1
|
Kartsonaki C, Yao P, Butt J, Jeske R, de Martel C, Plummer M, Sun D, Clark S, Walters RG, Chen Y, Lv J, Yu C, Hill M, Peto R, Li L, Waterboer T, Chen Z, Millwood IY, Yang L. Infectious pathogens and risk of esophageal, gastric and duodenal cancers and ulcers in China: A case-cohort study. Int J Cancer 2024; 154:1423-1432. [PMID: 38108203 PMCID: PMC7615747 DOI: 10.1002/ijc.34814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023]
Abstract
Infection by certain pathogens is associated with cancer development. We conducted a case-cohort study of ~2500 incident cases of esophageal, gastric and duodenal cancer, and gastric and duodenal ulcer and a randomly selected subcohort of ~2000 individuals within the China Kadoorie Biobank study of >0.5 million adults. We used a bead-based multiplex serology assay to measure antibodies against 19 pathogens (total 43 antigens) in baseline plasma samples. Associations between pathogens and antigen-specific antibodies with risks of site-specific cancers and ulcers were assessed using Cox regression fitted using the Prentice pseudo-partial likelihood. Seroprevalence varied for different pathogens, from 0.7% for Hepatitis C virus (HCV) to 99.8% for Epstein-Barr virus (EBV) in the subcohort. Compared to participants seronegative for the corresponding pathogen, Helicobacter pylori seropositivity was associated with a higher risk of non-cardia (adjusted hazard ratio [HR] 2.73 [95% CI: 2.09-3.58]) and cardia (1.67 [1.18-2.38]) gastric cancer and duodenal ulcer (2.71 [1.79-4.08]). HCV was associated with a higher risk of duodenal cancer (6.23 [1.52-25.62]) and Hepatitis B virus was associated with higher risk of duodenal ulcer (1.46 [1.04-2.05]). There were some associations of antibodies again some herpesviruses and human papillomaviruses with risks of gastrointestinal cancers and ulcers but these should be interpreted with caution. This first study of multiple pathogens with risk of gastrointestinal cancers and ulcers demonstrated that several pathogens are associated with risks of gastrointestinal cancers and ulcers. This will inform future investigations into the role of infection in the etiology of these diseases.
Collapse
Affiliation(s)
- Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pang Yao
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rima Jeske
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Martyn Plummer
- Department of Statistics, University of Warwick, Coventry, UK
| | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing 100191, China
| | - Sarah Clark
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G. Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing 100191, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing 100191, China
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Richard Peto
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing 100191, China
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y. Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Yao P, Kartsonaki C, Butt J, Jeske R, de Martel C, Plummer M, Guo Y, Clark S, Walters RG, Chen Y, Avery D, Lv J, Yu C, Wang H, Hill M, Peto R, Li L, Waterboer T, Chen Z, Millwood IY, Yang L. Helicobacter pylori multiplex serology and risk of non-cardia and cardia gastric cancer: a case-cohort study and meta-analysis. Int J Epidemiol 2023; 52:1197-1208. [PMID: 36913255 PMCID: PMC10396410 DOI: 10.1093/ije/dyad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection is a major cause of non-cardia gastric cancer (NCGC), but uncertainty remains about the associations between sero-positivity to different H. pylori antigens and risk of NCGC and cardia gastric cancer (CGC) in different populations. METHODS A case-cohort study in China included ∼500 each of incident NCGC and CGC cases and ∼2000 subcohort participants. Sero-positivity to 12 H. pylori antigens was measured in baseline plasma samples using a multiplex assay. Hazard ratios (HRs) of NCGC and CGC for each marker were estimated using Cox regression. These were further meta-analysed with studies using same assay. RESULTS In the subcohort, sero-positivity for 12 H. pylori antigens varied from 11.4% (HpaA) to 70.8% (CagA). Overall, 10 antigens showed significant associations with risk of NCGC (adjusted HRs: 1.33 to 4.15), and four antigens with CGC (HRs: 1.50 to 2.34). After simultaneous adjustment for other antigens, positive associations remained significant for NCGC (CagA, HP1564, HP0305) and CGC (CagA, HP1564, HyuA). Compared with CagA sero-positive only individuals, those who were positive for all three antigens had an adjusted HR of 5.59 (95% CI 4.68-6.66) for NCGC and 2.17 (95% CI 1.54-3.05) for CGC. In the meta-analysis of NCGC, the pooled relative risk for CagA was 2.96 (95% CI 2.58-3.41) [Europeans: 5.32 (95% CI 4.05-6.99); Asians: 2.41 (95% CI 2.05-2.83); Pheterogeneity<0.0001]. Similar pronounced population differences were also evident for GroEL, HP1564, HcpC and HP0305. In meta-analyses of CGC, two antigens (CagA, HP1564) were significantly associated with a higher risk in Asians but not Europeans. CONCLUSIONS Sero-positivity to several H. pylori antigens was significantly associated with an increased risk of NCGC and CGC, with varying effects between Asian and European populations.
Collapse
Affiliation(s)
- Pang Yao
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rima Jeske
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Martyn Plummer
- Department of Statistics, University of Warwick, Coventry, UK
| | - Yu Guo
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sarah Clark
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Hao Wang
- NCDs Prevention and Control Department, Zhejiang CDC, Zhejiang, China
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Richard Peto
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
El Hafa F, Wang T, Ndifor VM, Jin G. Association between Helicobacter pylori antibodies determined by multiplex serology and gastric cancer risk: A meta-analysis. Helicobacter 2022; 27:e12881. [PMID: 35212073 DOI: 10.1111/hel.12881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Previous studies have reported the association between limited number of Helicobacter pylori (H. pylori) antigens and gastric cancer (GC) risk. The present study evaluated the association between serum antibodies against 15 different H. pylori proteins measured by using multiplex serology assay and GC risk. METHODS We searched PubMed databases, Embase, Web of Science, and Cochrane Library for relevant articles. A meta-analysis was used to pool studies and to estimate odds ratios (ORs) with 95% confidence intervals (95%CIs) of different H. pylori antigens associated with GC risk. Heterogeneity was investigated using Cochran's Q test and I-squared statistic. RESULTS Nine studies were identified, with a total of 3209 GC cases and 6964 controls. Five H. pylori virulence factors were significantly associated with non-cardia GC risk at p-value <0.0033 including: CagA (OR = 3.22, 95%CI: 2.10-4.94), HP0305 (OR = 1.72, 95%CI: 1.32-2.25), HyuA (OR = 1.42, 95%CI: 1.13-1.79), Omp (OR = 1.83, 95%CI: 1.30-2.58), and VacA (OR = 2.05, 95%CI: 1.67-2.52). However, none of the 15 antigens was associated with cardia GC risk. In subgroup analysis by ethnicity, we identified 7 antigens associated with the risk of non-cardia GC among East Asian while only two antigens were identified in European population. Nevertheless, CagA and GroEL showed a stronger association in Caucasian (CagA OR = 5.83, 95%CI: 3.31-10.26; GroEL OR = 3.66, 95%CI: 1.58-8.50) compared with East Asian (CagA OR = 2.20, 95% CI: 1.85-2.61; GroEL OR = 1.47, 95%CI: 1.29-1.68). CONCLUSIONS This study determined that H. pylori infection increases the risk of non-cardia GC with differential effects by its virulence factors and with different patterns among East Asian and European populations. These results advance the understanding of the effect of H. pylori on GC.
Collapse
Affiliation(s)
- Fadoua El Hafa
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.,Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Valerie Mbuhnwi Ndifor
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.,Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Badran Abu Zher L, Weil M, Kassem E, Elias N, Levine MM, Muhsen K. Relationship Between Helicobacter pylori IgG Seroprevalence and the Immune Response to Poliovirus Vaccine Among School-Age Children From a Population With Near-Universal Immunity Level. Front Med (Lausanne) 2022; 8:797719. [PMID: 35127752 PMCID: PMC8810818 DOI: 10.3389/fmed.2021.797719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives To examine the association between Helicobacter pylori seroprevalence and serum pepsinogens (PGs) as markers of gastric inflammation), with high neutralizing antibody titers to poliovirus type 1 and 3 vaccine strains among children age 3–4 years, subsequent to sub-clinical infection acquired during a wild-type poliovirus type 1 outbreak in Israel. Methods A serosurvey was conducted among 336 children aged 5–17 years who were vaccinated with both inactivated polio vaccine and oral polio vaccines. H. pylori serum IgG antibodies and PG concentrations were measured using ELISA. Neutralizing antibodies to poliovirus vaccine strains were measured and children with a titer ≥1:8 were considered immune. High-level immunity was defined as having a serum NA titer >1:2048. Propensity score inverse weighting was used to account for confounders. Results Neutralizing antibodies titers ≥1:8 to poliovirus type 1 and 3 vaccine strains were found in 99.4 and 98.2% of the children, respectively. An inverse association was found between H. pylori seropositivity accompanied by PGI:PGII ratio ≤6.5 (marker of gastric inflammation) and high-level immunity to poliovirus type 1: OR 0.39 (95% CI 0.68–0.91), p = 0.027. The association between H. pylori seropositivity of CagA virulent phenotype and polio high immunity was not significant. The association between H. pylori seropositivity and high neutralizing antibodies to type 3 poliovirus was of low magnitude and not significant. Conclusions H. pylori seroprevalence accompanied by evidence of gastric inflammation was inversely correlated with high titers of neutralizing antibodies to poliovirus in children from a population with near universal polio immunity.
Collapse
Affiliation(s)
- Layaly Badran Abu Zher
- Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, School of Public Health, Tel Aviv University Ramat Aviv, Tel Aviv, Israel
| | - Merav Weil
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel
| | - Eias Kassem
- Department of Pediatrics, Hillel Yaffe Medical Center, Hadera, Israel
| | - Nael Elias
- Saint Vincent de Paul-French Hospital, Nazareth, Israel
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Khitam Muhsen
- Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, School of Public Health, Tel Aviv University Ramat Aviv, Tel Aviv, Israel
- *Correspondence: Khitam Muhsen
| |
Collapse
|
5
|
García-Pérez J, Lope V, Fernández de Larrea-Baz N, Molina AJ, Tardón A, Alguacil J, Pérez-Gómez B, Moreno V, Guevara M, Castaño-Vinyals G, Jiménez-Moleón JJ, Gómez-Acebo I, Molina-Barceló A, Martín V, Kogevinas M, Pollán M, Aragonés N. Risk of gastric cancer in the environs of industrial facilities in the MCC-Spain study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116854. [PMID: 33714062 DOI: 10.1016/j.envpol.2021.116854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gastric cancer is the fifth most frequent tumor worldwide. In Spain, it presents a large geographic variability in incidence, suggesting a possible role of environmental factors in its etiology. Therefore, epidemiologic research focused on environmental exposures is necessary. OBJECTIVES To assess the association between risk of gastric cancer (by histological type and tumor site) and residential proximity to industrial installations, according to categories of industrial groups and specific pollutants released, in the context of a population-based multicase-control study of incident cancer conducted in Spain (MCC-Spain). METHODS In this study, 2664 controls and 137 gastric cancer cases from 9 provinces, frequency matched by province of residence, age, and sex were included. Distances from the individuals' residences to the 106 industries located in the study areas were computed. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance (from 1 km to 3 km) to industries, adjusting for matching variables and potential confounders. RESULTS Overall, no excess risk of gastric cancer was observed in people living close to the industrial installations, with ORs ranging from 0.73 (at ≤2.5 km) to 0.93 (at ≤1.5 km). However, by industrial sector, excess risks (OR; 95%CI) were found near organic chemical industry (3.51; 1.42-8.69 at ≤2 km), inorganic chemical industry (3.33; 1.12-9.85 at ≤2 km), food/beverage sector (2.48; 1.12-5.50 at ≤2 km), and surface treatment using organic solvents (3.59; 1.40-9.22 at ≤3 km). By specific pollutant, a statistically significant excess risk (OR; 95%CI) was found near (≤3 km) industries releasing nonylphenol (6.43; 2.30-17.97) and antimony (4.82; 1.94-12.01). CONCLUSIONS The results suggest no association between risk of gastric cancer and living in the proximity to the industrial facilities as a whole. However, a few associations were detected near some industrial sectors and installations releasing specific pollutants.
Collapse
Affiliation(s)
- Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Antonio J Molina
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain.
| | - Adonina Tardón
- Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Facultad de Medicina, Campus de El Cristo B, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Av. Roma S/n, 33011, Oviedo, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Juan Alguacil
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente, Universidad de Huelva, Campus Universitario de El Carmen, 21071, Huelva, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Hospital Duran I Reynals, Avinguda de La Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de La Gran Via de L'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Carrer de Casanova 143, 08036, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Marcela Guevara
- Navarra Public Health Institute, Calle Leyre, 15, 31003, Pamplona, Navarra, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Navarra Institute for Health Research (IdiSNA), Calle Leyre 15, 31003, Pamplona, Spain.
| | - Gemma Castaño-Vinyals
- ISGlobal, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Campus Del Mar, Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - José J Jiménez-Moleón
- Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Av. de La Investigación 11, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Doctor Azpitarte 4 4(a) Planta, Edificio Licinio de La Fuente, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Inés Gómez-Acebo
- Universidad de Cantabria - IDIVAL, Avenida Cardenal Herrera Oria S/n, 39011, Santander, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Ana Molina-Barceló
- Cancer and Public Health Area, FISABIO - Public Health, Avda. de Catalunya 21, 46020, Valencia, Spain.
| | - Vicente Martín
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Manolis Kogevinas
- ISGlobal, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Campus Del Mar, Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nuria Aragonés
- Epidemiology Section, Public Health Division, Department of Health of Madrid, C/San Martín de Porres, 6, 28035, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
6
|
Liu W, Tian J, Hui W, Kong W, Feng Y, Si J, Gao F. A retrospective study assessing the acceleration effect of type I Helicobacter pylori infection on the progress of atrophic gastritis. Sci Rep 2021; 11:4143. [PMID: 33603125 PMCID: PMC7892840 DOI: 10.1038/s41598-021-83647-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Based on the antibody typing classification, Helicobacter pylori infection can be divided into type I H. pylori infection and type II H. pylori infection. To observe the effects of different H. pylori infection types on the distribution of histopathological characteristics and the levels of three items of serum gastric function (PG I, PG II, G-17). 1175 cases from October 2018 to February 2020 were collected with ratio 1:2. All patients were performed with 14C-Urea breath test (14C-UBT), H. pylori antibody typing classification, three items of serum gastric function detection, painless gastroscopy, pathological examination, etc. According to H. pylori antibody typing classification, patients were divided into three groups: type I H. pylori infection group, type II H. pylori infection group and control group. Significant difference existed among type I H. pylori infection group, type II H. pylori infection group and control group in inflammation and activity (χ2 = 165.43, 354.88, P all < 0.01). The proportion of three groups in OLGA staging had statistic difference (χ2 = 67.99, P all < 0.01); Compared with type II H. pylori infection group and control group, the level of pepsinogen I, pepsinogen II, gastrin17 in type I H. pylori infection group increased, and PG I/PG II ratio (PG I/PG II ratio, PGR) decreased, which was statistically significant (χ2 = 35.08, 166.24, 134.21, 141.19; P all < 0.01). Type I H. pylori infection worsened the severity of gastric mucosal inflammation and activity. H. pylori infection was prone to induce atrophy of gastric mucosa, while type I H. pylori infection played a key role in promoting the progress of atrophic gastritis and affected the level of serum gastric function. The study indicated that the eradication of H. pylori should be treated individually.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 83000, China
| | - Junjie Tian
- Department of Physiology, Shihezi University of Medicine, Shihezi, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 83000, China
| | - Wenjie Kong
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 83000, China
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 83000, China
| | - Junqiang Si
- Department of Physiology, Shihezi University of Medicine, Shihezi, China.
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 83000, China.
| |
Collapse
|
7
|
Holmes L, Rios J, Berice B, Benson J, Bafford N, Parson K, Halloran D. Predictive Effect of Helicobacter pylori in Gastric Carcinoma Development: Systematic Review and Quantitative Evidence Synthesis. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8010001. [PMID: 33466356 PMCID: PMC7824775 DOI: 10.3390/medicines8010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen implicated in gastritis, gastric ulceration, and gastric carcinoma. This study aimed to synthesize literature in providing evidence on the causative role of H. pylori in gastric carcinoma development. This study is based on assessing public literature using an applied meta-analysis, namely, quantitative evidence synthesis (QES). The analytic procedure uses DerSimonian-Laird, including assessing heterogeneity. The QES also utilizes meta-regression and the environmental effect associated with H. pylori in gastric cancer development. Eighteen studies are included in the QES. There is increased prevalence of H. pylori exposure among the cases. The heterogeneity between the CES and individual effect sizes is also significant. Despite controlling for the confoundings, there is increased exposure to H. pylori among the gastric cancer cases, regardless of the differences in the geographic location. H. pylori in this synthesized literature illustrates the contributory role of this microbe in gastric carcinoma. Additionally, regardless of geographic locale, namely, South Korea or Spain, H. pylori is implicated in gastric cancer development.
Collapse
Affiliation(s)
- Laurens Holmes
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-(302)-298-7741
| | - Jasmine Rios
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- History of Science and Medicine Department, Yale University, New Haven, CT 06511, USA
| | - Betyna Berice
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Master of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA
| | - Jacqueline Benson
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Master of Public Health Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nastocia Bafford
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
| | - Kadedrah Parson
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
| | - Daniel Halloran
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Song L, Song M, Rabkin CS, Williams S, Chung Y, Van Duine J, Liao LM, Karthikeyan K, Gao W, Park JG, Tang Y, Lissowska J, Qiu J, LaBaer J, Camargo MC. Helicobacter pylori Immunoproteomic Profiles in Gastric Cancer. J Proteome Res 2020; 20:409-419. [PMID: 33108201 DOI: 10.1021/acs.jproteome.0c00466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic Helicobacter pylori infection is the major risk factor for gastric cancer (GC). However, only some infected individuals develop this neoplasia. Previous H. pylori serology studies have been limited by investigating small numbers of candidate antigens. Therefore, we evaluated humoral responses to a nearly complete H. pylori immunoproteome (1527 proteins) among 50 GC cases and 50 controls using Nucleic Acid Programmable Protein Array (NAPPA). Seropositivity was defined as median normalized intensity ≥2 on NAPPA, and 53 anti-H. pylori antibodies had >10% seroprevalence. Anti-GroEL exhibited the greatest seroprevalence (77% overall), which agreed well with ELISA using whole-cell lysates of H. pylori cells. After an initial screen by H. pylori-NAPPA, we discovered and verified that 12 antibodies by ELISA in controls had ≥15% of samples with an optical reading value exceeding the 95th percentile of the GC group. ELISA-verified antibodies were validated blindly in an independent set of 100 case-control pairs. As expected, anti-CagA seropositivity was positively associated with GC (odds ratio, OR = 5.5; p < 0.05). After validation, six anti-H. pylori antibodies showed lower seropositivity in GC, with ORs ranging from 0.44 to 0.12 (p < 0.05): anti-HP1118/Ggt, anti-HP0516/HsIU, anti-HP0243/NapA, anti-HP1293/RpoA, anti-HP0371/FabE, and anti-HP0875/KatA. Among all combinations, a model with anti-Ggt, anti-HslU, anti-NapA, and anti-CagA had an area under the curve of 0.73 for discriminating GC vs. controls. This study represents the first comprehensive assessment of anti-H. pylori humoral profiles in GC. Decreased responses to multiple proteins in GC may reflect mucosal damage and decreased bacterial burden. The higher prevalence of specific anti-H. pylori antibodies in controls may suggest immune protection against GC development.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States.,College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Jennifer Van Duine
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| | - Kailash Karthikeyan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Weimin Gao
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Yanyang Tang
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Jolanta Lissowska
- Division of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 02-034 Warsaw, Poland
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| |
Collapse
|
9
|
Jeske R, Reininger D, Turgu B, Brauer A, Harmel C, Fernández de Larrea-Baz N, Martín V, Moreno V, Kogevinas M, Pollán M, Hoheisel JD, Waterboer T, Butt J, Aragonés N, Hufnagel K. Development of Helicobacter pylori Whole-Proteome Arrays and Identification of Serologic Biomarkers for Noncardia Gastric Cancer in the MCC-Spain Study. Cancer Epidemiol Biomarkers Prev 2020; 29:2235-2242. [PMID: 32998950 DOI: 10.1158/1055-9965.epi-20-0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a bacterial carcinogen and the leading risk factor for noncardia gastric cancer (NCGC). Detecting antibodies against specific H. pylori proteins in peripheral blood can be applied to characterize infection and determine disease associations. Most studies analyzing the association between H. pylori infection and gastric cancer have focused on previously identified antigens, predominantly the virulence factor cytotoxin-associated gene A (CagA). Selecting antigens in an unbiased approach may, however, allow the identification of novel biomarkers. METHODS Using a combination of multiple spotting technique and cell-free, on-chip protein expression, we displayed the H. pylori genome (strain 26695) on high-density microarrays. Immunogenic proteins were identified by serum pool incubations and henceforth analyzed in individual samples. To test its applicability, we used sera from a multicase-control (MCC)-Spain study. Serologic responses between NCGC cases and controls were assessed by conditional logistic regression estimating ORs and 95% confidence intervals. RESULTS We successfully expressed 93% of the 1,440 H. pylori open reading frames in situ. Of these, 231 (17%) were found to be immunogenic. By comparing 58 NCGC cases with 58 matched controls, we confirmed a higher seroprevalence of CagA among cases (66%) than controls (31%). We further identified a potential novel marker, the Helicobacter outer membrane protein A (HopA). CONCLUSIONS In this study, we provide evidence that our H. pylori whole-proteome microarray offers a platform for unbiased de novo identification of serologic biomarkers. IMPACT Given its versatile workflow, antibody responses against other H. pylori strains and possible associations with diverse H. pylori-related outcomes can be systematically analyzed.
Collapse
Affiliation(s)
- Rima Jeske
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dennis Reininger
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Busra Turgu
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amber Brauer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Harmel
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nerea Fernández de Larrea-Baz
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Vicente Martín
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,The Research Group in Gene-Environment and Health Interactions, University of León, León, Spain
| | - Victor Moreno
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
| | - Manolis Kogevinas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Marina Pollán
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jörg D Hoheisel
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nuria Aragonés
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Epidemiology Section, Division of Public Health, Department of Health, Madrid, Spain
| | - Katrin Hufnagel
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Yin JJ, Duan FJ, Madhurapantula SV, Zhang YH, He G, Wang KY, Ji XK, Wang KJ. Helicobacter pylori and gastric cardia cancer: What do we know about their relationship? World J Meta-Anal 2020; 8:89-97. [DOI: 10.13105/wjma.v8.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/08/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of gastric cardia cancer is increasing around the world. Since the discovery of Helicobacter pylori (H. pylori), numerous studies have proved that it is a causative factor for many kinds of digestive system tumors. Although the literature on gastric cardia cancer and H. pylori is not scarce, there are still many controversies on the relationship between gastric cardia cancer and H. pylori. Many Western research results showed that there was a negative or no correlation between H. pylori infection and gastric cardia cancer, but in several studies in Asian countries, such as China, H. pylori was demonstrated to be a risk factor for gastric cardia cancer. Therefore, we intended to analyze the related studies to find out the relationship between H. pylori and gastric cardia cancer and find out the causes of the above controversies. We also conducted a meta-analysis of the relationship between cagA positive expression of H. pylori and gastric cardia cancer, to find out whether there is an effect between those two. The primary purpose of this paper was to explore the relationship between gastric cardia cancer and H. pylori. Through analysis, the study showed the reasons for the controversies mentioned above: (1) Geographical factors could affect the relationship between H. pylori and gastric cardia cancer; (2) The definition of gastric cardia cancer in various studies is inconsistent. The result of a meta-analysis about the relationship between H. pylori virulence factor cagA and gastric cardia cancer showed that there was no relationship between these two.
Collapse
Affiliation(s)
- Jing-Jing Yin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Fu-Jiao Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Sailaja Vatsalya Madhurapantula
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Yue-Hua Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Gui He
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Kun-Yan Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Xuan-Ke Ji
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| | - Kai-Juan Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
11
|
Correlates of infection with Helicobacter pylori positive and negative cytotoxin-associated gene A phenotypes among Arab and Jewish residents of Jerusalem. Epidemiol Infect 2019; 147:e276. [PMID: 31552815 PMCID: PMC6807302 DOI: 10.1017/s0950268819001456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We examined the prevalence and correlates of Helicobacter pylori (H. pylori) infection according to cytotoxin-associated gene A (CagA) phenotype, a main virulence antigen, among the ethnically diverse population groups of Jerusalem. A cross-sectional study was undertaken in Arab (N = 959) and Jewish (N = 692) adults, randomly selected from Israel's national population registry in age-sex and population strata. Sera were tested for H. pylori immunoglobulin G (IgG) antibodies. Positive samples were tested for virulence IgG antibodies to recombinant CagA protein, by enzyme-linked immunosorbent assay. Multinomial regression models were fitted to examine associations of sociodemographic factors with H. pylori phenotypes. H. pylori IgG antibody sero-prevalence was 83.3% (95% confidence interval (CI) 80.0%–85.5%) and 61.4% (95% CI 57.7%–65.0%) among Arabs and Jews, respectively. Among H. pylori positives, the respective CagA IgG antibody sero-positivity was 42.3% (95% CI 38.9%–45.8%) and 32.5% (95% CI 28.2%–37.1%). Among Jews, being born in the Former Soviet Union, the Middle East and North Africa, vs. Israel and the Americas, was positively associated with CagA sero-positivity. In both populations, sibship size was positively associated with both CagA positive and negative phenotypes; and education was inversely associated. In conclusion, CagA positive and negative infection had similar correlates, suggesting shared sources of these two H. pylori phenotypes.
Collapse
|
12
|
Epplein M, Butt J, Zhang Y, Hendrix LH, Abnet CC, Murphy G, Zheng W, Shu XO, Tsugane S, Qiao YL, Taylor PR, Shimazu T, Yoo KY, Park SK, Kim J, Jee SH, Waterboer T, Pawlita M, You WC, Pan KF. Validation of a Blood Biomarker for Identification of Individuals at High Risk for Gastric Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:1472-1479. [PMID: 30158280 DOI: 10.1158/1055-9965.epi-18-0582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori is the leading cause of gastric cancer, yet the majority of infected individuals will not develop neoplasia. Previously, we developed and replicated serologic H. pylori biomarkers for gastric cancer risk among prospective cohorts in East Asia and now seek to validate the performance of these biomarkers in identifying individuals with premalignant lesions. METHODS This cross-sectional study included 1,402 individuals from Linqu County screened by upper endoscopy. H. pylori protein-specific antibody levels were assessed using multiplex serology. Multivariable-adjusted logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for prevalent intestinal metaplasia, indefinite dysplasia, or dysplasia, compared with superficial or mild atrophic gastritis. RESULTS Compared with individuals seronegative to Omp and HP0305, individuals seropositive to both were seven times more likely to have precancerous lesions (OR, 7.43; 95% CI, 5.59-9.88). A classification model for precancerous lesions that includes age, smoking, and seropositivity to H. pylori, Omp, and HP0305 resulted in an area under the curve (AUC) of 0.751 (95% CI, 0.725-0.777), which is significantly better than the same model, including the established gastric cancer risk factor CagA (AUC, 0.718; 95% CI, 0.691-0.746, P difference = 0.0002). CONCLUSIONS The present study of prevalent precancerous gastric lesions provides support for two new serum biomarkers of gastric cancer risk, Omp and HP 0305. IMPACT Our results support further research into the serological biomarkers Omp and HP0305 as possible improvements over the established virulence marker CagA for identifying individuals with precancerous lesions in East Asia.
Collapse
Affiliation(s)
| | - Julia Butt
- German Cancer Research Center, Heidelberg, Germany
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | | | | | - Gwen Murphy
- National Cancer Institute, Rockville, Maryland
| | - Wei Zheng
- Vanderbilt University, Nashville, Tennessee
| | | | | | - You-Lin Qiao
- Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | - Sue K Park
- Seoul National University, Seoul, Republic of Korea
| | - Jeongseon Kim
- National Cancer Center of Korea, Gyeonggi-do, Republic of Korea
| | - Sun Ha Jee
- Yonsei University, Seoul, Republic of Korea
| | | | | | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
13
|
Multiplex serology of Helicobacter pylori antigens in detection of current infection and atrophic gastritis - A simple and cost-efficient method. Microb Pathog 2018; 119:137-144. [DOI: 10.1016/j.micpath.2018.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
|
14
|
Zhang Y, Zhou H, Sun H, Chen J, Huang D, Han X, Ren X, Lin S, Fan Q, Tian W, Zhao Y. Association of peripheral blood leukocyte KIBRA methylation with gastric cancer risk: a case-control study. Cancer Med 2018; 7:2682-2690. [PMID: 29659170 PMCID: PMC6010778 DOI: 10.1002/cam4.1474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/23/2022] Open
Abstract
KIBRA was reported to be involved in various types of cancer and can be detected in blood. The purpose of this study was to investigate the relationship between the status of KIBRA methylation in peripheral blood leukocytes and gastric cancer (GC) risk. A case-control study was carried out to evaluate the association of blood cell-derived KIBRA methylation with the risk of GC using methylation-sensitive high-resolution melting analysis. A total of 393 cases and 393 controls were detected, respectively. Compared with the subjects in the KIBRA negative methylation (NM) group, positive methylation (PM) subjects exhibited a 1.52-fold (95% CI: 1.030-2.251, P = 0.035) increased risk for GC. Stratified analyses demonstrated that the significant association of KIBRA methylation with GC risk existed in the older group (≥ 60 years; ORa = 1.846, 95% CI: 1.037-3.287, P = 0.037) and Helicobacter pylori (H. pylori) positive subjects (ORa = 1.933, 95% CI: 1.103-3.386, P = 0.021). Statistically significant combination effects between the environmental factors and KIBRA methylation on the GC risk were observed except for storing food under refrigeration. KIBRA methylation derived from blood cells and combinations thereof with environmental factors may be associated with the risk of GC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Haibo Zhou
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Hongxu Sun
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Jie Chen
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Di Huang
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xu Han
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xiyun Ren
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Shangqun Lin
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Qing Fan
- Xiangfang Center for Disease Control and PreventionHarbinHeilongjiang ProvinceChina
| | - Wenjing Tian
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Yashuang Zhao
- Department of EpidemiologyCollege of Public HealthHarbin Medical UniversityHarbinHeilongjiang ProvinceChina
| |
Collapse
|