate that they can regulate invasive phenotypes of HCC cells. Conclusions The metastatic HCCs with PVTTs have significant molecular alterations comparing with adjacent normal tissues. The recurrent alteration patterns are similar to several previously published general HCC cohorts, but usually with higher severity. By an individualized differential analysis strategy, the progressively differentially expressed genes between the primary tumor and PVTT were identified for each patient. A few patients aquire evidential progressive alterations of gene expressions. And, experiments show that several recurrently differentially expressed genes can strongly regulate HCC cell invasions.
Collapse
Affiliation(s)
- Dongfang Wang
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Yanjing Zhu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Jing Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,Department of Neurosurgery, Wuhan General Hospital, 627 Wuluo Road, Wuhan, 430070, China
| | - Qiuyu Lian
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Guijuan Luo
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Wen Wen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China.,Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
31
|
van Tienderen GS, Groot Koerkamp B, IJzermans JNM, van der Laan LJW, Verstegen MMA. Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers (Basel) 2019; 11:E1706. [PMID: 31683901 PMCID: PMC6896153 DOI: 10.3390/cancers11111706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Saraiva-Agostinho N, Barbosa-Morais NL. psichomics: graphical application for alternative splicing quantification and analysis. Nucleic Acids Res 2019; 47:e7. [PMID: 30277515 PMCID: PMC6344878 DOI: 10.1093/nar/gky888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Alternative pre-mRNA splicing generates functionally distinct transcripts from the same gene and is involved in the control of multiple cellular processes, with its dysregulation being associated with a variety of pathologies. The advent of next-generation sequencing has enabled global studies of alternative splicing in different physiological and disease contexts. However, current bioinformatics tools for alternative splicing analysis from RNA-seq data are not user-friendly, disregard available exon-exon junction quantification or have limited downstream analysis features. To overcome such limitations, we have developed psichomics, an R package with an intuitive graphical interface for alternative splicing quantification and downstream dimensionality reduction, differential splicing and gene expression and survival analyses based on The Cancer Genome Atlas, the Genotype-Tissue Expression project, the Sequence Read Archive project and user-provided data. These integrative analyses can also incorporate clinical and molecular sample-associated features. We successfully used psichomics in a laptop to reveal alternative splicing signatures specific to stage I breast cancer and associated novel putative prognostic factors.
Collapse
Affiliation(s)
- Nuno Saraiva-Agostinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
33
|
Wang X, Zou W, Yu H, Lin Y, Dai G, Zhang T, Zhang G, Xie K, Wang J, Shi H. RNA Sequencing Analysis of Chicken Cecum Tissues Following Eimeria tenella Infection in Vivo. Genes (Basel) 2019; 10:E420. [PMID: 31159150 PMCID: PMC6627390 DOI: 10.3390/genes10060420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in the cecal tissue of Jinghai yellow chickens infected with E. tenella, the molecular response process, and the immune response mechanism during coccidial infection, RNA-seq was used to analyze the cecal tissues of an E. tenella infection group (JS) and an uninfected group (JC) on the seventh day post-infection. The DEGs were screened by functional and pathway enrichment analyses. The results indicated that there were 5477 DEGs (p-value < 0.05) between the JS and the JC groups, of which 2942 were upregulated, and 2535 were downregulated. GO analysis indicated that the top 30 significantly enriched GO terms mainly involved signal transduction, angiogenesis, inflammatory response, and blood vessel development. KEGG analysis revealed that the top significantly enriched signaling pathways included focal adhesion, extracellular matrix-receptor interaction, and peroxisome proliferator-activated receptor. The key DEGs in these pathways included ANGPTL4, ACSL5, VEGFC, MAPK10, and CD44. These genes play an important role in the infection of E. tenella. This study further enhances our understanding of the molecular mechanism of E. tenella infection in chickens.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Yuxin Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Animal Husbandry and Veterinary Station of Kunshan City, Kunshan 215300, Jiangsu, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, Jiangsu, China.
| |
Collapse
|
34
|
Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet 2019; 233-234:48-55. [PMID: 31109594 DOI: 10.1016/j.cancergen.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this study is to analyze the methylation levels of SPG20 promotor region and explore the association between the methylation levels and clinical features in hepatocellular carcinoma (HCC). MATERIALS AND METHODS We collected paired of HCC and adjacent non-cancerous tissues (ANT) from 160 HCC patients and analyze the methylation levels through MassARRAY Analyzer 4. The statistical calculations were performed using SPSS version 22.0. Real-time-quantification PCR was performed to assess expression levels of SPG20 in HCC cell lines. Wound healing assay and transwell assay was used to measure cell migration capacity. RESULT We found that mean methylation level of SPG20 in tumor tissues was significantly higher than that in ANT (7.3% vs. 16.2%, P<0.0013). There was a significantly negative correlation between expression level and methylation level of SPG20 (P<0.01). In addition, the methylation levels in HCC were correlated with age and HBV infection. Meanwhile, micro-satellite tumors (P = 0.016) and tumor number (P = 0.018) was found significantly associated with increased methylation levels of several CpG sites and the mean levels of SPG20 promotor in ANT. In addtion, the capacity of cell migration was significantly enhanced in SPG20 knock-down HCC cells. CONCLUSION The hypermethylation status of SPG20 gene promoter is significantly associated with intra-hepatic metastasis and contribute to HCC metastasis.
Collapse
|
35
|
Zhu C, Wu L, Lv Y, Guan J, Bai X, Lin J, Liu T, Yang X, Robson SC, Sang X, Xue C, Zhao H. The fusion landscape of hepatocellular carcinoma. Mol Oncol 2019; 13:1214-1225. [PMID: 30903738 PMCID: PMC6487730 DOI: 10.1002/1878-0261.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022] Open
Abstract
Most cases of hepatocellular carcinoma (HCC) are already advanced at the time of diagnosis, which limits treatment options. Challenges in early‐stage diagnosis may be due to the genetic complexity of HCC. Gene fusion plays a critical function in tumorigenesis and cancer progression in multiple cancers, yet the identities of fusion genes as potential diagnostic markers in HCC have not been investigated. Here, we employed STAR‐Fusion and identified 43 recurrent fusion events in our own and four public RNA‐seq datasets. We identified 2354 different gene fusions in two hepatitis B virus (HBV)‐HCC patients. Validation analysis against the four RNA‐seq datasets revealed that only 1.8% (43/2354) were recurrent fusions. Comparison with the four fusion databases demonstrated that 19 recurrent fusions were not previously annotated to diseases and three were annotated as disease‐related fusion events. Finally, we validated six of the novel fusion events, including RP11‐476K15.1‐CTD‐2015H3.2, by RT‐PCR and Sanger sequencing of 14 pairs of HBV‐related HCC samples. In summary, our study provides new insights into gene fusions in HCC and may contribute to the development of anti‐HCC therapy.
Collapse
Affiliation(s)
- Chengpei Zhu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanling Lv
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,My Health Gene Technology Co., Ltd., Service Centre of Tianjin Chentang Science and Technology Commercial District, China
| | - Jinxia Guan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,My Health Gene Technology Co., Ltd., Service Centre of Tianjin Chentang Science and Technology Commercial District, China
| | - Xue Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Liu
- My Health Gene Technology Co., Ltd., Service Centre of Tianjin Chentang Science and Technology Commercial District, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Simon C Robson
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenghai Xue
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,My Health Gene Technology Co., Ltd., Service Centre of Tianjin Chentang Science and Technology Commercial District, China.,Joint Laboratory of Large-scale Medical Data Pattern Mining and Application, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Wei GG, Gao L, Tang ZY, Lin P, Liang LB, Zeng JJ, Chen G, Zhang LC. Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression. Pathol Res Pract 2019; 215:152378. [PMID: 30871913 DOI: 10.1016/j.prp.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/07/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
The severe damage to health and social burden caused by head and neck squamous cell carcinoma (HNSCC) generated an urgent need to develop novel anti-cancer therapy. Currently, drug repositioning has risen in responses to the proper time as an efficient approach to invention of new anti-cancer therapies. In the present study, we aimed to screen candidate drugs for HNSCC by integrating HNSCC-related pathways from differentially expressed genes (DEGs) and drug-affected pathways from connectivity map (CMAP). We also endeavored to unveil the molecular mechanism of HNSCC through creating drug-target network and protein-to-protein (PPI) network of component DEGs in key overlapping pathways. As a result, a total of 401 DEGs were obtained from TCGA and GTEx mRNA-seq data. Taking the intersection part of 27 HNSCC-related Kyoto Encyclopedia of Genes and Genomes pathways and 33 drug-affected pathways, we retained 22 candidate drugs corresponding to two key pathways (cell cycle and p53 signaling pathways) of the five overlapping pathways. Two of the hub genes (PCNA and CCND1) identified from the PPI network of component DEGs in cell cycle and p53 signaling pathways were defined as the critical targets of candidate drugs with increased protein expression in HNSCC tissues, which was reported by the human protein atlas (HPA) database and cBioPortal. Finally, we validated via molecular docking analysis that two drugs with unknown effects in HNSCC: MG-262 and bepridil might perturb the development of HNSCC through targeting PCNA. These candidate drugs possessed broad application prospect as medication for HNSCC.
Collapse
Affiliation(s)
- Gan-Guan Wei
- Department of Otolaryngology Head and Neck Surgery, NO.303 Hospital of PLA, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zheng-Yi Tang
- Department of Otolaryngology Head and Neck Surgery, NO.303 Hospital of PLA, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Bin Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Long-Cheng Zhang
- Department of Otolaryngology Head and Neck Surgery, NO.303 Hospital of PLA, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
37
|
Liu S, Zhou Z, Jia Y, Xue J, Liu Z, Cheng K, Cheng S, Liu S. Identification of portal vein tumor thrombus with an independent clonal origin in hepatocellular carcinoma via multi-omics data analysis. Cancer Biol Med 2019; 16:147-170. [PMID: 31119055 PMCID: PMC6528462 DOI: 10.20892/j.issn.2095-3941.2018.0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective Multiple mechanisms underlying the development of portal vein tumor thrombus (PVTT) in hepatocellular carcinoma (HCC) have been reported recently. However, the origins of PVTT remain unknown. Increasing multi-omics data on PVTTs in HCCs have made it possible to investigate whether PVTTs originate from the corresponding primary tumors (Ts). Methods The clonal relationship between PVTTs and their corresponding primary Ts was investigated using datasets deposited in public databases. One DNA copy number variations dataset and three gene expression datasets were downloaded for the analyses. Clonality analysis was performed to investigate the clonal relationship between PVTTs and Ts from an individual patient. Differential gene expression analysis was applied to investigate the gene expression profiles of PVTTs and Ts. Results One out of 19 PVTTs had no clonal relationship with its corresponding T, whereas the others did. The PVTTs with independent clonal origin showed different gene expression and enrichment in biological processes from the primary Ts. Based on the unique gene expression profiles, a gene signature including 24 genes was used to identify pairs of PVTTs and primary Ts without any clonal relationship. Validation in three datasets showed that these types of pairs of PVTTs and Ts can be identified by the 24-gene signature. Conclusions Our findings show a direct evidence for PVTT origin and consolidate the heterogeneity of PVTTs observed in clinic. The results suggest that PVTT investigation at a molecular level is clinically necessary for diagnosis and treatment.
Collapse
Affiliation(s)
- Shupeng Liu
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zaixin Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jie Xue
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhiyong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Kai Cheng
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
38
|
Fan X, Guo H, Dai B, He L, Zhou D, Lin H. The association between methylation patterns of DNAH17 and clinicopathological factors in hepatocellular carcinoma. Cancer Med 2018; 8:337-350. [PMID: 30575322 PMCID: PMC6346260 DOI: 10.1002/cam4.1930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis. Complex genetic and epigenetic alterations are the two primary causes of HCC. The aim of the study was mainly to explore the correlation between the methylation status of DNAH17 and HCC. Methods We evaluated the methylation levels of DNAH17 in 163 HCC samples and their paired normal tissue using Sequenom EpiTYPER assays and performed the TaqMan copy number assay to assess the copy number status of DNAH17 in HCC samples. Results The mean methylation levels were significantly decreased in the tumor tissues compared to the paired normal tissues in both selected regions of DNAH17 (amplicon 1:58.7% vs 84.5%, P < 0.0001; amplicon 2:69.9% vs 84.5%, P = 0.0060). Contrarily,both RNA‐seq and immunohistochemistry indicated the expression of DNAH17 was increased in tumor tissues (P < 0.05). DNMT inhibitor decitabine treatment could increase the expression of DNAH17 in HCC cell lines. DNAH17 gene amplification always companied with hypomethylation status. Moreover, hypomethylation status was associated with several clinical characteristics, such as male patients, higher AFP values, higher age of onset, fibrous capsules, tumor necrosis, liver cirrhosis, and tumor thrombus (P < 0.05). Receiver operator characteristic (ROC) curve analysis demonstrated the methylation levels of DNAH17 could efficiently predict the existence of the fibrous capsule (AUC = 0.695) and tumor thrombus (AUC = 0.806). Conclusions These findings suggested that aberrant methylation of DNAH17 was associated with comprehensive HCC clinicopathological factors and could be a promising biomarker for tumor thrombosis in HCC patients.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongbin Guo
- Department of Neurosurgery, Xia Sha campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binghua Dai
- The Department of liver transplantation and Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Gan BL, He RQ, Zhang Y, Wei DM, Hu XH, Chen G. Downregulation of HOXA3 in lung adenocarcinoma and its relevant molecular mechanism analysed by RT-qPCR, TCGA and in silico analysis. Int J Oncol 2018; 53:1557-1579. [PMID: 30066858 PMCID: PMC6086630 DOI: 10.3892/ijo.2018.4508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have indicated that homeobox A3 (HOXA3) functions as a carcinogen in colon cancer and the methylation level of HOXA3 is significantly increased in lung adenocarcinoma (LUAD) tissues. However, at least to the best of our knowledge, few studies to date have been performed on HOXA3 in non-small cell lung cancer (NSCLC). Therefore, further studies on HOXA3 expression in NSCLC and the potential regulatory mechanisms are urgently required. In this study, HOXA3 expression in 55 tissues of cases of NSCLC and corresponding non-lung cancer tissues was detected by reverse transcription-quantitative PCR (RT-qPCR). In addition, the clinical significance of HOXA3 expression in NSCLC was evaluated using the Cancer Genome Atlas (TCGA) database. Bioinformatics analysis was then performed to elucidate the potential molecular mechanisms of action of HOXA3. Furthermore, the potential target microRNAs (miRNAs or miRs) of HOXA3 were predicted using miRWalk2.0. Based on Gene Expression Omnibus (GEO) and TGCA databases, standardized mean difference (SMD) and sROC methods were used for meta-analyses of the expression of potential target miRNAs of HOXA3 in NSCLC to evaluate their association with HOXA3. The results revealed that the HOXA3 expression levels in NSCLC, LUAD and lung squamous cell carcinoma (LUSC) were 0.1130±0.1398, 0.1295±0.16890 and 0.0906±0.0846, respectively. These values were all decreased compared with the normal tissues (0.1877±0.1975, 0.2337±0.2405 and 0.1249±0.0873, respectively, P<0.05). The TCGA database also revealed the low expression trend of HOXA3. The downregulation of HOXA3 may play an important role in the progression and the poor prognosis of LUAD. The TCGA database also suggested that HOXA3 in LUAD and LUSC tissues exhibited certain mutational levels. In addition, the methylation levels in the NSCLC, LUAD and LUSC tissues significantly increased [NSCLC: fold change (FC), 1.3226; P<0.001; LUAD: FC, 1.2712; P<0.001; and LUSC: FC, 1.3786; P<0.001]. According to the analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the co-expression HOXA3 genes were mainly associated with the focal adhesion signalling pathway and the ECM-receptor interaction signalling pathway. Furthermore, the predicted miRNA, miR-372-3p, exhibited a high expression in both the NSCLC and LUAD tissues (P<0.05). On the whole, the findings of this study indicate that low HOXA3 expression may play a certain role in LUAD; however, its association with LUSC still requires further investigation. HOXA3 function may be achieved through different pathways or target miRNAs. However, the specific underlying mechanisms need to be confirmed through various functional studies.
Collapse
Affiliation(s)
- Bin-Liang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
40
|
Lin H, Fan X, He L, Zhou D. Methylation patterns of RASA3 associated with clinicopathological factors in hepatocellular carcinoma. J Cancer 2018; 9:2116-2122. [PMID: 29937930 PMCID: PMC6010675 DOI: 10.7150/jca.24567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/31/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common tumor worldwide. The relationship between the gene methylation accumulation and HCC has been widely studied. In our study, we used the Sequenom EpiTYPER assay to investigate the methylation levels of the RASA3 in 164 HCC samples and paired adjacent non-cancerous tissues, and the association between methylation level and clinicopathological features. The methylation level of the RASA3 in HCC samples was found significantly lower than that in the adjacent non-cancerous tissues (P<0.0001). Moreover, the hypomethylation of RASA3 in HCC samples was connected with the presence of tumornecrosis (P=0.029) and alcohol intake (P=0.002). Furthermore, it was found that the expression of RASA3 was significantly decreased in tumor tissues (P=0.0053), which was also correlated with the methylation levels of RASA3 gene. Thus, RASA3 hypomethylation is a common feature in HCC, and may be a potential mechanism for HCC development, and serves as a useful biomarker for the early detection, especially in alcohol-associated HCCs.
Collapse
Affiliation(s)
- Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - LiFeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Present address: Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine; Institute of Medical Genetics, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Yang Y, Lu Q, Shao X, Mo B, Nie X, Liu W, Chen X, Tang Y, Deng Y, Yan J. Development Of A Three-Gene Prognostic Signature For Hepatitis B Virus Associated Hepatocellular Carcinoma Based On Integrated Transcriptomic Analysis. J Cancer 2018; 9:1989-2002. [PMID: 29896284 PMCID: PMC5995946 DOI: 10.7150/jca.23762] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of public genome-wide gene expression data together with Cox regression analysis is a powerful weapon to identify new prognostic gene signatures for cancer diagnosis and prognosis. Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC), however, it remains largely unknown about the specific gene prognostic signature of HBV-associated HCC. Using Robust Rank Aggreg (RRA) method to integrate seven whole genome expression datasets, we identified 82 up-regulated genes and 577 down-regulated genes in HBV-associated HCC patients. Combination of several enrichment analysis, univariate and multivariate Cox proportional hazards regression analysis, we revealed that a three-gene (SPP2, CDC37L1, and ECHDC2) prognostic signature could act as an independent prognostic indicator for HBV-associated HCC in both the discovery cohort and the internal testing cohort. Gene set enrichment analysis showed that the high-risk group with lower expression levels of the three genes was enriched in bladder cancer and cell cycle pathway, whereas the low-risk group with higher expression levels of the three genes was enriched in drug metabolism-cytochrome P450, PPAR signaling pathway, fatty acid and histidine metabolisms. This indicates that patients of HBV-associated HCC with higher expression of these three genes may preserve relatively good hepatic cellular metabolism and function, which may also protect HCC patients from persistent drug toxicity in response to various medication. Our findings suggest a three-gene prognostic model that serves as a specific prognostic signature for HBV-associated HCC.
Collapse
Affiliation(s)
- Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Lu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Xuejun Shao
- Brigade 315th of Territorial Defense Force, Chinese People's Liberation Army Ground Force, Xishuangbanna District, Yunan 666200, China
| | - Banghui Mo
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Liu
- Health Physical Examination Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Xianhua Chen
- Diagnosis and Treatment Center for Servicemen, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuan Tang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
42
|
Shen Y, Bu L, Li R, Chen Z, Tian F, Lu N, Ge Q, Bai Y, Lu Z. Screening effective differential expression genes for hepatic carcinoma with metastasis in the peripheral blood mononuclear cells by RNA-seq. Oncotarget 2018; 8:27976-27989. [PMID: 28427195 PMCID: PMC5438623 DOI: 10.18632/oncotarget.15855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a multistep process involving a number of genetic alterations so that the genetic diagnosis is got increasingly attentions today. The aim of this study was to use RNA-seq to screen the effective differential expression genes in the peripheral blood mononuclear cells for the hepatic carcinoma with metastasis. The results showed that hepatic carcinoma samples gathered according to different metastasis. CCL3, CCL3L1, JUN, IL8, and IL1B were identified in inflammation mediated by chemokine and cytokine signaling pathway (P00031) in the hepatic carcinoma samples with metastasis, and subsequently confirmed by quantitative real-time polymerase chain reaction. In conclusions, CCL3, CCL3L1, JUN, IL8, and IL1B have the potential to be considered as candidates for future molecular diagnosis of the hepatic carcinoma with metastasis. This work may provide us with new visions into the metastasis process and potential efficient clinical diagnosis in the future.
Collapse
Affiliation(s)
- Yanting Shen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Lu Bu
- Department of Interventional Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, 210009, PR China
| | - Rui Li
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zhenzhu Chen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Fei Tian
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Na Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zuhong Lu
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| |
Collapse
|
43
|
Pan Q, Long X, Song L, Zhao D, Li X, Li D, Li M, Zhou J, Tang X, Ren H, Ding K. Transcriptome sequencing identified hub genes for hepatocellular carcinoma by weighted-gene co-expression analysis. Oncotarget 2018; 7:38487-38499. [PMID: 27220887 PMCID: PMC5122405 DOI: 10.18632/oncotarget.9555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it remains a challenge to understand the genetic mechanisms underlying hepatocarcinogenesis. A global gene network of differential expression profiles in HCC has yet to be fully characterized. In the present study, we performed transcriptome sequencing (mRNA and lncRNA) in liver cancer and cirrhotic tissues of nine HCC patients. We identified differentially expressed genes (DEGs) and constructed a weighted gene co-expression network for the DEGs. In total, 755 DEGs (747 mRNA and eight lncRNA) were identified, and several co-expression modules were significantly associated with HCC clinical traits, including tumor location, tumor grade, and the α-fetoprotein (AFP) level. Of note, we identified 15 hub genes in the module associated with AFP level, and three (SPX, AFP and ADGRE1) of four hub genes were validated in an independent HCC cohort (n=78). Identification of hub genes for HCC clinical traits has implications for further understanding of the molecular genetic basis of HCC.
Collapse
Affiliation(s)
- Qi Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Xianli Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liting Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiaoyuan Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Dewei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Min Li
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, Sichuan Province, P. R. China
| | - Jiahua Zhou
- Department of Hepatobiliary Surgery, Henan Tumor Hospital, Zhenzhou, Henan Province, P.R. China
| | - Xia Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Keyue Ding
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
44
|
Abstract
RNA sequencing (RNA-seq) can not only be used to identify the expression of common or rare transcripts but also in the identification of other abnormal events, such as alternative splicing, novel transcripts, and fusion genes. In principle, RNA-seq can be carried out by almost all of the next-generation sequencing (NGS) platforms, but the libraries of different platforms are not exactly the same; each platform has its own kit to meet the special requirements of the instrument design.
Collapse
Affiliation(s)
- Hong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
45
|
LncRNAs2Pathways: Identifying the pathways influenced by a set of lncRNAs of interest based on a global network propagation method. Sci Rep 2017; 7:46566. [PMID: 28425476 PMCID: PMC5397852 DOI: 10.1038/srep46566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play essential roles in diverse cellular processes and biological functions. Exploring the functions associated with lncRNAs may help provide insight into their underlying biological mechanisms. The current methods primarily focus on investigating the functions of individual lncRNAs; however, essential biological functions may be affected by the combinatorial effects of multiple lncRNAs. Here, we have developed a novel computational method, LncRNAs2Pathways, to identify the functional pathways influenced by the combinatorial effects of a set of lncRNAs of interest based on a global network propagation algorithm. A new Kolmogorov–Smirnov-like statistical measure weighted by the network propagation score, which considers the expression correlation among lncRNAs and coding genes, was used to evaluate the biological pathways influenced by the lncRNAs of interest. We have described the LncRNAs2Pathways methodology and illustrated its effectiveness by analyzing three lncRNA sets associated with glioma, prostate and pancreatic cancers. We further analyzed the reproducibility and robustness and compared our results with those of two other methods. Based on these analyses, we showed that LncRNAs2Pathways can effectively identify the functional pathways associated with lncRNA sets. Finally, we implemented this method as a freely available R-based tool.
Collapse
|
46
|
Yang Y, Chen L, Gu J, Zhang H, Yuan J, Lian Q, Lv G, Wang S, Wu Y, Yang YCT, Wang D, Liu Y, Tang J, Luo G, Li Y, Hu L, Sun X, Wang D, Guo M, Xi Q, Xi J, Wang H, Zhang MQ, Lu ZJ. Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nat Commun 2017; 8:14421. [PMID: 28194035 PMCID: PMC5316832 DOI: 10.1038/ncomms14421] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/28/2016] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) cells often invade the portal venous system and subsequently develop into portal vein tumour thrombosis (PVTT). Long noncoding RNAs (lncRNAs) have been associated with HCC, but a comprehensive analysis of their specific association with HCC metastasis has not been conducted. Here, by analysing 60 clinical samples' RNA-seq data from 20 HCC patients, we have identified and characterized 8,603 candidate lncRNAs. The expression patterns of 917 recurrently deregulated lncRNAs are correlated with clinical data in a TCGA cohort and published liver cancer data. Matched array data from the 60 samples show that copy number variations (CNVs) and alterations in DNA methylation contribute to the observed recurrent deregulation of 235 lncRNAs. Many recurrently deregulated lncRNAs are enriched in co-expressed clusters of genes related to cell adhesion, immune response and metabolic processes. Candidate lncRNAs related to metastasis, such as HAND2-AS1, were further validated using RNAi-based loss-of-function assays. Thus, we provide a valuable resource of functional lncRNAs and biomarkers associated with HCC tumorigenesis and metastasis. Long noncoding-RNAs have been linked to hepatocellular carcinoma (HCC) and some can be used as prognostic markers. Here the authors, by analysing RNA-seq in 60 clinical samples from 20 patients, provide a resource of functional lncRNAs and biomarkers associated with HCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Yang Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 201805, China
| | - Jin Gu
- Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Hanshuo Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jiapei Yuan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiuyu Lian
- Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Cheng T Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dongfang Wang
- Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Tang
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan Hubei 430070, China
| | - Guijuan Luo
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | - Yang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long Hu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinbao Sun
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingzhou Guo
- Department of Gastroenterology &Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - Qiaoran Xi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianzhong Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 201805, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing 100084, China.,Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, RL11 Richardson, Texas 75080-3021, USA
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Center for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Identification of important long non-coding RNAs and highly recurrent aberrant alternative splicing events in hepatocellular carcinoma through integrative analysis of multiple RNA-Seq datasets. Mol Genet Genomics 2015; 291:1035-51. [PMID: 26711644 DOI: 10.1007/s00438-015-1163-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and deadly cancer. The molecular pathogenesis of the disease remains poorly understood. To better understand HCC biology and explore potential biomarkers and therapeutic targets, we investigated the whole transcriptome of HCC. Considering the genetic heterogeneity of HCC, four datasets from four studies consisting of 15 pairs of HCC and adjacent normal samples were analyzed. We observed that the number of lncRNAs expressed in each HCC sample was consistently greater than the adjacent normal sample. Moreover, 15 lncRNAs were identified expressed in five to seven HCC tissues but were not detected in any adjacent normal tissue. Differential expression analysis detected 35 up- and 80 down-regulated lncRNAs in HCC samples compared with adjacent normal samples. In addition, five differentially expressed lncRNAs were predicted to play a role in oxidation and reduction process. With regard to splicing alterations, we identified nine highly recurrent differential splicing events belonging to eight genes USO1, RPS24, CCDC50, THNSL2, NUMB, FN1 (two events), SLC39A14 and NR1I3. Of them, splicing alterations of SLC39A14 and NR1I3 were reported for the association with HCC for the first time. The splicing dysregulation in HCC may be influenced by three splicing factors ESRP2, CELF2 and SRSF5 which were significantly down-regulated in HCC samples. This study revealed uncharacterized aspects of HCC transcriptome and identified important lncRNAs and splicing isoforms with the potential to serve as biomarkers and therapeutic targets for the disease.
Collapse
|