1
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
4
|
Zhang Z, Xu D, Wang J, Zhang R, Du H, Zhou T, Wang X, Wang F. Rolling Circle Amplification-Based DNA Nano-Assembly for Targeted Drug Delivery and Gene Therapy. Biomacromolecules 2023; 24:439-448. [PMID: 36473109 DOI: 10.1021/acs.biomac.2c01271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combining the killing ability of chemotherapy drugs on tumor cells with the inhibiting ability of genetic drugs on tumor cell growth, a dual drug delivery system loaded with therapy drugs and siRNA has gradually received more and more research and extensive attention. In this paper, we designed a DNA nano-assembly based on rolling circle amplification that can co-deliver doxorubicin (Dox) and siRNA simultaneously. In order to fully exploit the potential of the dual loading system in cancer treatment, we selected STAT3 gene as a target and used siRNA to target STAT3 of mRNA and reduce the STAT3 expression in mouse melanoma cell line (B16); meanwhile, Dox as a chemotherapy drug was combined with multivalent aptamers specifically targeting B16 to achieve efficient delivery of siRNA and Dox. The results showed that the synergistic delivery system could achieve high efficiency in targeting and inhibiting proliferation in mouse melanoma cells. In addition, the synergistic effect of the dual delivery system on apoptosis of cancer cells was significantly better than that of single drug delivery systems.
Collapse
Affiliation(s)
- Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyan Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiawei Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Xu L, Chen Z, Wang Y, Li Y, Wang Z, Li F, Xi X. Polyphyllin VII as a Potential Drug for Targeting Stemness in Hepatocellular Cancer via STAT3 Signaling. Curr Cancer Drug Targets 2023; 23:325-331. [PMID: 36284387 DOI: 10.2174/1568009623666221024103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND At present, the treatment of hepatocellular carcinoma (HCC) is disturbed by the treatment failure and recurrence caused by the residual liver cancer stem cells (CSCs). Therefore, drugs targeting HCC CSCs should be able to effectively eliminate HCC and prevent its recurrence. In this study, we demonstrated the effect of Polyphyllin VII (PP7) on HCC CSCs and explored their potential mechanism. METHODS HepG2 and Huh7 cells were used to analyze the antitumor activity of PP7 by quantifying cell growth and metastasis as well as to study the effect on stemness. RESULTS Our results demonstrated that PP7 promoted apoptosis and significantly inhibited proliferation and migration of both HepG2 and Huh7 cells. PP7 also inhibited tumor spheroid formation and induced significant changes in the expression of stemness markers (CD133 and OCT-4). These effects of PP7 were mediated by STAT3 signaling. CONCLUSION PP7 can effectively suppress tumor initiation, growth, and metastasis and inhibit stemness through regulation of STAT3 signaling pathway in liver cancer cells. Our data would add more evidence to further clarify the therapeutic effect of PP7 against HCC.
Collapse
Affiliation(s)
- Liuhang Xu
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Ziqi Chen
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Yangbin Wang
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Yulin Li
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Zhongyu Wang
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Fangzhou Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Xueyan Xi
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China.,Renmin Hospital, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| |
Collapse
|
6
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
DNA damage induces STING mediated IL-6-STAT3 survival pathway in triple-negative breast cancer cells and decreased survival of breast cancer patients. Apoptosis 2022; 27:961-978. [PMID: 36018392 DOI: 10.1007/s10495-022-01763-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
Triple-negative breast cancer is aggressive and metastatic breast cancer type and shows immune evasion, drug resistance, relapse and poor survival. Anti-cancer therapy like ionizing radiation and chemotherapeutic drug majorly induces DNA damage hence, alteration in DNA damage repair and downstream pathways may contribute to tumor cell survival. DNA damage during chemotherapy is sensed by cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING), which determines the anti-tumor immune response by modulating the expression of programmed cell death ligand-1 (PD-L1), immune suppressor, in the tumor microenvironment. Triple-negative breast cancer cells are cGAS-STING positive and modulation of this pathway during DNA damage response for survival and immune escape mechanism is not well understood. Here we demonstrate that doxorubicin-mediated DNA damage induces STING mediated NF-κB activation in triple-negative as compared to ER/PR positive breast cancer cells. STING-mediated NF-κB induces the expression of IL-6 in triple-negative breast cancer cells and activates pSTAT3, which enhances cell survival and PD-L1 expression. Doxorubicin and STAT3 inhibitor act synergistically and inhibit cell survival and clonogenicity in triple-negative breast cancer cells. Knockdown of STING in triple-negative breast cancer cells enhances CD8 mediated immune cell death of breast cancer cells. The combinatorial treatment of triple-negative breast cells with doxorubicin and STAT3 inhibitor reduces PD-L1 expression and activates immune cell-mediated cancer cell death. Further STING and IL-6 levels show a positive correlation in breast cancer patients and poor survival outcomes. The study here strongly suggests that STING mediated activation of NF-κB enhances IL-6 mediated STAT3 in triple-negative breast cancer cells which induces cell survival and immune-suppressive mechanism.
Collapse
|
8
|
Wang Y, Cheng Z, Xu J, Lai M, Liu L, Zuo M, Dang L. Fat mass and obesity-associated protein (FTO) mediates signal transducer and activator of transcription 3 (STAT3)-drived resistance of breast cancer to doxorubicin. Bioengineered 2021; 12:1874-1889. [PMID: 34076564 PMCID: PMC8806322 DOI: 10.1080/21655979.2021.1924544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Excessive activation of signal transducer and activator of transcription 3 (STAT3) is implicated in breast cancer (BC) chemoresistance, but its underlying mechanism is not fully understood. There are STAT3 binding sites in fat mass and obesity-associated protein (FTO) promoter region, thus STAT3 may regulate the transcription of FTO. This study aimed to investigate the correlation between FTO and STAT3 in BC chemoresistance. Herein, FTO and STAT3 were highly expressed in doxorubicin-resistant BC (BC-DoxR) cells. CHIP assay verified the binding between STAT3 and FTO promoter in BC-DoxR cells. Dual luciferase reporter assay showed that FTO promoter activity was inhibited by S3I-201 (STAT3 inhibitor) but enhanced by epidermal growth factor (EGF, STAT3 activator) in BC-DoxR and BC cells. FTO mRNA and protein expression were suppressed by S3I-201 in BC-DoxR cells and EGF-stimulated BC cells. Notably, FTO regulated total N6-methyladenosine (m6A) levels in BC-DoxR and BC cells but could not affect STAT3 mRNA expression, indicating that FTO was not involved in the m6A modification of STAT3. However, FTO could activate STAT3 signaling in BC-DoxR and BC cells. Besides, FTO knockdown inhibited the doxorubicin resistance of BC-DoxR cells, while FTO overexpression enhanced the doxorubicin resistance and weakened the doxorubicin sensitivity of BC cells. Moreover, decreased doxorubicin resistance by STAT3 knockdown was abolished by FTO overexpression and decreased doxorubicin sensitivity by STAT3 overexpression was reversed by FTO knockdown, indicating that FTO was implicated in STAT3-mediated doxorubicin resistance and impairment of doxorubicin sensitivity of BC cells. Altogether, our findings provide a mechanism underlying BC doxorubicin resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jing Xu
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Meina Lai
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liming Liu
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Min Zuo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lin Dang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Joshi N, Hajizadeh F, Ansari Dezfouli E, Zekiy AO, Nabi Afjadi M, Mousavi SM, Hojjat-Farsangi M, Karpisheh V, Mahmoodpoor A, Hassannia H, Dolati S, Mohammadi H, Yousefi M, Jadidi-Niaragh F. Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sci 2021; 275:119369. [PMID: 33745894 DOI: 10.1016/j.lfs.2021.119369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Despite extensive efforts to find new treatments, chemotherapy is still one of the first and foremost choices for cancer treatment. The main problems of using these drugs are the resistance of cancer cells and reducing their sensitivity to chemotherapy as well as the side effects of their systemic administration. Because STAT3 plays a very important role in the survival and susceptibility of cancer cells to apoptosis, we hypothesized that suppression of STAT3 expression could induce greater susceptibility to DOX-induced cancer cell death. MATERIALS AND METHODS We used pegylated chitosan lactate nanoparticles (NPs) functionalized by TAT peptide and folate to deliver STAT3 siRNA and DOX to cancer cells simultaneously, both in vitro and in vivo. KEY FINDINGS The results showed that NPs could effectively deliver siRNA and DOX to cancer cells, which was associated with suppression of STAT3 expression and increased induction of DOX-mediated cell death. Concomitant delivery of DOX and STAT3 siRNA also suppressed tumor growth in 4T1 and CT26 cancer models, which was associated with induction of anti-tumor immune responses. SIGNIFICANCE These findings suggest that the use of NPs can be an effective strategy for the targeted delivery of STAT3-specific siRNA/DOX to cancer cells.
Collapse
Affiliation(s)
- Navneet Joshi
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India.
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | | | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Folic Acid Deficiency Enhances the Tyr705 and Ser727 Phosphorylation of Mitochondrial STAT3 in In Vivo and In Vitro Models of Ischemic Stroke. Transl Stroke Res 2020; 12:829-843. [PMID: 33037575 DOI: 10.1007/s12975-020-00860-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023]
Abstract
Ischemic stroke remains one of the most common causes of death and disability worldwide. The stroke patients with an inadequate intake of folic acid tend to have increased brain injury and poorer prognosis. However, the precise mechanisms underlying the harmful effects of folic acid deficiency (FD) in ischemic stroke is still elusive. Here, we aimed to test the hypothesis that mitochondrial localized STAT3 (mitoSTAT3) expression may be involved in the process of neuronal damage induced by FD in in vivo and in vitro models of ischemic stroke. Our results exhibited that FD increased infarct size and aggravated the damage of mitochondrial ultrastructure in ischemic brains. Meanwhile, FD upregulated the phosphorylation levels of mitoSTAT3 at Tyr705 (Y705) and Ser727 (S727) sites in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model and oxygen-glucose deprivation followed by reperfusion (OGD/R) N2a cells. Furthermore, the inhibition of JAK2 by AG490 led to a significant decrease in FD-induced phosphorylation of Y705, while S727 phosphorylation was unaffected. Conversely, U0126 and LY294002, which respectively inhibited phosphorylation of ERK1/2 and Akt, partially prevented S727 phosphorylation, but had limited effects on the level of pY705, suggesting that phosphorylation of Y705 and S727 is regulated via independent mechanisms in FD-treated brains.
Collapse
|
11
|
Nanoparticle mediated codelivery of nifuratel and doxorubicin for synergistic anticancer therapy through STAT3 inhibition. Colloids Surf B Biointerfaces 2020; 193:111109. [PMID: 32416521 DOI: 10.1016/j.colsurfb.2020.111109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/09/2020] [Accepted: 05/03/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is one of the most potent strategies to treat gastric cancer in clinic. However, the resistance of cancer cells to chemotherapeutics is a remarkable impediment to the treatment. Moreover, signal transducer and activator of transcription 3 (STAT3) is a critical transcriptional factor that over-activated in gastric cancer, and highly involved in the induction of chemoresistance. In this study, we developed poly (lactic-co-glycolic acid) (PLGA) nanoparticles to achieve the simultaneous codelivery of doxorubicin (DOX) and nifuratel (NIF, a novel STAT3 inhibitor) for enhanced cancer therapy. The synergistic effect of DOX and NIF against cancer cells was evaluated in gastric cancer cells. PLGA nanoparticles with an optimal ratio of DOX and NIF (DNNPs) were prepared and characterized. The cellular uptake and anticancer effects of DNNPs were investigated, and the underlying mechanisms were further explored. DNNPs presented as a spherical shape, provided sustained release profiles, and exhibited significantly increased uptake and cytotoxicity in gastric cancer cells. Mechanism studies showed that DNNPs significantly induced mitochondrial-dependent apoptosis and inhibited STAT3 phosphorylation, explaining the enhanced anticancer effect. These results suggested that DNNPs represented a promising strategy against gastric cancer by inhibiting the STAT3 pathway and amplifying apoptosis.
Collapse
|
12
|
Alkaraki A, Alshaer W, Wehaibi S, Gharaibeh L, Abuarqoub D, Alqudah DA, Al-Azzawi H, Zureigat H, Souleiman M, Awidi A. Enhancing chemosensitivity of wild-type and drug-resistant MDA-MB-231 triple-negative breast cancer cell line to doxorubicin by silencing of STAT 3, Notch-1, and β-catenin genes. Breast Cancer 2020; 27:989-998. [PMID: 32328816 DOI: 10.1007/s12282-020-01098-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVE The absence of receptors in triple-negative breast cancer limits therapeutic choices utilized in clinical management of the disease. Doxorubicin is an important member of therapeutic regimens that is hindered by emergence of resistance. The current work aim to investigate of therapeutic potential of single and combinations of siRNA molecules designed for silencing STAT 3, Notch-1, and β-catenin genes in wild type and doxorubicin resistant MDA-MB-231 triple negative breast cancer cell line. METHODS Doxorubicin resistant MDA-MB-231 cell line was developed and characterized for the expression of multidrug resistance-related genes, CD44/CD24 markers, inflammatory cytokines, and the expression of STAT 3, Notch-1, and β-catenin targeted genes. Further, the effect of single and combinations of siRNA on cell viability and chemosensitivity of both wild type MDA-MB-231 cells (MDA-MB-231/WT) and doxorubicin resistant MDA-MB-231 cells (MDA-MB-231/DR250) were assessed by MTT assay. RESULTS The IC50 of doxorubicin was 10-folds higher in MDA-MB-231/DR250 resistant cells compared to MDA-MB-231/WT control cells, 1.53 ± 0.24 μM compared to 0.16 ± 0.02 μM, respectively. The expression of targeted genes was higher in resistant cells compared to control cells, 3.6 ± 0.16 folds increase in β-catenin, 2.7 ± 0.09 folds increase in Notch-1, and 1.8 ± 0.09 folds increase in STAT-3. Following treatment with siRNAs, there was a variable reduction in mRNA expression of each of the targeted genes compared to scrambled siRNA and a reduction in IC50 in both cell lines. The effect of a combination of three genes produced the largest reduction in IC50 in resistant cell line. CONCLUSION Our study showed that the silencing of single and multiple genes involved in drug resistance and tumor progression by siRNA can enhance the chemosensitivity of cancer cells to conventional chemotherapy.
Collapse
Affiliation(s)
- Arwa Alkaraki
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan.
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
| | - Lobna Gharaibeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
- Department of Biomedical Sciences and Pharmacology, Faculty of Pharmacy, University of Petra, Amman, 11180, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
| | - Hafsa Al-Azzawi
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
| | - Hadil Zureigat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mamoun Souleiman
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan.
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan.
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
13
|
Alshaer W, Alqudah DA, Wehaibi S, Abuarqoub D, Zihlif M, Hatmal MM, Awidi A. Downregulation of STAT3, β-Catenin, and Notch-1 by Single and Combinations of siRNA Treatment Enhance Chemosensitivity of Wild Type and Doxorubicin Resistant MCF7 Breast Cancer Cells to Doxorubicin. Int J Mol Sci 2019; 20:ijms20153696. [PMID: 31357721 PMCID: PMC6696135 DOI: 10.3390/ijms20153696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/16/2023] Open
Abstract
Combinatorial therapeutic strategies using siRNA and small molecules to eradicate tumors are emerging. Targeting multiple signaling pathways decreases the chances of cancer cells switching and adapting new signaling processes that may occur when using a single therapeutic modality. Aberrant functioning of Notch-1, Wnt/β-catenin, and STAT3 proteins and their crosstalk signaling pathways have been found to be involved in tumor survival, drug resistance, and relapse. In the current study, we describe a therapeutic potential of single and combinations of siRNA designed for silencing Notch-1, Wnt/β-catenin, and STAT3 in MCF7_DoxS (wild type) and MCF7_DoxR (doxorubicin resistant) breast cancer cells. The MCF7_DoxR cells were developed through treatment with a gradual increase in doxorubicin concentration, the expression of targeted genes was investigated, and the expression profiling of CD44/CD24 of the MCF7_DoxS and MCF7_DoxR cells were detected by flow cytometry. Both MCF7_DoxS and MCF7_DoxR breast cancer cells were treated with single and combinations of siRNA to investigate synergism and were analyzed for their effect on cell proliferation with and without doxorubicin treatment. The finding of this study showed the overexpression of targeted genes and the enrichment of the CD44−/CD24+ phenotype in MCF7_DoxR cells when compared to MCF7_DoxS cells. In both cell lines, the gene silencing efficacy showed a synergistic effect when combining STAT3/Notch-1 and STAT3/Notch-1/β-catenin siRNA. Interestingly, the chemosensitivity of MCF7_DoxS and MCF7_DoxR cells to doxorubicin was increased when combined with siRNA treatment. Our study shows the possibility of using single and combinations of siRNA to enhance the chemosensitivity of cancer cells to conventional antitumor chemotherapy.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, Hashemite University, Zarqa 13133, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
14
|
Khaki-Khatibi F, Ghorbani M, Sabzichi M, Ramezani F, Mohammadian J. Adjuvant therapy with stattic enriches the anti-proliferative effect of doxorubicin in human ZR-75-1 breast cancer cells via arresting cell cycle and inducing apoptosis. Biomed Pharmacother 2019; 109:1240-1248. [PMID: 30551374 DOI: 10.1016/j.biopha.2018.10.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Adjuvant therapy with novel and effective component has been presented as a contrivance in breast cancer treatment versus the conventional methods. The current research was done to evaluate the implement of stattic, specific STAT3 inhibitor on the anti-proliferative and apoptotic behavior of doxorubicin on ZR-75-1 breast cancer cells. Cell viability was investigated by MTT assay, the percentage of apoptosis by DAPI staining, and Annexin V. Real Time-PCR was applied to find out the correlation between mechanistic roles of the STAT3 pathway and apoptotic signal in the modulation of Bcl-2 and Bax gene expressions axis. The IC50 values for doxorubicin and stattic were 2.5 ± 0.18 μM and 3.5 ± 0.28 μM, respectively. Combination index (CI) value for ZR-75-1 breast cancer was 0.72, which indicated a strong synergistic effect. Incubation of the cells with a combination of stattic and doxorubicin revealed a significant increase in growth inhibitory effect of doxorubicin with more than 50% decrease in proliferation rate and a two-fold increase in the percentage of apoptotic cells. Assessment of gene expression levels demonstrated a visible decrease in antiapoptotic Bcl-2 and Bcl-xl accompanied by an increase in pro-apoptotic Bax mRNA levels (p < 0.05). Taken together, our results show that combination of a STAT3 inhibitor and doxorubicin can be figured out as a promising approach for dealing of patients with breast cancers.
Collapse
Affiliation(s)
- Fatemeh Khaki-Khatibi
- Department of Biochemistry & Clinical laboratory, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Department of Biochemistry & Clinical laboratory, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Li S, Zhao X, Chang S, Li Y, Guo M, Guan Y. ERp57‑small interfering RNA silencing can enhance the sensitivity of drug‑resistant human ovarian cancer cells to paclitaxel. Int J Oncol 2018; 54:249-260. [PMID: 30431082 DOI: 10.3892/ijo.2018.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
ERp57 has been identified to be associated with the chemoresistance of human ovarian cancer. However, its biological roles in the chemoresistance phenotype remain unclear. In the present study, the association of ERp57 with paclitaxel‑resistant cellular behavior was investigated and the sensitivity enhancement of chemoresistant human ovarian cancer cells to paclitaxel was examined using ERp57‑small interfering (si)RNA silencing. Cell viability, cell proliferation, cell apoptosis and cell migration were detected using an MTT assay, clonogenic assay, flow cytometry analysis and transwell assay. Furthermore, mRNA expression levels of ERp57 and protein expression levels of ERp57, STAT3, phosphorylated STAT3, PCNA, nucelolin, TUBB3, P-gp, vimentin, Bcl-2, Bax, Bcl-xl, p53, MMP1, MMP2 and MMP9 of paclitaxel-sensitive human SKOV3 ovarian cancer cells were compared with paclitaxel-resistant counterpart SKOV3/tax using the real-time PCR and western blot analysis. ERp57 was highly expressed in the paclitaxel‑resistant SKOV3/tax cells, and experimental results concluded that the paclitaxel‑resistance phenotype was due primarily to the activation of the STAT3 signaling pathway. ERp57 overexpression by lentiviral particle infection decreased the sensitivity of SKOV3 cells to paclitaxel. Furthermore, ERp57‑siRNA silencing restored paclitaxel sensitivity of SKOV3/tax cells. Notably, the IC50 value of ERp57‑siRNA silenced SKOV3/tax cells was reduced to the original level and colony survival was significantly decreased in comparison with that of SKOV3/tax cells. Additionally, co‑treatment of ERp57‑siRNA silencing and paclitaxel could inhibit the STAT3 signaling pathway and downregulate the expression levels of downstream proteins. Notably, ERp57‑siRNA and 100 nM paclitaxel co‑treatment downregulated Bcl‑2, Bcl‑xl, MMP2, MMP9, TUBB3 and P‑gp expression levels and upregulated the expression of Bax protein. Furthermore, co‑treatment promoted change of the isoform of p53 to p53/p47. Bioinformatics analyses supported the experimental observations that ERp57 was associated with drug resistance in ovarian cancer. The present study implies that ERp57 is a potential therapeutic target for the treatment of paclitaxel‑resistant human ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yanqiu Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Min Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
16
|
Oleandrin and Its Derivative Odoroside A, Both Cardiac Glycosides, Exhibit Anticancer Effects by Inhibiting Invasion via Suppressing the STAT-3 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19113350. [PMID: 30373171 PMCID: PMC6274837 DOI: 10.3390/ijms19113350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
The cardiac glycosides oleandrin and odoroside A, polyphenolic monomer compounds extracted from Nerium oleander, have been found to have antitumor effects on various tumors at low doses. However, the mechanisms of anticancer effects of oleandrin and odoroside A are not well known. Therefore, in this study, we aimed to investigate the anticancer effects of oleandrin and odoroside A and their associated mechanisms in highly metastatic MDA-MB-231 breast cancer cells and radiotherapy-resistant (RT-R) MDA-MB-231 cells. Our results showed that oleandrin and odoroside A dose-dependently decreased the colony formation and the invasion of both cell lines at nanomolar ranges. Furthermore, oleandrin (50 nM) and odoroside A (100 nM) reduced octamer-binding transcription factor 3/4 (OCT3/4) and β-catenin levels and matrix metalloproteinase-9 (MMP-9) activity. Finally, we found that phospho-STAT-3 levels were increased in MDA-MB-231 and RT-R-MDA-MB-231, but not in endothelial cells (ECs), and that the levels were significantly decreased by oleandrin (50 nM) and odoroside A (100 nM). Inhibition of phospho-signal transducer and activator of transcription (STAT)-3 significantly reduced OCT3/4 and β-catenin levels and MMP-9 activity, ultimately resulting in reduced invasion. These results suggest that the anticancer effects of oleandrin and odoroside A might be due to the inhibition of invasion through of phospho-STAT-3-mediated pathways that are involved in the regulation of invasion-related molecules.
Collapse
|
17
|
Hanson C, Cairns J, Wang L, Sinha S. Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation. Genome Res 2018; 28:1207-1216. [PMID: 29898900 PMCID: PMC6071639 DOI: 10.1101/gr.227066.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have analyzed large-scale data sets of gene expression to identify genes associated with interindividual variation in phenotypes ranging from cancer subtypes to drug sensitivity, promising new avenues of research in personalized medicine. However, gene expression data alone is limited in its ability to reveal cis-regulatory mechanisms underlying phenotypic differences. In this study, we develop a new probabilistic model, called pGENMi, that integrates multi-omic data to investigate the transcriptional regulatory mechanisms underlying interindividual variation of a specific phenotype—that of cell line response to cytotoxic treatment. In particular, pGENMi simultaneously analyzes genotype, DNA methylation, gene expression, and transcription factor (TF)-DNA binding data, along with phenotypic measurements, to identify TFs regulating the phenotype. It does so by combining statistical information about expression quantitative trait loci (eQTLs) and expression-correlated methylation marks (eQTMs) located within TF binding sites, as well as observed correlations between gene expression and phenotype variation. Application of pGENMi to data from a panel of lymphoblastoid cell lines treated with 24 drugs, in conjunction with ENCODE TF ChIP data, yielded a number of known as well as novel (TF, Drug) associations. Experimental validations by TF knockdown confirmed 41% of the predicted and tested associations, compared to a 12% confirmation rate of tested nonassociations (controls). An extensive literature survey also corroborated 62% of the predicted associations above a stringent threshold. Moreover, associations predicted only when combining eQTL and eQTM data showed higher precision compared to an eQTL-only or eQTM-only analysis using pGENMi, further demonstrating the value of multi-omic integrative analysis.
Collapse
Affiliation(s)
- Casey Hanson
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Junmei Cairns
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Saurabh Sinha
- Department of Computer Science and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Cheng CC, Shi LH, Wang XJ, Wang SX, Wan XQ, Liu SR, Wang YF, Lu Z, Wang LH, Ding Y. Stat3/Oct-4/c-Myc signal circuit for regulating stemness-mediated doxorubicin resistance of triple-negative breast cancer cells and inhibitory effects of WP1066. Int J Oncol 2018; 53:339-348. [PMID: 29750424 DOI: 10.3892/ijo.2018.4399] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin (Dox) is widely used in the treatment of triple-negative breast cancer cells (TNBCs), however resistance limits its effectiveness. Cancer stem cells (CSCs) are associated with Dox resistance in MCF-7 estrogen receptor positive breast cancer cells. Signal transducer and activator of transcription 3 (Stat3) may functionally shift non-CSCs towards CSCs. However, whether Stat3 drives the formation of CSCs during the development of resistance in TNBC, and whether a Stat3 inhibitor reverses CSC-mediated Dox resistance, remains to be elucidated. In the present study, human MDA-MB-468 and murine 4T1 mammary carcinoma cell lines with the typical characteristics of TNBCs, were compared with estrogen receptor-positive MCF-7 cells as a model system. The MTT assay was used to detect cytotoxicity of Dox. In addition, the expression levels of CSC-specific markers and transcriptional factors were measured by western blotting, immunofluorescence staining and flow cytometry. The mammosphere formation assay was used to detect stem cell activity. Under long-term continuous treatment with Dox at a low concentration, TNBC cultures not only exhibited a drug-resistant phenotype, but also showed CSC properties. These Dox-resistant TNBC cells showed activation of Stat3 and high expression levels of pluripotency transcription factors octamer-binding transcription factor-4 (Oct-4) and c-Myc, which was different from the high expression of superoxide dismutase 2 (Sox2) in Dox-resistant MCF-7 cells. WP1066 inhibited the phosphorylation of Stat3, and decreased the expression of Oct-4 and c-Myc, leading to a reduction in the CD44-positive cell population, and restoring the sensitivity of the cells to Dox. Taken together, a novel signal circuit of Stat3/Oct-4/c-Myc was identified for regulating stemness-mediated Dox resistance in TNBC. The Stat3 inhibitor WP1066 was able to overcome the resistance to Dox through decreasing the enrichment of CSCs, highlighting the therapeutic potential of WP1066 as a novel sensitizer of Dox-resistant TNBC.
Collapse
Affiliation(s)
- Cong-Cong Cheng
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Li-Hong Shi
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xue-Jian Wang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Shu-Xiao Wang
- Department of Pharmacology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xiao-Qing Wan
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Shu-Rong Liu
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Yi-Fei Wang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Zhong Lu
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Li-Hua Wang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Yi Ding
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
19
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 2018; 8:329-344. [PMID: 27861147 PMCID: PMC5352123 DOI: 10.18632/oncotarget.13393] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are the most aggressive and hard-to-treat breast tumors with poor prognosis, and exploration for novel therapeutic drugs is impending. Arctigenin (Atn), a bioactive lignan isolated from seeds of Arctium lappa L, has been reported to inhibit many cancer types; however, the effect of Atn on TNBC remains unclear. In this study, we demonstrated that Atn decreased proliferation, and induced apoptosis in TNBC cells. Furthermore, we explored the underlying mechanism of Atn inhibition on TNBC cells. Computational docking and affinity assay showed that Atn bound to the SH2 domain of STAT3. Atn inhibited STAT3 binding to genomic DNA by disrupting hydrogen bond linking between DNA and STAT3. In addition, Atn augmented Taxotere®-induced TNBC cell cytotoxicity. TNBC xenograft tests also confirmed the antitumor effect of Atn in vivo. These characteristics render Atn as a promising candidate drug for further development and for designing new effective STAT3 inhibitors.
Collapse
|
21
|
Ku JM, Hong SH, Kim HI, Lim YS, Lee SJ, Kim M, Seo HS, Shin YC, Ko SG. Cucurbitacin D exhibits its anti-cancer effect in human breast cancer cells by inhibiting Stat3 and Akt signaling. EUR J INFLAMM 2018. [DOI: 10.1177/1721727x17751809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cucurbitacins are triterpenoids commonly found in Cucurbitaceae and Cruciferae and have long been used in traditional medicine. Cucurbitacins demonstrate anti-inflammatory and anti-cancer activities. We investigated whether cucurbitacin D affects viability in breast cancer cells and its mechanism of action. An MTT assay was used to measure the viability of breast cancer cells. Western blot analysis was used to measure the expression of various modulators, such as p-p53, p-Stat3, p-Akt, and p-NF-κB. Doxorubicin and cucurbitacin D affected the viability of MCF7, MDA-MB-231, and SKBR3 cells. Cucurbitacin D and doxorubicin increased p-p53 expression in MCF7, SKBR3, and MDA-MB-231 cells. Cucurbitacin D suppressed p-Akt, p-NF-κB, and p-Stat3 expression in MCF7, MDA-MB-231, and SKBR3 cells. Doxorubicin alone did not decrease p-Akt and p-Stat3 levels. Cucurbitacin D decreased p-NF-κB and p-Stat3 levels. Doxorubicin in combination with cucurbitacin D increased p-p53 levels and suppressed Akt, NF-κB, Stat3, and Bcl-2 expression more than cucurbitacin D alone. Our results clearly demonstrate that cucurbitacin D could be a useful compound for treating human breast cancer.
Collapse
Affiliation(s)
- Jin Mo Ku
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Se Hyang Hong
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ye Seul Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sol Ji Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Mia Kim
- Department of Cardiovascular and Neurologic Disease (Stroke Center), College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hye Sook Seo
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
22
|
Baxter-Holland M, Dass CR. Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. ACTA ACUST UNITED AC 2018; 70:320-327. [PMID: 29355940 DOI: 10.1111/jphp.12869] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The use of doxorubicin, an antineoplastic medication used for the treatment of cancers via mechanisms that prevent replication of cells or lead to their death, can result in damage to healthy cells as well as malignant. Among the affected cells are mesenchymal stem cells (MSCs), which are involved in the maintenance and repair of tissues in the body. This review explores the mechanisms of biological effects and damage attributed to doxorubicin on MSCs. The PubMed database was used as a source of literature for this review. KEY FINDINGS Doxorubicin has the potential to lead to significant and irreversible damage to the human bone marrow environment, including MSCs. The primary known mechanism of these changes is through free radical damage and activation of apoptotic pathways. The presence of MSCs in culture or in vivo appears to either suppress or promote tumour growth. Interactions between doxorubicin and MSCs have the potential to increase chemotherapy resistance. SUMMARY Doxorubicin-induced damage to MSCs is of concern clinically. However, MSCs also have been associated with resistance of tumour cells to drugs including doxorubicin. Further studies, particularly in vivo, are needed to provide consistent results of how the doxorubicin-induced changes to MSCs affect treatment and patient health.
Collapse
Affiliation(s)
- Mia Baxter-Holland
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
23
|
Zhao C, Wang W, Yu W, Jou D, Wang Y, Ma H, Xiao H, Qin H, Zhang C, Lü J, Li S, Li C, Lin J, Lin L. A novel small molecule STAT3 inhibitor, LY5, inhibits cell viability, colony formation, and migration of colon and liver cancer cells. Oncotarget 2017; 7:12917-26. [PMID: 26883202 PMCID: PMC4914331 DOI: 10.18632/oncotarget.7338] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/27/2016] [Indexed: 11/28/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is persistently activated in human liver and colon cancer cells and is required for cancer cell viability, survival and migration. Therefore, inhibition of STAT3 signaling may be a viable therapeutic approach for these two cancers. We recently designed a non-peptide small molecule STAT3 inhibitor, LY5, using in silico site-directed Fragment-based drug design (FBDD). The inhibitory effect on STAT3 phosphorylation, cell viability, migration and colony forming ability by LY5 were examined in human liver and colon cancer cells. We demonstrated that LY5 inhibited constitutive Interleukin-6 (IL-6)-induced STAT3 phosphorylation, STAT3 nuclear translocation, decreased STAT3 downstream targeted gene expression and induced apoptosis in liver and colon cancer cells. LY5 had little effect on STAT1 phosphorylation mediated by IFN-γ. Inhibition of persistent STAT3 phosphorylation by LY5 also inhibited colony formation, cell migration, and decreased the viability of liver cancer and colon cancer cells. Furthermore, LY5 inhibited STAT3 phosphorylation and suppressed colon tumor growth in a mouse model in vivo. Our results suggest that LY5 is a potent STAT3 inhibitor and may be a potential drug candidate for liver and colon cancer therapy.
Collapse
Affiliation(s)
- Chongqiang Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Division of Cardiology, Tianjin First Center Hospital, Tianjin, P.R. China
| | - Wenlong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Division of Pediatric Intensive Care Unit, Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenying Yu
- Division of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - David Jou
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yina Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Xiao
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hua Qin
- Division of Gastroenterology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiagao Lü
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jiayuh Lin
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
24
|
Chen Y, Liu J, Lv P, Gao J, Wang M, Wang Y. IL-6 is involved in malignancy and doxorubicin sensitivity of renal carcinoma cells. Cell Adh Migr 2017; 12:28-36. [PMID: 28328292 DOI: 10.1080/19336918.2017.1307482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various survival factors such as the pleiotropic cytokine interleukin-6 (IL-6), a major mediator of inflammation and activator of signal transducer and activator of transcription 3 (STAT3), serve to block apoptosis in cancer cells. Our present study revealed that the expression of IL-6, while not other IL-2, IL-4, IL-8, or IL-10, was significantly elevated in resistance of renal carcinoma cells (RCC) when compared with human renal proximal tubule epithelial cell line HK-2. The inhibition of IL-6 by siRNA can suppress the proliferation, migration and invasion of RCC cells and increase the doxorubicin (Dox) sensitivity. While recombination IL-6 can attenuate the inhibition effects of Dox on proliferation of RCC cells. Further studies indicated that inhibition of IL-6 by siRNA can decrease the phosphorylation of STAT3 in RCC cells. Over expression of STAT3 increased the proliferation, migration and invasion of RCC cells and reversed si-IL-6 induced increase of Dox sensitivity of ACHN and A498 cells. In addition, IL-6 treatment can activate ERK1/2 via increasing its phosphorylation. PD98059, the ERK1/2 inhibitor, attenuated IL-6 induced proliferation and synergistically increased the Dox sensitivity of si-IL-6 transfected ACHN cells. Collectively, our data suggested that IL-6 plays an important role in malignancy and Dox sensitivity of RCC. The targeted inhibition of IL-6 signals might be a promising therapeutic strategy for the treatment of renal cancer.
Collapse
Affiliation(s)
- Yanqiang Chen
- a Department of Neurology , Hebei Chest Hospital , Shijiazhuang , Hebei , China
| | - Jianzhen Liu
- b Department of Urology , Hebei Chest Hospital , Shijiazhuang , Hebei , China
| | - Pei Lv
- c Department of Nephrology , Hebei Chest Hospital , Shijiazhuang , Hebei , China
| | - Jiangyan Gao
- d Cardiovascular Department , Hebei Chest Hospital , Shijiazhuang , Hebei , China
| | - Mingzheng Wang
- e Department of Thoracic Surgery , Hebei Chest Hospital , Shijiazhuang , Hebei , China
| | - Yongjun Wang
- d Cardiovascular Department , Hebei Chest Hospital , Shijiazhuang , Hebei , China
| |
Collapse
|
25
|
Liu CY, Chen KF, Chao TI, Chu PY, Huang CT, Huang TT, Yang HP, Wang WL, Lee CH, Lau KY, Tsai WC, Su JC, Wu CY, Chen MH, Shiau CW, Tseng LM. Sequential combination of docetaxel with a SHP-1 agonist enhanced suppression of p-STAT3 signaling and apoptosis in triple negative breast cancer cells. J Mol Med (Berl) 2017; 95:965-975. [PMID: 28578456 DOI: 10.1007/s00109-017-1549-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/07/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive cancer for which prognosis remains poor. Combination therapy is a promising strategy for enhancing treatment efficacy. Blockade of STAT3 signaling may enhance the response of cancer cells to conventional chemotherapeutic agents. Here we used a SHP-1 agonist SC-43 to dephosphorylate STAT3 thereby suppressing oncogenic STAT3 signaling and tested it in combination with docetaxel in TNBC cells. We first analyzed messenger RNA (mRNA) expression of SHP-1 gene (PTPN6) in a public TNBC dataset (TCGA) and found that higher SHP-1 mRNA expression is associated with better overall survival in TNBC patients. Sequential combination of docetaxel and SC-43 in vitro showed enhanced anti-proliferation and apoptosis associated with decreased p-STAT3 and decreased STAT3-downstream effector cyclin D1 in the TNBC cell lines MDA-MB-231, MDA-MB-468, and HCC-1937. Ectopic expression of STAT3 reduced the increased cytotoxicity induced by the combination therapy. In addition, this sequential combination showed enhanced SHP-1 activity compared to SC-43 alone. Furthermore, the combination treatment-induced apoptosis was attenuated by small interfering RNA (siRNA) against SHP-1 or by ectopic expression of SHP-1 mutants that caused SC-43 to lose its SHP-1 agonist capability. Moreover, combination of docetaxel and SC-43 showed enhanced tumor growth inhibition compared to single-agent therapy in mice bearing MDA-MB-231 tumor xenografts. Our results suggest that the novel SHP-1 agonist SC-43 enhanced docetaxel-induced cytotoxicity by SHP-1 dependent STAT3 inhibition in human triple negative breast cancer cells. TNBC patients with high SHP-1 expressions show better survival. Docetaxel combined with SC-43 enhances cell apoptosis and reduces p-STAT3. SHP-1 inhibition reduces the enhanced effect of docetaxel-SC-43 combination. Docetaxel-SC-43 combination suppresses xenograft tumor growth and reduces p-STAT3. KEY MESSAGES TNBC patients with high SHP-1 expressions show better survival. Docetaxel combined with SC-43 enhances cell apoptosis and reduces p-STAT3. SHP-1 inhibition reduces the enhanced effect of docetaxel-SC-43 combination. Docetaxel-SC-43 combination suppresses xenograft tumor growth and reduces p-STAT3.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.,National Taiwan University College of Medicine, No. 1 Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Tzu-I Chao
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, No. 542, Sec. 1, Chung-Shan Rd, Changhua City, 500, Taiwan.,School of Medicine, Fu Jen Catholic University, No. 510, Zhong-zheng Rd., Xin-zhuang Dist, New Taipei City, 24205, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, No. 145, Zhengzhou Rd., Datong Dist, Taipei, 10341, Taiwan
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Hsiu-Ping Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Wan-Lun Wang
- Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Ka-Yi Lau
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Wen-Chun Tsai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan
| | - Chia-Yun Wu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan. .,Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
26
|
Winship A, Van Sinderen M, Rainczuk K, Dimitriadis E. Therapeutically blocking Interleukin-11 Receptor-α enhances doxorubicin cytotoxicity in high grade type I endometrioid tumours. Oncotarget 2017; 8:22716-22729. [PMID: 28186993 PMCID: PMC5410257 DOI: 10.18632/oncotarget.15187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
High grade type I endometrial cancers have poor prognosis. Interleukin (IL)11 is elevated in tumours and uterine lavage with increasing tumour grade in women. IL11 regulates cell cycle, invasion and migration and we recently demonstrated that IL11 receptor (R)α inhibition impaired low and moderate grade endometrial tumourigenesis in vivo. In this report, we hypothesized that micro-RNA(miR)-1 regulates IL11 and that IL11 promotes high grade endometrial tumour growth. We aimed to determine whether combination treatment using an anti-human IL11Rα blocking antibody (Ab) and doxorubicin chemotherapeutic impairs high grade tumour growth. MiR-1 was absent in human endometrial tumours versus human benign endometrium (n = 10/group). Transfection with miR-1 mimic restored miR-1 expression, down-regulated IL11 mRNA and impaired cell viability in grade 3-derived AN3CA human endometrial epithelial cancer cells. AN3CA cell proliferation was reduced in response to Ab and doxorubicin combination treatment versus Ab, IgG control, or doxorubicin alone. Subcutaneous xenograft tumours were established in female Balb/c athymic nude mice using AN3CA cells expressing IL11 and IL11Rα. Administration of recombinant human IL11 to mice (n = 4/group) activated IL11 downstream target, signal transducers and activators of transcription (STAT3) and significantly increased tumour growth (p < 0.05), suggesting that IL11 promotes high grade tumour growth. IL11Rα blocking Ab reduced STAT3 phosphorylation and combination treatment with doxorubicin resulted in a significant reduction in tumour growth (p < 0.05) compared to Ab, doxorubicin, or IgG control. Our data suggest that therapeutically targeting IL11Rα in combination with doxorubicin chemotherapy could inhibit high grade type I endometrioid cancer growth.
Collapse
Affiliation(s)
- Amy Winship
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia
| | - Michelle Van Sinderen
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia
| | - Katarzyna Rainczuk
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia
| | - Evdokia Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
27
|
Odate S, Veschi V, Yan S, Lam N, Woessner R, Thiele CJ. Inhibition of STAT3 with the Generation 2.5 Antisense Oligonucleotide, AZD9150, Decreases Neuroblastoma Tumorigenicity and Increases Chemosensitivity. Clin Cancer Res 2017; 23:1771-1784. [PMID: 27797972 PMCID: PMC5381521 DOI: 10.1158/1078-0432.ccr-16-1317] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
Purpose: Neuroblastoma is a pediatric tumor of peripheral sympathoadrenal neuroblasts. The long-term event-free survival of children with high-risk neuroblastoma is still poor despite the improvements with current multimodality treatment protocols. Activated JAK/STAT3 pathway plays an important role in many human cancers, suggesting that targeting STAT3 is a promising strategy for treating high-risk neuroblastoma.Experimental Design: To evaluate the biologic consequences of specific targeting of STAT3 in neuroblastoma, we assessed the effect of tetracycline (Tet)-inducible STAT3 shRNA and the generation 2.5 antisense oligonucleotide AZD9150 which targets STAT3 in three representative neuroblastoma cell line models (AS, NGP, and IMR32).Results: Our data indicated that Tet-inducible STAT3 shRNA and AZD9150 inhibited endogenous STAT3 and STAT3 target genes. Tet-inducible STAT3 shRNA and AZD9150 decreased cell growth and tumorigenicity. In vivo, STAT3 inhibition by Tet-inducible STAT3 shRNA or AZD9150 alone had little effect on growth of established tumors. However, when treated xenograft tumor cells were reimplanted into mice, there was a significant decrease in secondary tumors in the mice receiving AZD9150-treated tumor cells compared with the mice receiving ntASO-treated tumor cells. This indicates that inhibition of STAT3 decreases the tumor-initiating potential of neuroblastoma cells. Furthermore, inhibition of STAT3 significantly increased neuroblastoma cell sensitivity to cisplatin and decreased tumor growth and increased the survival of tumor-bearing mice in vivoConclusions: Our study supports the development of strategies targeting STAT3 inhibition in combination with conventional chemotherapy for patients with high-risk neuroblastoma. Clin Cancer Res; 23(7); 1771-84. ©2016 AACR.
Collapse
Affiliation(s)
- Seiichi Odate
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Veronica Veschi
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shuang Yan
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Norris Lam
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Richard Woessner
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, Waltham, Massachusetts
| | - Carol J Thiele
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
28
|
Liu C, Su J, Huang T, Chu P, Huang C, Wang W, Lee C, Lau K, Tsai W, Yang H, Shiau C, Tseng L, Chen K. Sorafenib analogue SC-60 induces apoptosis through the SHP-1/STAT3 pathway and enhances docetaxel cytotoxicity in triple-negative breast cancer cells. Mol Oncol 2017; 11:266-279. [PMID: 28084011 PMCID: PMC5527447 DOI: 10.1002/1878-0261.12033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
Recurrent triple-negative breast cancer (TNBC) needs new therapeutic targets. Src homology region 2 domain-containing phosphatase-1 (SHP-1) can act as a tumor suppressor by dephosphorylating oncogenic kinases. One major target of SHP-1 is STAT3, which is highly activated in TNBC. In this study, we tested a sorafenib analogue SC-60, which lacks angiokinase inhibition activity, but acts as a SHP-1 agonist, in TNBC cells. SC-60 inhibited proliferation and induced apoptosis by dephosphorylating STAT3 in both a dose- and time-dependent manner in TNBC cells (MDA-MB-231, MDA-MB-468, and HCC1937). By contrast, ectopic expression of STAT3 rescued the anticancer effect induced by SC-60. SC-60 also increased the SHP-1 activity, but this effect was inhibited when the N-SH2 domain (DN1) was deleted or with SHP-1 point mutation (D61A), implying that SHP-1 is the major target of SC-60 in TNBC. The use of SC-60 in combination with docetaxel synergized the anticancer effect induced by SC-60 through the SHP-1/STAT3 pathway in TNBC cells. Importantly, SC-60 also displayed a significant antitumor effect in an MDA-MB-468 xenograft model by modulating the SHP-1/STAT3 axis, indicating the anticancer potential of SC-60 in TNBC treatment. Targeting SHP-1/p-STAT3 and the potential combination of SHP-1 agonist with chemotherapeutic docetaxel is a feasible therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Chun‐Yu Liu
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jung‐Chen Su
- Institute of Biopharmaceutical SciencesNational Yang‐Ming UniversityTaipeiTaiwan
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Tzu‐Ting Huang
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan
- School of MedicineCollege of MedicineFu‐Jen Catholic UniversityXinzhuangNew Taipei CityTaiwan
| | - Chun‐Teng Huang
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Division of Hematology & OncologyDepartment of MedicineYang‐Ming Branch of Taipei City HospitalTaiwan
| | - Wan‐Lun Wang
- Department of SurgeryTaipei Veterans General HospitalTaiwan
| | - Chia‐Han Lee
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Ka‐Yi Lau
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Wen‐Chun Tsai
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Hsiu‐Ping Yang
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Chung‐Wai Shiau
- Institute of Biopharmaceutical SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ling‐Ming Tseng
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Department of SurgeryTaipei Veterans General HospitalTaiwan
| | - Kuen‐Feng Chen
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
- National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
29
|
Zhu T, Li LL, Xiao GF, Luo QZ, Liu QZ, Yao KT, Xiao GH. Berberine Increases Doxorubicin Sensitivity by Suppressing STAT3 in Lung Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1487-502. [PMID: 26503561 DOI: 10.1142/s0192415x15500846] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Berberine (BBR), an alkaloid component isolated from Chinese medicinal herb Huang Lian, has aroused broad interests for its antitumor effect in recent years. The signal transducer and activator of transcription 3 (STAT3), plays critical roles in malignant transformation and progression and was found to be constitutively activated in a variety of human cancers. In this study, we show that BBR inhibited cell proliferation, induced apoptosis, and suppressed tumor spheroid formation of lung cancer cell lines. These effects were correlated with BBR-mediated suppression of both phosphorylated and total levels of STAT3 protein. Furthermore, BBR promoted STAT3 degradation by enhancing ubiquitination. Importantly, we demonstrated that BBR was able to inhibit doxorubicin (DOX)-mediated STAT3 activation and sensitize lung cancer cells to the cytotoxic effect of DOX treatment. Given that BBR is widely used in clinic with low toxicity, our results are potentially important for the development of a novel combinatorial therapy with BBR and DOX in the treatment of lung cancer.
Collapse
Affiliation(s)
- Ting Zhu
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Lin-Lin Li
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Fa Xiao
- † Department of Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qi-Zhi Luo
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Qiu-Zheng Liu
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Kai-Tai Yao
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Hui Xiao
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
30
|
Sapio L, Sorvillo L, Illiano M, Chiosi E, Spina A, Naviglio S. Inorganic Phosphate Prevents Erk1/2 and Stat3 Activation and Improves Sensitivity to Doxorubicin of MDA-MB-231 Breast Cancer Cells. Molecules 2015; 20:15910-15928. [PMID: 26340617 PMCID: PMC6332303 DOI: 10.3390/molecules200915910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Due to its expression profile, triple-negative breast cancer (TNBC) is refractory to the most effective targeted therapies available for breast cancer treatment. Thus, cytotoxic chemotherapy represents the mainstay of treatment for early and metastatic TNBC. Therefore, it would be greatly beneficial to develop therapeutic approaches that cause TNBC cells to increase their sensitivity to cytotoxic drugs. Inorganic phosphate (Pi) is emerging as an important signaling molecule in many cell types. Interestingly, it has been shown that Pi greatly enhances the sensitivity of human osteosarcoma cell line (U2OS) to doxorubicin. We investigated the effects of Pi on the sensitivity of TNBC cells to doxorubicin and the underlying molecular mechanisms, carrying out flow cytometry-based assays of cell-cycle progression and cell death, MTT assays, direct cell number counting and immunoblotting experiments. We report that Pi inhibits the proliferation of triple-negative MDA-MB-231 breast cancer cells mainly by slowing down cell cycle progression. Interestingly, we found that Pi strongly increases doxorubicin-induced cytotoxicity in MDA-MB-231 cells by apoptosis induction, as revealed by a marked increase of sub-G1 population, Bcl-2 downregulation, caspase-3 activation and PARP cleavage. Remarkably, Pi/doxorubicin combination-induced cytotoxicity was dynamically accompanied by profound changes in Erk1/2 and Stat3 protein and phosphorylation levels. Altogether, our data enforce the evidence of Pi acting as a signaling molecule in MDA-MB-231 cells, capable of inhibiting Erk and Stat3 pathways and inducing sensitization to doxorubicin of TNBC cells, and suggest that targeting Pi levels at local sites might represent the rationale for developing effective and inexpensive strategies for improving triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Luca Sorvillo
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Emilio Chiosi
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Annamaria Spina
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
31
|
Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, Kroemer G. STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Res 2015. [PMID: 26208907 DOI: 10.1158/0008-5472.can-15-1122] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
STAT3 is an oncogenic transcription factor with potent immunosuppressive functions. We found that pharmacologic inhibition of STAT3 or its selective knockout in cancer cells improved the tumor growth-inhibitory efficacy of anthracycline-based chemotherapies. This combined effect of STAT3 inhibition/depletion and anthracyclines was only found in tumors growing on immunocompetent (not in immunodeficient) mice. As compared with Stat3-sufficient control tumors, Stat3(-/-) cancer cells exhibited an increased infiltration by dendritic cells and cytotoxic T lymphocytes after chemotherapy. Anthracyclines are known to induce several stress pathways that enhance the immunogenicity of dying and dead cancer cells, thereby stimulating a dendritic cell-dependent and T lymphocyte-mediated anticancer immune response. Among these therapy-relevant stress pathways, Stat3(-/-) cancer cells manifested one significant improvement, namely an increase in the expression of multiple type-1 interferon-responsive genes, including that of the chemokines Cxcl9 and Cxcl10. This enhanced type-1 interferon response could be suppressed by reintroducing wild-type Stat3 (but not a transactivation-deficient mutant Stat3(Y705F)) into the tumor cells. This maneuver also abolished the improved chemotherapeutic response of Stat3(-/-) cancers. Finally, the neutralization of the common type-1 interferon receptor or that of the chemokine receptor CXCR3 (which binds CXCL9 and CXCL10) abolished the difference in the chemotherapeutic response between Stat3(-/-) and control tumors. Altogether, these results suggest that STAT3 inhibitors may improve the outcome of chemotherapy by enhancing the type-1 interferon response of cancer cells.
Collapse
Affiliation(s)
- Heng Yang
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France. Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France. Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Takahiro Yamazaki
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, Villejuif, France
| | - Federico Pietrocola
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France. Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France. Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. University of Paris Sud XI, Kremlin Bicêtre, France
| | - Heng Zhou
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France. Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France. Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. University of Paris Sud XI, Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, Villejuif, France. University of Paris Sud XI, Kremlin Bicêtre, France
| | - Yuting Ma
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France. Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France. Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France. Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France. Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
32
|
Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol Cell Biochem 2015; 409:33-43. [PMID: 26169986 PMCID: PMC4589559 DOI: 10.1007/s11010-015-2509-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/04/2015] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common cancer for women and is a major cause of mortality in women. Doxorubicin is a generally used chemotherapy drug for breast cancer. However, multidrug resistance of breast cancer interferes with the chemotherapy. We examined whether cucurbitacin D affects doxorubicin resistance of MCF7/ADR breast cancer cells. Cell viability was measured by MTT assay. Levels of p-STAT3, p-NF-κB, IκB, and caspases were measured by Western blot analysis. Nuclear staining of Stat3 and NF-κB was measured by immunocytochemistry. STAT3 and NF-κB transcriptional activity was detected by STAT3 and NF-κB luciferase reporter gene assays. Analysis of cell cycle arrest was performed by flow cytometry. Induction of apoptosis by cucurbitacin D was measured by Annexin V-FITC/propidium iodide assay. More than 90 % of MCF7/ADR cells lived upon treatment with doxorubicin for 24 h. However, upon treatment with cucurbitacin D, cell death was more than 60 %. Co-administration of cucurbitacin D and doxorubicin induced apoptosis, and G2/M cell cycle arrest, and inhibited upregulated Stat3 by doxorubicin on MCF7/ADR cells. Additionally, cucurbitacin D led to an increase in the IκBα level in the cytosol and a decrease in the p-NF-κB level in the nucleus. Finally, cucurbitacin D inhibited translocation of Stat3 and NF-κB and decreased transcriptional activity in the nucleus. Cucurbitacin D decreases cell proliferation and induces apoptosis by inhibiting Stat3 and NF-κB signaling in doxorubicin-resistant breast cancer cells. Cucurbitacin D could be used as a useful compound to treat adriamycin-resistant patients.
Collapse
|
33
|
Gariboldi MB, Taiana E, Bonzi MC, Craparotta I, Giovannardi S, Mancini M, Monti E. The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil. Cancer Lett 2015; 364:156-64. [PMID: 25979228 DOI: 10.1016/j.canlet.2015.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Activation of hypoxia-inducible factor (HIF)-1 is a feature of hypoxic solid tumors that has been associated with drug resistance, mainly due to disruption of Bcl-2 family dynamics. Resetting the balance in favor of proapoptotic family members is an attractive therapeutic goal that has been pursued by developing BH3-mimetic compounds. In the present study we evaluated the response of human colon adenocarcinoma cells to the BH3-mimetic obatoclax (OBX), in terms of growth arrest, apoptosis and autophagy, in the presence or absence of HIF-1α-stabilizing conditions; its possible effect on HIF-1α expression and HIF-1 activity; and the possibility to improve the response of colon cancer cells to cytotoxic chemotherapeutics by combining them with OBX. Colon cancer cell response to the BH3-mimetic was unmodified by HIF-1 activation and OBX induced a decrease in HIF-1α protein levels and HIF-1 transcriptional activity, probably by decreasing HIF-1α synthesis and facilitating a VHL-independent proteasomal degradation pathway. Finally, a chemosensitizing effect of OBX with respect to 5-fluorouracil or oxaliplatin treatment was observed, highlighting the possibility that patients with hypoxic colon tumors might benefit from combined regimens including OBX.
Collapse
Affiliation(s)
- Marzia B Gariboldi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Elisa Taiana
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Maria Chiara Bonzi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Ilaria Craparotta
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Stefano Giovannardi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Monica Mancini
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy.
| |
Collapse
|
34
|
Li SY, Sun R, Wang HX, Shen S, Liu Y, Du XJ, Zhu YH, Jun W. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release 2015; 205:7-14. [PMID: 25445694 DOI: 10.1016/j.jconrel.2014.11.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/28/2014] [Accepted: 11/09/2014] [Indexed: 12/17/2022]
Abstract
Aberrant DNA hypermethylation is critical in the regulation of renewal and maintenance of cancer stem cells (CSCs), which represent targets for carcinogenic initiation by chemical and environmental agents. The administration of decitabine (DAC), which is a DNA hypermethylation inhibitor, is an attractive approach to enhancing the chemotherapeutic response and overcoming drug resistance by CSCs. In this study, we investigated whether low-dose DAC encapsulated in nanoparticles could be used to sensitize bulk breast cancer cells and CSCs to chemotherapy. In vitro studies revealed that treatment with nanoparticles loaded with low-dose DAC (NPDAC) combined with nanoparticles loaded with doxorubicin (NPDOX) better reduced the proportion of CSCs with high aldehyde dehydrogenase activity (ALDH(hi)) in the mammospheres of MDA-MB-231 cells, and better overcame the drug resistance by ALDH(hi) cells. Subsequently, systemic delivery of NPDAC significantly down-regulated the expression of DNMT1 and DNMT3b in a MB-MDA-231 xenograft murine model and induced increased caspase-9 expression, which contributed to the increased sensitivity of the bulk cancer cells and CSCs to NPDOX treatment. Importantly, the combined treatment of NPDAC and NPDOX resulted in the lowest proportion of ALDH(hi) CSCs and the highest proportion of apoptotic tumor cells, and the best tumor suppressive effects in inhibiting breast cancer growth.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/chemistry
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Caspase 9/genetics
- Caspase 9/metabolism
- Cell Line, Tumor
- Chemistry, Pharmaceutical
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- Decitabine
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Drug Carriers
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice, Inbred NOD
- Mice, SCID
- Nanomedicine
- Nanoparticles
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Polyesters/chemistry
- Polyethylene Glycols/chemistry
- Spheroids, Cellular
- Technology, Pharmaceutical/methods
- Time Factors
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Shi-Yong Li
- Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Rong Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Hong-Xia Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xiao-Jiao Du
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan-Hua Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Wang Jun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, PR China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
35
|
An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells. PLoS One 2015; 10:e0126159. [PMID: 25955018 PMCID: PMC4425697 DOI: 10.1371/journal.pone.0126159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/29/2015] [Indexed: 12/01/2022] Open
Abstract
Background Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells. Results We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells. Conclusions Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors.
Collapse
|
36
|
Alantolactone selectively suppresses STAT3 activation and exhibits potent anticancer activity in MDA-MB-231 cells. Cancer Lett 2014; 357:393-403. [PMID: 25434800 DOI: 10.1016/j.canlet.2014.11.049] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/10/2023]
Abstract
The important goal of cancer drug discovery is to develop therapeutic agents that are effective, safe, and affordable. In the present study, we demonstrated that alantolactone, which is a sesquiterpene lactone, has potential activity against triple-negative breast cancer MDA-MB-231 cells by suppressing the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Alantolactone effectively suppressed both constitutive and inducible STAT3 activation at tyrosine 705. Alantolactone decreased STAT3 translocation to the nucleus, its DNA-binding, and STAT3 target gene expression. Alantolactone significantly inhibits STAT3 activation with a marginal effect on MAPKs and on NF-κB transcription; however, this effect is not mediated by inhibiting STAT3 upstream kinases. Although SHP-1, SHP-2, and PTEN, which are protein tyrosine phosphatases (PTPs), were not affected by alantolactone, the treatment with a PTP inhibitor reversed the alantolactone-induced suppression of STAT3 activation, indicating that PTP plays an important role in the action of alantolactone. Finally, alantolactone treatment resulted in the inhibition of migration, invasion, adhesion, and colony formation. The in vivo administration of alantolactone inhibited the growth of human breast xenograft tumors. These results provide preclinical evidence to continue the development of alantolactone as a STAT3 inhibitor and as a potential therapeutic agent against breast cancer.
Collapse
|
37
|
Abstract
The transcription factors STAT1 and STAT3 appear to play opposite roles in tumorigenesis. While STAT3 promotes cell survival/proliferation, motility and immune tolerance and is considered as an oncogene, STAT1 mostly triggers anti-proliferative and pro-apoptotic responses while enhancing anti-tumor immunity. Despite being activated downstream of common cytokine and growth factor receptors, their activation is reciprocally regulated and perturbation in their balanced expression or phosphorylation levels may re-direct cytokine/growth factor signals from proliferative to apoptotic, or from inflammatory to anti-inflammatory. Here we review the functional canonical and non-canonical effects of STAT1 and STAT3 activation in tumorigenesis and their potential cross-regulation mechanisms.
Collapse
Affiliation(s)
- Lidia Avalle
- Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry; University of Turin; Turin, Italy
| | | | | | | | | |
Collapse
|
38
|
Resemann HK, Watson CJ, Lloyd-Lewis B. The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol 2014; 382:603-611. [PMID: 23827176 DOI: 10.1016/j.mce.2013.06.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
Abstract
Stat proteins regulate many aspects of mammary gland development, including the profound changes that occur during pregnancy, lactation and involution. Stat3 induces transcriptional activation of genes involved in the inflammatory response, and in seemingly contradictory cellular events such as apoptosis, differentiation and stem cell maintenance. While Stat3 signalling during mammary gland involution induces epithelial cell death, aberrant Stat3 activation is widely implicated in breast tumourigenesis. Specific cytokines may initiate either a Stat3-driven proliferative or death response depending on the cell-type and cell-context specific availability of particular combinations of signals and receptors. The paradoxical functions of Stat3 may also be due to the degree and extent of activation in different circumstances, in addition to paracrine signalling between mammary epithelial cells and the surrounding microenvironment. Deciphering the enigmatic nature of Stat3 in the mammary gland may benefit future therapeutic strategies for inducing cell death in breast tumours.
Collapse
Affiliation(s)
- Henrike K Resemann
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
39
|
Yan S, Li Z, Thiele CJ. Inhibition of STAT3 with orally active JAK inhibitor, AZD1480, decreases tumor growth in Neuroblastoma and Pediatric Sarcomas In vitro and In vivo. Oncotarget 2013; 4:433-45. [PMID: 23531921 PMCID: PMC3717306 DOI: 10.18632/oncotarget.930] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The IL-6/JAK/STAT pathway is a key signal transduction pathway implicated in the pathogenesis of many human cancers, suggesting that kinase inhibitors targeting JAK/STAT3 may have a broad spectrum of antitumor activity. AZD1480, a pharmacological JAK1/2 inhibitor, exhibits anti-tumor potency in multiple adult malignancies. To evaluate the efficacy of inhibition of JAK/STAT3 signal transduction pathway we assessed the activity of AZD1480 in pediatric malignancies using preclinical models of three highly malignant pediatric solid tumors: neuroblastoma (NB), rhabdomyosarcoma (RMS) and the Ewing Sarcoma Family Tumors (ESFT). In this study, we employed panels of biomedical and biological experiments to evaluate the in vitro and in vivo activity of AZD1480 in NB, RMS and ESFT. Our data indicate that AZD1480 blocks endogenous as well as IL-6 induced STAT3 activation. AZD1480 decreases cell viability in 7/7NB, 7/7RMS and 2/2 ESFT cell lines (median EC50 is 1.5 μM, ranging from 0.36-5.37μM). AZD1480 induces cell growth inhibition and caspase-dependent apoptosis in vitro and decreases expression of STAT3 target genes, including cell cycle regulators CyclinD1, 3 and CDC25A, anti-apoptotic genes Bcl-2 and survivin, the metastasis-related factor TIMP-1 and c-Myc. In vivo studies showed AZD1480 significantly decreased tumor growth and prolonged overall survival in tumor-bearing mice. Tumors from AZD1480-treated mice showed inhibition of activated STAT3 as well as decreased expression of STAT3 downstream targets. Our study provides strong evidence of the anti-tumor growth potency of JAK inhibitor AZD1480 in pediatric solid tumors, providing proof-of principle that inhibition of the JAK/STAT3 signal transduction could be a promising therapeutic target for high-risk pediatric solid tumors.
Collapse
Affiliation(s)
- Shuang Yan
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, USA
| | | | | |
Collapse
|
40
|
Falamarzian A, Aliabadi HM, Molavi O, Seubert JM, Lai R, Uludağ H, Lavasanifar A. Effective down-regulation of signal transducer and activator of transcription 3 (STAT3) by polyplexes of siRNA and lipid-substituted polyethyleneimine for sensitization of breast tumor cells to conventional chemotherapy. J Biomed Mater Res A 2013; 102:3216-28. [PMID: 24167124 DOI: 10.1002/jbm.a.34992] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/11/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays a major role in the development of resistance to conventional anti-cancer drugs in many types of cancer, when constitutively activated. Inhibition of STAT3 is considered as a promising strategy for inhibition of tumor growth and overcoming the drug resistance manifested. In this study, the capability of STAT3 knockdown by lipid substituted low molecular weight (2 kDa) polyethyleneimine (PEI2) complexes of STAT3-siRNA was assessed. The efficiency of PEI/STAT3-siRNA polyplexes in the induction of STAT3 associated cell death in wild type and drug-resistant MDA-MB-435 breast cancer cells as monotherapy and upon combination with chemotherapeutic agents, doxorubicin and paclitaxel, was also investigated. Our results identified linoleic acid-substituted (PEI-LA) polymer as the most efficient carrier among different lipid substituted PEI2 for siRNA delivery, leading to most STAT3 associated loss of cell viability in MDA-MB-435 cells. STAT3-siRNA delivery by the PEI-LA polymer resulted in efficient down-regulation of STAT3 at both mRNA and protein levels. Furthermore, pre-treatment of cancer cells with STAT3-siRNA formulation increased the cytotoxic effect of doxorubicin and paclitaxel in both wild type and drug resistant MDA-MB-435 cells. The results of this study point to the potential of PEI-LA polyplexes of STAT3-siRNA as inhibitors of STAT3 expression in breast tumor cells. The results also demonstrate an improved efficacy for chemotherapeutic drugs in combination with lipid-substituted low molecular weight PEI-LA/STAT3-siRNA complexes in comparison to drug therapy alone.
Collapse
Affiliation(s)
- Arash Falamarzian
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | | | | | | | |
Collapse
|
41
|
Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, Pavan L, Lessi F, Zambello R, Trentin L, Adami F, Ruzzene M, Pinna LA, Semenzato G, Piazza F. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol 2013; 6:78. [PMID: 24283803 PMCID: PMC3852751 DOI: 10.1186/1756-8722-6-78] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/17/2023] Open
Abstract
Background The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma. Methods We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells. Results CK2α was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade. Conclusions These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.
Collapse
|
42
|
LI FENGSHENG, GAO LING, WANG ZHIDONG, DONG BO, YAN TAO, JIANG QISHENG, CHEN XIAOHUA. Radiation enhances the invasion abilities of pulmonary adenocarcinoma cells via STAT3. Mol Med Rep 2013; 7:1883-8. [DOI: 10.3892/mmr.2013.1441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/12/2013] [Indexed: 11/06/2022] Open
|
43
|
Sonnenblick A, Uziely B, Nechushtan H, Kadouri L, Galun E, Axelrod JH, Katz D, Daum H, Hamburger T, Maly B, Allweis TM, Peretz T. Tumor STAT3 tyrosine phosphorylation status, as a predictor of benefit from adjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 2013; 138:407-13. [PMID: 23446809 DOI: 10.1007/s10549-013-2453-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/18/2013] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signaling pathways. In breast cancer cell lines and xenograft models activated STAT3 participates in breast tumorigenesis, while studies in humans have demonstrated that phosphorylated (tyrosine705)-STAT3 is a marker of good prognosis in breast cancer. In order to resolve this paradox we hypothesized that in clinic, phospho-STAT3 has a predictive role of benefit from adjuvant chemotherapy; therefore the goal of this study was to determine the usefulness of phospho-STAT3 status as a predictor of benefit from adjuvant chemotherapy in breast cancer patients. Immunohistochemical analysis of phospho-STAT3 was performed on a tissue microarray of breast cancer specimens. The expression pattern of phospho-STAT3 was retrospectively correlated with pathological parameters and overall survival in patients who were or were not treated with adjuvant chemotherapy. Of 375 tissue specimens interpretable for phospho-STAT3, 134 (36 %) exhibited positive phospho-STAT3 nuclear expression. Among 234 patients who received adjuvant therapy, those with tumors displaying positive phospho-STAT3 nuclear expression had a better ten-year rate of overall survival than patients with tumors displaying negative phospho-STAT3 nuclear expression (P = 0.001). Among patients who did not received adjuvant chemotherapy, positive phospho-STAT3 nuclear status was not correlated with increased overall survival (P = 0.54). Positive phospho-STAT3 was correlated with improved overall survival only among patients who received adjuvant chemotherapy in a multivariate analysis adjusted for stage, grade, hormonal status, Her2 status, and age, irrespective of the chemotherapy regimen received (hazard ratio for death, 0.35 [95 % CI 0.188-0.667]; P = 0.001). These findings support the role of phospho-STAT3 as a marker of favorable outcome in breast cancer patients treated with adjuvant chemotherapy. Whether phospho-STAT3 has a predictive role of benefit from adjuvant chemotherapy has to be validated on prospective, randomized, controlled studies.
Collapse
Affiliation(s)
- Amir Sonnenblick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12000, Jerusalem, 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim SM, Kwon OJ, Hong YK, Kim JH, Solca F, Ha SJ, Soo RA, Christensen JG, Lee JH, Cho BC. Activation of IL-6R/JAK1/STAT3 Signaling Induces De Novo Resistance to Irreversible EGFR Inhibitors in Non–Small Cell Lung Cancer with T790M Resistance Mutation. Mol Cancer Ther 2012; 11:2254-64. [DOI: 10.1158/1535-7163.mct-12-0311] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Ahn YH, Yi H, Shin JY, Lee KD, Shin SP, Lee SJ, Song J, Chun KH. STAT3 silencing enhances the efficacy of the HSV.tk suicide gene in gastrointestinal cancer therapy. Clin Exp Metastasis 2012; 29:359-69. [PMID: 22350508 DOI: 10.1007/s10585-012-9458-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 02/01/2012] [Indexed: 02/03/2023]
Abstract
Aberrant activation of Signal Transducer and Activator of Transcription 3 (STAT3) signaling has been shown to be associated with uncontrolled cell proliferation and suppression of host-immune surveillance. Conversely, silencing STAT3 can have the dual effects of inhibiting cancer cell proliferation and inducing anti-tumor immune responses. Here, we report on the effects of STAT3 silencing on suicide gene therapy with thymidine kinase (tk). STAT3 silencing by siRNA inhibited the proliferation of AGS human gastric cancer cells through G1 cell cycle arrest, decreased levels of immune-suppressive cytokines, and increased levels of immune-activating cytokines. CT26 mouse colon adenocarcinoma cells, in which STAT3 expression was knocked-down by a STAT3 shRNA-containing lentivirus, grew more slowly in syngenic model Balb/c mice than control CT26 cells. Moreover, we found that STAT3 silencing augmented the efficacy of suicide gene therapy in CT26 cell xenografted mice. When we administrated adenoviruses harboring the herpes simplex virus thymidine kinase gene (Ad5.CMV.HSV.tk) into STAT3-silenced CT26 cell tumors, extensive apoptosis was observed and there was a significant reduction in the size of CT26 cell tumors. STAT3 silencing also enhanced the recruitment and cytotoxic activity of CD3(+)CD8(+) T-cells, and changed the cytokine expression pattern of CT26 cell tumors, reflecting augmentation of anti-cancer immune responses. We conclude that combining suicide gene therapy with STAT3 silencing can result in enhanced anti-cancer effects.
Collapse
Affiliation(s)
- Ye-Hyeon Ahn
- Gastric Cancer Branch, Division of Translational & Clinical Research I, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Inhibition of activated Stat3 reverses drug resistance to chemotherapeutic agents in gastric cancer cells. Cancer Lett 2012; 315:198-205. [DOI: 10.1016/j.canlet.2011.10.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/07/2011] [Accepted: 10/09/2011] [Indexed: 02/07/2023]
|
47
|
Chen W, Shen X, Xia X, Xu G, Ma T, Bai X, Liang T. NSC 74859-mediated inhibition of STAT3 enhances the anti-proliferative activity of cetuximab in hepatocellular carcinoma. Liver Int 2012; 32:70-7. [PMID: 22098470 DOI: 10.1111/j.1478-3231.2011.02631.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/30/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Cetuximab [an epidermal growth factor receptor (EGFR) inhibitor], which was shown to be effective in rectal and non-small cell lung cancers (NSCLCs), was only modestly effective in clinical trials of hepatocellular carcinoma (HCC). STAT3, which is thought to be a determinant of HCC sensitivity to antitumour drugs, may be involved. AIMS To evaluate the efficacy of combination therapy using cetuximab and NSC 74859 (a novel STAT3 inhibitor) in EGFR and STAT3 overexpressing hepatoma cells. METHODS Hepatoma cell lines were treated with cetuximab, NSC 74859 or a combination of both drugs. Efficacy of treatment was evaluated by determining cell viability using MTT assays and proliferation by cell counting. Expression and activation of STAT3 were determined using Western blot analysis. We evaluated the role of STAT3 in single and combination therapy using siRNA-mediated knock-down of STAT3 or STAT3 overexpression strategies. RESULTS HepG2 and Huh-7 cells, which had lower levels of pSTAT3 than SK-HEP1 cells, were more sensitive to cetuximab treatment when compared with SK-HEP1 cells. Although none of these cell lines was sensitive to NSC 74859 alone, NSC 74859 potentiated the antiproliferative effect of cetuximab in all three cell lines. siRNA knock-down of STAT3 increased the sensitivity of these cell lines to cetuximab, whereas STAT3 overexpression antagonized these effects. CONCLUSIONS Enhanced growth inhibition in hepatoma cells treated with both NSC 74859 and cetuximab suggests that cetuximab resistance is probably mediated via STAT3. Combination therapy using both inhibitors of EGFR and STAT3 signalling warrants further investigation under in vivo condition.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | | | | | | | | | | | | |
Collapse
|
48
|
McGee AM, Douglas DL, Liang Y, Hyder SM, Baines CP. The mitochondrial protein C1qbp promotes cell proliferation, migration and resistance to cell death. Cell Cycle 2011; 10:4119-27. [PMID: 22101277 DOI: 10.4161/cc.10.23.18287] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Complement 1q-Binding Protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration, and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation, and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP, and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels, and decreased cell migration compared to control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than anti-tumor, role for C1qbp, and indicate that C1qbp could serve as a molecular target for cancer therapeutics.
Collapse
Affiliation(s)
- Allison M McGee
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | | | | | | |
Collapse
|
49
|
Azare J, Doane A, Leslie K, Chang Q, Berishaj M, Nnoli J, Mark K, Al-Ahmadie H, Gerald W, Hassimi M, Viale A, Stracke M, Lyden D, Bromberg J. Stat3 mediates expression of autotaxin in breast cancer. PLoS One 2011; 6:e27851. [PMID: 22140473 PMCID: PMC3225372 DOI: 10.1371/journal.pone.0027851] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/26/2011] [Indexed: 12/17/2022] Open
Abstract
We determined that signal transducer and activator of transcription 3 (Stat3) is tyrosine phosphorylated in 37% of primary breast tumors and 63% of paired metastatic axillary lymph nodes. Examination of the distribution of tyrosine phosphorylated (pStat3) in primary tumors revealed heterogenous expression within the tumor with the highest levels found in cells on the edge of tumors with relatively lower levels in the central portion of tumors. In order to determine Stat3 target genes that may be involved in migration and metastasis, we identified those genes that were differentially expressed in primary breast cancer samples as a function of pStat3 levels. In addition to known Stat3 transcriptional targets (Twist, Snail, Tenascin-C and IL-8), we identified ENPP2 as a novel Stat3 regulated gene, which encodes autotaxin (ATX), a secreted lysophospholipase which mediates mammary tumorigenesis and cancer cell migration. A positive correlation between nuclear pStat3 and ATX was determined by immunohistochemical analysis of primary breast cancer samples and matched axillary lymph nodes and in several breast cancer derived cell lines. Inhibition of pStat3 or reducing Stat3 expression led to a decrease in ATX levels and cell migration. An association between Stat3 and the ATX promoter, which contains a number of putative Stat3 binding sites, was determined by chromatin immunoprecipitation. These observations suggest that activated Stat3 may regulate the migration of breast cancer cells through the regulation of ATX.
Collapse
Affiliation(s)
- Janeen Azare
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ashley Doane
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kenneth Leslie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Qing Chang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Marjan Berishaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jennifer Nnoli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kevin Mark
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - William Gerald
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maryam Hassimi
- Genomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Agnes Viale
- Genomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mary Stracke
- Laboratory of Pathology, Division of Clinical Sciences, NCI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Lyden
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (DL); (JB)
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (DL); (JB)
| |
Collapse
|
50
|
Signal transducer and activator of transcription 3 (STAT3): a promising target for anticancer therapy. Future Med Chem 2011; 3:567-97. [PMID: 21526897 DOI: 10.4155/fmc.11.22] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic protein whose inhibition is sought for the prevention and treatment of cancer. In this review, the validated therapeutic strategy to block aberrant activity of STAT3 in many tumor cell lines is evaluated by presenting the most promising inhibitors to date. The compounds are discussed in classes based on their different mechanisms of action, which are critically explained. In addition, their future clinical development as anticancer agents is considered. Furthermore, the efforts devoted to the comprehension of the structure-activity relationships and to the identification of the biological effects are brought to attention. The synthetic and technological approaches recently developed to overcome the difficulties in the obtainment of clinically suitable drugs are also presented.
Collapse
|