1
|
Jarquin-Yañez L, Martinez-Acuña MI, Lopez-Arevalo I, Calderon Hernandez J. "Characterization of residential proximity to sources of environmental carcinogens in clusters of Acute Lymphoblastic Leukemia in San Luis Potosi, Mexico". ENVIRONMENTAL RESEARCH 2024; 252:118790. [PMID: 38555983 DOI: 10.1016/j.envres.2024.118790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Acute Lymphoblastic Leukemia (ALL) is the most prevalent neoplasia in children and teenagers in Mexico. Although epidemiological data supports that children's residence close to emissions from vehicular traffic or industrial processes increases the risk of ALL; and the IARC states that benzene, PAHs, and PM 2.5 are well-known environmental carcinogens, there is a gap in linking these carcinogenic hazards with the sources and their distribution from scenario perspective. AIM To identify ALL clusters in the population under 19 years of age and characterize the environment at the neighborhood level by integrating information on sources of carcinogenic exposure using spatial analysis techniques in the Metropolitan Area of San Luis Potosi, Mexico. METHODS Using the Kernel Density test, we designed an ecological study to identify ALL clusters from incident cases in the population under 19 years of age. A multicriteria analysis was conducted to characterize the risk at the community level from carcinogenic sources. A hierarchical cluster analysis was performed to characterize risk at the individual level based on carcinogenic source count within 1 km for each ALL case. RESULTS Eight clusters of carcinogenic sources were located within the five identified ALL clusters. The multicriteria analysis showed high-risk areas (by density of carcinogenic source) within ALL clusters. CONCLUSIONS This study has a limited source and amount of available data on ALL cases, so selection bias is present as well as the inability to rule out residual confounding factors, since covariates were not included. However, in this study, children living in environments with high vehicular density, gas stations, brick kilns, incinerators, commercial establishments burning biomass, or near industrial zones may be at higher risk for ALL.
Collapse
Affiliation(s)
- Lizet Jarquin-Yañez
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Jardín Juárez 147, Centro, 98000 Zacatecas, Zac, Mexico; National Council of Humanities, Sciences and Technologies (CONAHCYT), Mexico, Mexico City
| | - Monica Imelda Martinez-Acuña
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Jardín Juárez 147, Centro, 98000 Zacatecas, Zac, Mexico
| | - Ivan Lopez-Arevalo
- Cinvestav Tamaulipas, Science and Technology Park TecnoTam, 87130, Victoria, Tamaulipas, Mexico
| | - Jaqueline Calderon Hernandez
- Center for Applied Research in Environment and Health, CIACYT-Faculty of Medicine, Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, Lomas 2nd Section, 78210, San Luis Potosí, SLP, Mexico; Global Public Health Program, Boston College, Boston, MA, United States.
| |
Collapse
|
2
|
Flores-Lujano J, Duarte-Rodríguez DA, Jiménez-Hernández E, Martín-Trejo JA, Allende-López A, Peñaloza-González JG, Pérez-Saldivar ML, Medina-Sanson A, Torres-Nava JR, Solís-Labastida KA, Flores-Villegas LV, Espinosa-Elizondo RM, Amador-Sánchez R, Velázquez-Aviña MM, Merino-Pasaye LE, Núñez-Villegas NN, González-Ávila AI, del Campo-Martínez MDLÁ, Alvarado-Ibarra M, Bekker-Méndez VC, Cárdenas-Cardos R, Jiménez-Morales S, Rivera-Luna R, Rosas-Vargas H, López-Santiago NC, Rangel-López A, Hidalgo-Miranda A, Vega E, Mata-Rocha M, Sepúlveda-Robles OA, Arellano-Galindo J, Núñez-Enríquez JC, Mejía-Aranguré JM. Persistently high incidence rates of childhood acute leukemias from 2010 to 2017 in Mexico City: A population study from the MIGICCL. Front Public Health 2022; 10:918921. [PMID: 36187646 PMCID: PMC9518605 DOI: 10.3389/fpubh.2022.918921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Over the years, the Hispanic population living in the United States has consistently shown high incidence rates of childhood acute leukemias (AL). Similarly, high AL incidence was previously observed in Mexico City (MC). Here, we estimated the AL incidence rates among children under 15 years of age in MC during the period 2010-2017. Methods The Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia conducted a study gathering clinical and epidemiological information regarding children newly diagnosed with AL at public health institutions of MC. Crude age incidence rates (cAIR) were obtained. Age-standardized incidence rates worldwide (ASIRw) and by municipalities (ASIRm) were calculated by the direct and indirect methods, respectively. These were reported per million population <15 years of age; stratified by age group, sex, AL subtypes, immunophenotype and gene rearrangements. Results A total of 903 AL cases were registered. The ASIRw was 63.3 (cases per million) for AL, 53.1 for acute lymphoblastic leukemia (ALL), and 9.4 for acute myeloblastic leukemia. The highest cAIR for AL was observed in the age group between 1 and 4 years (male: 102.34 and female: 82.73). By immunophenotype, the ASIRw was 47.3 for B-cell and 3.7 for T-cell. The incidence did not show any significant trends during the study period. The ASIRm for ALL were 68.6, 66.6 and 62.8 at Iztacalco, Venustiano Carranza and Benito Juárez, respectively, whereas, other municipalities exhibited null values mainly for AML. Conclusion The ASIRw for childhood AL in MC is among the highest reported worldwide. We observed spatial heterogeneity of rates by municipalities. The elevated AL incidence observed in Mexican children may be explained by a combination of genetic background and exposure to environmental risk factors.
Collapse
Affiliation(s)
- Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional “Siglo XXI, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aldo Allende-López
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina-Sanson
- Departamento de HematoOncología, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional “Siglo XXI, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Nora Nancy Núñez-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ana Itamar González-Ávila
- Servicio de Hematología Pediátrica, Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de los Ángeles del Campo-Martínez
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Martha Alvarado-Ibarra
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Hospital de Infectología “Dr. Daniel Méndez Hernández, ” “La Raza, ” Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Inmunología e Infectología, Mexico City, Mexico
| | - Rocío Cárdenas-Cardos
- Servicio de Oncología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Roberto Rivera-Luna
- Servicio de Oncología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Haydee Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Norma C. López-Santiago
- Servicio de Hematología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Angélica Rangel-López
- Coordinación de Investigación en Salud, Unidad Habilitada de Apoyo al Predictamen, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elizabeth Vega
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Laboratorio de Virología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SS), Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Juan Carlos Núñez-Enríquez
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico,Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico,*Correspondence: Juan Manuel Mejía-Aranguré
| |
Collapse
|
3
|
Kreis C, Héritier H, Scheinemann K, Hengartner H, de Hoogh K, Röösli M, Spycher BD. Childhood cancer and traffic-related air pollution in Switzerland: A nationwide census-based cohort study. ENVIRONMENT INTERNATIONAL 2022; 166:107380. [PMID: 35809486 DOI: 10.1016/j.envint.2022.107380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Motor vehicle exhaust is a major contributor to air pollution, and exposure to benzene or other carcinogenic components may increase cancer risks. We aimed to investigate the association between traffic-related air pollution and risk of childhood cancer in a nationwide cohort study in Switzerland. We identified incident cases from the Swiss Childhood Cancer Registry diagnosed < 16 years of age between 1990 and 2015 and linked them probabilistically with the census-based Swiss National Cohort study. We developed land use regression models to estimate annual mean ambient levels of nitrogen dioxide (NO2) and benzene outside 1.4 million children's homes. We used risk-set sampling to facilitate the analysis of time-varying exposure and fitted conditional logistic regression models adjusting for neighborhood socio-economic position, level of urbanization, and background ionizing radiation. We included 2,960 cancer cases in the analyses. The adjusted hazard ratios (HR) and 95% confidence intervals for exposure to NO2 per 10 μg/m3 were 1.00 (95%-CI 0.88-1.13) for acute lymphoblastic leukemia (ALL) and 1.31 (95%-CI 1.00-1.71) for acute myeloid leukemia (AML). Using exposure lagged by 1 to 5 years instead of current exposure attenuated the effect for AML. The adjusted HR for exposure to benzene per 1 μg/m3 was 1.03 (95%-CI 0.86-1.23) for ALL and 1.29 (95%-CI 0.86-1.95) for AML. We also observed increased HRs for other diagnostic groups, notably non-Hodgkin lymphoma. Our study adds to the existing evidence that exposure to traffic-related air pollution is associated with an increased risk of childhood leukemia, particularly AML.
Collapse
Affiliation(s)
- Christian Kreis
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Harris Héritier
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Katrin Scheinemann
- University of Basel, Basel, Switzerland; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland; Department of Pediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| | - Heinz Hengartner
- Pediatric Hematology-Oncology Unit, Children's Hospital of Sankt Gallen, Sankt Gallen, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ben D Spycher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Khorrami Z, Pourkhosravani M, Eslahi M, Rezapour M, Akbari ME, Amini H, Taghavi-Shahri SM, Künzli N, Etemad K, Khanjani N. Multiple air pollutants exposure and leukaemia incidence in Tehran, Iran from 2010 to 2016: a retrospective cohort study. BMJ Open 2022; 12:e060562. [PMID: 35732402 PMCID: PMC9226961 DOI: 10.1136/bmjopen-2021-060562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Leukaemia is one of the most common cancers and may be associated with exposure to environmental carcinogens, especially outdoor air pollutants. The objective of this study was to investigate the association of ambient air pollution and leukaemia in Tehran, Iran. DESIGN In this retrospective cohort study, data about the residential district of leukaemia cases diagnosed from 2010 to 2016 were inquired from the Ministry of Health cancer database. Data from a previous study were used to determine long-term average exposure to different air pollutants in 22 districts of Tehran. Latent profile analysis (LPA) was used to classify pollutants in two exposure profiles. The association between air pollutants and leukaemia incidence was analysed by negative binomial regression. SETTING Twenty-two districts of Tehran megacity. PARTICIPANTS Patients with leukaemia. OUTCOME MEASURES The outcome variables were incidence rate ratios (IRR) of acute myeloid and lymphoid leukaemia across the districts of Tehran. RESULTS The districts with higher concentrations for all pollutants were near the city centre. The IRR was positive but non-significant for most of the air pollutants. However, annual mean NOx was directly and significantly associated with total leukaemia incidence in the fully adjusted model (IRR (95% CI): 1.03 (1.003 to 1.06) per 10 ppb increase). Based on LPA, districts with a higher multiple air-pollutants profile were also associated with higher leukaemia incidence (IRR (95% CI): 1.003 (0.99 to 1.007) per 1 ppb increase). CONCLUSIONS Our study shows that districts with higher air pollution (nitrogen oxides and multipollutants) have higher incidence rates of leukaemia in Tehran, Iran. This study warrants conducting further research with individual human data and better control of confounding.
Collapse
Affiliation(s)
- Zahra Khorrami
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Pourkhosravani
- Department of Geography and Urban Planning, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Eslahi
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Maysam Rezapour
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Koorosh Etemad
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Monash Centre for Occupational & Environmental Health, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Gouveia N, Slovic AD, Kanai CM, Soriano L. Air Pollution and Environmental Justice in Latin America: Where Are We and How Can We Move Forward? Curr Environ Health Rep 2022; 9:152-164. [PMID: 35146705 DOI: 10.1007/s40572-022-00341-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Air pollution in Latin America is a major environmental threat, yet few studies have focused on aspects of environmental justice with regard to air pollution in the region. We examined the scientific literature and described whether and how this issue has been addressed, identify possible gaps in knowledge, and offer suggestions for future research to contribute to policies that seek greater equity concerning air pollution impacts in Latin America. RECENT FINDINGS There is a limited literature that has addressed issues of environmental justice or environmental health inequalities about air pollution in Latin America, with studies concentrated in Brazil, Mexico, and Chile. Studies that examined disparities in exposure to air pollution found a clear pattern of higher exposure in socially deprived areas. Studies that examined disparities in health impacts associated with air pollution have mixed results, but many found a clear modification of effect with those in the lower socioeconomic groups presenting greater effects. Despite Latin America's colonial and slavery history, no studies have considered ethnicity or minority populations. The literature shows that health risks (exposure and susceptibility) associated with air pollution are unevenly distributed among Latin American populations. Methodological approaches varied and can be improved in future studies, especially for exposure assessment to air pollution, as well as for assigning socioeconomic position to individuals. Using smaller geographic units and spatial regression techniques will allow a reduction in measurement error. Attempts should be made to include both individual and contextual socioeconomic indicators in the analysis. Better quality information will help understand these differential exposures and effects and provide inputs to policies to tackle these inequalities.
Collapse
Affiliation(s)
- Nelson Gouveia
- Department of Preventive Medicine, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455, Sao Paulo, SP, 01246-903, Brazil.
| | - Anne Dorothée Slovic
- Department of Environmental Health, University of Sao Paulo School of Public Health, Av. Dr. Arnaldo, Sao Paulo, SP, 715, Brazil
| | - Claudio Makoto Kanai
- Department of Preventive Medicine, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455, Sao Paulo, SP, 01246-903, Brazil
| | - Lucas Soriano
- Department of Preventive Medicine, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455, Sao Paulo, SP, 01246-903, Brazil
| |
Collapse
|
6
|
Luminati O, Ledebur de Antas de Campos B, Flückiger B, Brentani A, Röösli M, Fink G, de Hoogh K. Land use regression modelling of NO 2 in São Paulo, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117832. [PMID: 34340182 DOI: 10.1016/j.envpol.2021.117832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Air pollution is a major global public health problem. The situation is most severe in low- and middle-income countries, where pollution control measures and monitoring systems are largely lacking. Data to quantify the exposure to air pollution in low-income settings are scarce. METHODS In this study, land use regression models (LUR) were developed to predict the outdoor nitrogen dioxide (NO2) concentration in the study area of the Western Region Birth Cohort in São Paulo. NO2 measurements were performed for one week in winter and summer at eighty locations. Additionally, weekly measurements at one regional background location were performed over a full one-year period to create an annual prediction. RESULTS Three LUR models were developed (annual, summer, winter) by using a supervised stepwise linear regression method. The winter, summer and annual models explained 52 %, 75 % and 66 % of the variance (R2) respectively. Cross-holdout validation tests suggest robust models. NO2 levels ranged from 43.2 μg/m3 to 93.4 μg/m3 in the winter and between 28.1 μg/m3 and 72.8 μg/m3 in summer. Based on our annual prediction, about 67 % of the population living in the study area is exposed to NO2 values over the WHO suggested annual guideline of 40 μg/m3 annual average. CONCLUSION In this study we were able to develop robust models to predict NO2 residential exposure. We could show that average measures, and therefore the predictions of NO2, in such a complex urban area are substantially high and that a major variability within the area and especially within the season is present. These findings also suggest that in general a high proportion of the population is exposed to high NO2 levels.
Collapse
Affiliation(s)
- Ornella Luminati
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Bartolomeu Ledebur de Antas de Campos
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Benjamin Flückiger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Alexandra Brentani
- Department of Pediatrics at the Medical School of São Paulo University, São Paulo, Brazil
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Günther Fink
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Kees de Hoogh
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland.
| |
Collapse
|