1
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
2
|
Ottaiano A, Santorsola M, Circelli L, Trotta AM, Izzo F, Perri F, Cascella M, Sabbatino F, Granata V, Correra M, Tarotto L, Stilo S, Fiore F, Martucci N, Rocca AL, Picone C, Muto P, Borzillo V, Belli A, Patrone R, Mercadante E, Tatangelo F, Ferrara G, Di Mauro A, Scognamiglio G, Berretta M, Capuozzo M, Lombardi A, Galon J, Gualillo O, Pace U, Delrio P, Savarese G, Scala S, Nasti G, Caraglia M. Oligo-Metastatic Cancers: Putative Biomarkers, Emerging Challenges and New Perspectives. Cancers (Basel) 2023; 15:cancers15061827. [PMID: 36980713 PMCID: PMC10047282 DOI: 10.3390/cancers15061827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Some cancer patients display a less aggressive form of metastatic disease, characterized by a low tumor burden and involving a smaller number of sites, which is referred to as "oligometastatic disease" (OMD). This review discusses new biomarkers, as well as methodological challenges and perspectives characterizing OMD. Recent studies have revealed that specific microRNA profiles, chromosome patterns, driver gene mutations (ERBB2, PBRM1, SETD2, KRAS, PIK3CA, SMAD4), polymorphisms (TCF7L2), and levels of immune cell infiltration into metastases, depending on the tumor type, are associated with an oligometastatic behavior. This suggests that OMD could be a distinct disease with specific biological and molecular characteristics. Therefore, the heterogeneity of initial tumor burden and inclusion of OMD patients in clinical trials pose a crucial methodological question that requires responses in the near future. Additionally, a solid understanding of the molecular and biological features of OMD will be necessary to support and complete the clinical staging systems, enabling a better distinction of metastatic behavior and tailored treatments.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Anna Maria Trotta
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Correra
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Luca Tarotto
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Salvatore Stilo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Fiore
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Nicola Martucci
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Antonello La Rocca
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Carmine Picone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Paolo Muto
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Valentina Borzillo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Andrea Belli
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Edoardo Mercadante
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Gerardo Ferrara
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Annabella Di Mauro
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Giosué Scognamiglio
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | | | - Angela Lombardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ugo Pace
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Paolo Delrio
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Stefania Scala
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
3
|
Mazzoni M, Todoerti K, Agnelli L, Minna E, Pagliardini S, Di Marco T, Borrello MG, Neri A, Greco A. Transcriptomic landscape of TIMP3 oncosuppressor activity in thyroid carcinoma. Cancer Cell Int 2022; 22:400. [PMID: 36503426 PMCID: PMC9743531 DOI: 10.1186/s12935-022-02811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most frequent thyroid tumor. The tissue inhibitor of metalloproteinase-3 (TIMP3) gene encodes a matrix metalloproteinases inhibitor that exerts a tumor suppressor role in several tumor types. TIMP3 is frequently downregulated in PTC by promoter methylation. We have previously functionally demonstrated that TIMP3 exerts an oncosuppressor role in PTC: TIMP3 restoration in the PTC-derived NIM1 cell line affects in vitro migration, invasion and adhesive capability, while reduces tumor growth, angiogenesis and macrophage recruitment in vivo. To get a deeper insight on the mediators of TIMP3 oncosuppressor activity in thyroid tumors, here we focused on the TIMP3 related transcriptome. METHODS TCGA database was used for investigating the genes differentially expressed in PTC samples with low and high TIMP3 expression. Genome wide expression analysis of clones NIM1-T23 (expressing a high level of TIMP3 protein) and NIM1-EV (control empty vector) was performed. Gene sets and functional enrichment analysis with clusterProfiler were applied to identify the modulated biological processes and pathways. CIBERSORT was used to evaluate the distribution of different immunological cell types in TCGA-PTC tumor samples with different TIMP3 expression levels. Real time PCR was performed for the validation of selected genes. RESULTS Thyroid tumors with TIMP3-high expression showed a down-modulation of inflammation-related gene sets, along with a reduced protumoral hematopoietic cells fraction; an enrichment of cell adhesion functions was also identified. Similar results were obtained in the TIMP3-overexpessing NIM1 cells in vitro model, where a down-regulation of immune-related function gene sets, some of which also identified in tumor samples, was observed. Interestingly, through enrichment analysis, were also recognized terms related to cell adhesion, extracellular matrix organization, blood vessel maintenance and vascular process functions that have been found modulated in our previous in vitro and in vivo functional studies. CONCLUSIONS Our results highlight the correlation of TIMP3 expression levels with the regulation of inflammatory functions and the immune infiltration composition associated with different PTC prognosis, thus providing a broader view on the oncosuppressor role of TIMP3 in PTC.
Collapse
Affiliation(s)
- M. Mazzoni
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - K. Todoerti
- grid.417893.00000 0001 0807 2568Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - L. Agnelli
- grid.417893.00000 0001 0807 2568Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - E. Minna
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - S. Pagliardini
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - T. Di Marco
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M. G. Borrello
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - A. Neri
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - A. Greco
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
4
|
Liu G, Li D, Zhang L, Xu Q, Zhuang D, Liu P, Hu L, Deng H, Sun J, Wang S, Zheng B, Guo J, Wu X. Phenformin Down-Regulates c-Myc Expression to Suppress the Expression of Pro-Inflammatory Cytokines in Keratinocytes. Cells 2022; 11:cells11152429. [PMID: 35954273 PMCID: PMC9368166 DOI: 10.3390/cells11152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The treatment of many skin inflammation diseases, such as psoriasis and atopic dermatitis, is still a challenge and inflammation plays important roles in multiple stages of skin tumor development, including initiation, promotion and metastasis. Phenformin, a biguanide drug, has been shown to play a more efficient anti-tumor function than another well-known biguanide drug, metformin, which has been reported to control the expression of pro-inflammatory cytokines; however, little is known about the effects of phenformin on skin inflammation. This study used a mouse acute inflammation model, ex vivo skin organ cultures and in vitro human primary keratinocyte cultures to demonstrate that phenformin can suppress acute skin inflammatory responses induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and significantly suppresses the pro-inflammatory cytokines IL-1β, IL-6 and IL-8 in human primary keratinocytes in vitro. The suppression of pro-inflammatory cytokine expression by phenformin was not directly through regulation of the MAPK or NF-κB pathways, but by controlling the expression of c-Myc in human keratinocytes. We demonstrated that the overexpression of c-Myc can induce pro-inflammatory cytokine expression and counteract the suppressive effect of phenformin on cytokine expression in keratinocytes. In contrast, the down-regulation of c-Myc produces effects similar to phenformin, both in cytokine expression by keratinocytes in vitro and in skin inflammation in vivo. Finally, we showed that phenformin, as an AMPK activator, down-regulates the expression of c-Myc through regulation of the AMPK/mTOR pathways. In summary, phenformin inhibits the expression of pro-inflammatory cytokines in keratinocytes through the down-regulation of c-Myc expression to play an anti-inflammation function in the skin.
Collapse
Affiliation(s)
- Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Dingyang Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Liwei Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Qiuping Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Ling Hu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
- Correspondence: (J.G.); (X.W.)
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
- Correspondence: (J.G.); (X.W.)
| |
Collapse
|
5
|
Sun R, Gao DS, Shoush J, Lu B. The IL-1 family in tumorigenesis and antitumor immunity. Semin Cancer Biol 2022; 86:280-295. [DOI: 10.1016/j.semcancer.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
|
6
|
Ma B, Chen X, Zhao Z, Yin X, Ji Q, Zhou Y, Ma C, Wang J. Coexisting CLT in PTC is an independent predictor of tumor aggressiveness for patients aged under 55: a retrospective analysis of 635 patients. BMC Endocr Disord 2022; 22:55. [PMID: 35255870 PMCID: PMC8900407 DOI: 10.1186/s12902-022-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study was aimed at investigating the potential role of chronic lymphocytic thyroiditis (CLT) in papillary thyroid cancer (PTC) aggressiveness for patients aged below 55, as well as to figure out factors influencing potential recurrence risk in different age groups. METHODS A total of 635 adult patients were retrospectively analyzed. 188 patients were diagnosed with coexistent CLT and the remaining 447 were classified as non-CLT. Then the characteristics of CLT-coexisted patients and non-CLT ones were compared respectively when patients were aged ≥ 55 years or below. The association among postoperative clinicopathological features were also analyzed using multivariate regression. In addition, the prognostic value of several variables relating to high-risk recurrence were estimated within different age groups. RESULTS When divided in two age groups (55 years as the borderline), non-CLT group (aged below 55 years) had a remarkable frequency of small size lesion (Dmax ≤ 1 cm) compared with CLT-coexisted patients (54.6% to 43.0%, p = 0.02). In addition, non-CLT patients tended to have intrathyroidal extension as opposed to those with coexistent CLT (20.2% to 28.2%, p = 0.05). In multivariate analysis, CLT still significantly acted as an independent risk factor of greater lesion size (Dmin > 1 cm) (OR = 1.7, p = 0.02) and mildly promoted gross extrathyroidal extension (ETE) (OR = 1.4, p = 0.06). However, associations didn't emerge in the characteristics mentioned above with CLT when patients were ≥ 55 years old. The prognostic value of CLT in high-risk recurrence was evident only in patients aged 35-44 years. (OR = 2.4, 95%CI:1.2-5.4, p = 0.02). Greater lesion size independently promoted gross ETE, no matter patients were aged above 55 years or not. Its prognostic value of high-risk recurrence was significant throughout all age groups. CONCLUSION These findings revealed that CLT coexistence might be the unfavorable factor of PTC aggressiveness in patients aged below 55 years. Its role as well as greater tumor size may potentially predict higher recurrence risk according to results figured out in the prediction model.
Collapse
Affiliation(s)
- Bing'e Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiyi Chen
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengping Zhao
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Yin
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin Ji
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yifan Zhou
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Jianhua Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
7
|
Qi Y, Qadir MMF, Hastreiter AA, Fock RA, Machi JF, Morales AA, Wang Y, Meng Z, Rodrigues CO. Endothelial c-Myc knockout enhances diet-induced liver inflammation and fibrosis. FASEB J 2022; 36:e22077. [PMID: 34878671 PMCID: PMC11367571 DOI: 10.1096/fj.202101086r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
Endothelial cells play an essential role in inflammation through synthesis and secretion of chemoattractant cytokines and expression of adhesion molecules required for inflammatory cell attachment and infiltration. The mechanisms by which endothelial cells control the pro-inflammatory response depend on the type of inflammatory stimuli, endothelial cell origin, and tissue involved. In the present study, we investigated the role of the transcription factor c-Myc in inflammation using a conditional knockout mouse model in which Myc is specifically deleted in the endothelium. At a systemic level, circulating monocytes, the chemokine CCL7, and the extracellular-matrix protein osteopontin were significantly increased in endothelial c-Myc knockout (EC-Myc KO) mice, whereas the cytokine TNFSF11 was downregulated. Using an experimental model of steatohepatitis, we investigated the involvement of endothelial c-Myc in diet-induced inflammation. EC-Myc KO animals displayed enhanced pro-inflammatory response, characterized by increased expression of pro-inflammatory cytokines and leukocyte infiltration, and worsened liver fibrosis. Transcriptome analysis identified enhanced expression of genes associated with inflammation, fibrosis, and hepatocellular carcinoma in EC-Myc KO mice relative to control (CT) animals after short-exposure to high-fat diet. Analysis of a single-cell RNA-sequencing dataset of human cirrhotic livers indicated downregulation of MYC in endothelial cells relative to healthy controls. In summary, our results suggest a protective role of endothelial c-Myc in diet-induced liver inflammation and fibrosis. Targeting c-Myc and its downstream pathways in the endothelium may constitute a potential strategy for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Yue Qi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Mirza M. F. Qadir
- Deming Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Araceli A. Hastreiter
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Ricardo A. Fock
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Jacqueline F. Machi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Alejo A. Morales
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Claudia O. Rodrigues
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Ottaiano A, Santorsola M, Caraglia M, Circelli L, Gigantino V, Botti G, Nasti G. Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease? Transl Oncol 2021; 14:101131. [PMID: 34034007 PMCID: PMC8144733 DOI: 10.1016/j.tranon.2021.101131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) originates as consequence of multiple genetic alterations. Some of the involved genes have been extensively studied (APC, TP53, KRAS, SMAD4, PIK3CA, MMR genes) in highly heterogeneous and poly-metastatic cohorts. However, about 10% of metastatic CRC patients presents with an indolent oligo-metastatic disease differently from other patients with poly-metastatic and aggressive clinical course. Which are the genetic dynamics underlying the differences between oligo- and poly-metastatic CRC? The understanding of the genetic trajectories (primary→metastatic) of CRC, in patients selected to represent homogenous clinical models, is crucial to make genotype/phenotype correlations and to identify the molecular events pushing the disease towards an increasing malignant phenotype. This information is crucial to plan innovative therapeutic strategies aimed to reverse or inhibit these phenomena. In the present study, we review the genetic evolution of CRC with the intent to give a developmental perspective on the border line between oligo- and poly-metastatic diseases.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio, 7 80138, Naples, Italy; Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031, Ariano Irpino, Italy
| | - Luisa Circelli
- AMES-Centro Polidiagnostico Strumentale, 80013, Casalnuovo di Napoli, Italy
| | - Valerio Gigantino
- Innovalab scarl, Molecular Biology, Centro Direzionale, isola A2, 80143, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| |
Collapse
|
9
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
10
|
Huang L, Han H, Zhou L, Chen X, Xu Q, Xie J, Zhan P, Chen S, Lv T, Song Y. Evaluation of the Lung Immune Prognostic Index in Non-Small Cell Lung Cancer Patients Treated With Systemic Therapy: A Retrospective Study and Meta-Analysis. Front Oncol 2021; 11:670230. [PMID: 34249708 PMCID: PMC8264771 DOI: 10.3389/fonc.2021.670230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
The lung immune prognostic index (LIPI) has been shown to be an important prognostic marker for various tumors. However, the prognostic value of LIPI among non-small cell lung cancer (NSCLC) patients treated with systemic therapy remains controversial. We aimed to evaluate survival status according to LIPI among NSCLC patients receiving different forms of systemic therapy at our institution. We also performed a meta-analysis of articles from PubMed and Embase to illustrate this question. For our cohort, we found that good LIPI was associated with better overall survival (OS) among 91 patients on immunotherapy, 329 patients on targeted therapy, and 570 patients on chemotherapy. For the meta-analysis, a total of eight studies with 8,721 patients were included. Pooled results showed that a higher LIPI (those with 1 or 2 factors) was associated with poor overall progression-free survival (PFS) (hazard ratio [HR], 1.57; 95% confidence interval [CI], 1.45−1.71) and OS (HR, 2.01; 95% CI, 1.75−2.31). Subgroup analyses showed that a higher LIPI was related to poor survival among patients prescribed different systemic therapies: immunotherapy (OS HR, 2.50; 95% CI, 1.99–3.13; PFS HR, 1.77; 95% CI, 1.56–2.01), chemotherapy (OS HR, 1.58; 95% CI, 1.34–1.86; PFS HR, 1.38; 95% CI, 1.23–1.55), and targeted therapy (OS HR; 2.15, 95% CI, 1.57–2.96; PFS HR, 1.60; 95% CI, 1.25–2.06). The study shows that the LIPI is a clinically significant prognostic factor for NSCLC patients receiving systemic therapy.
Collapse
Affiliation(s)
- Litang Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Southeast University, Sch Med, Nanjing, China
| | - Hedong Han
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xi Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qiuli Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingyuan Xie
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Si Chen
- Department of Ophthalmology, Affiliated Jinling Hospital, School of Medicine, Southeast University, Sch Med, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Southeast University, Sch Med, Nanjing, China.,Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Southeast University, Sch Med, Nanjing, China
| |
Collapse
|
11
|
Gammone MA, Danese A, D'Orazio N. Anti-Angiogenetic Agents from the Sea: A New Potential Preventive and Therapeutic Wave? Anticancer Agents Med Chem 2021; 20:2005-2011. [PMID: 32628594 DOI: 10.2174/1871520620666200705215226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
Angiogenesis, generation of novel blood vessels from pre-existing ones, is a prerequisite for the physiological expansion, reparation, and functioning of body tissues and systems. However, it is also involved in some pathological inflammatory situations, such as oncologic and chronic degenerative disorders. The correct angiogenesis and neo-vascular response also accompanies wound healing, interaction with biocompatible materials, and tissue regeneration. In this respect, natural products deriving from terrestrial and marine plants/organisms may prevent and even cure various angiogenesis-dependent disorders. Bioactive natural compounds with antioxidant and anti-inflammatory activities could concur to maintain adequate vascularization and endothelial functions and inhibit angiogenesis, thus controlling tumor development. This review aims to illustrate the role of some marine-derived compounds as anti-angiogenetic agents.
Collapse
Affiliation(s)
- Maria A Gammone
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella Danese
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Nicolantonio D'Orazio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
12
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
13
|
Lee LL, Kim SJ, Hahn YI, Jang JH, Saeidi S, Surh YJ. Stabilization of C/EBPβ through direct interaction with STAT3 in H-Ras transformed human mammary epithelial cells. Biochem Biophys Res Commun 2021; 546:130-137. [PMID: 33582555 DOI: 10.1016/j.bbrc.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/03/2021] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays important roles in cancer-associated inflammation by controlling expression of proinflammatory cytokines and chemokines. Recent studies suggest that C/EBPβ (CCAAT-enhancer binding protein beta) and STAT3 synergistically stimulate cancer cell proliferation and epithelial-mesenchymal transition. C/EBPβ is a leucine-zipper transcription factor that regulates expression of a variety of inflammatory cytokines or chemokines, such as IL-8, G-CSF (granulocyte colony stimulating factor), and GM-CSF (granulocyte macrophage colony stimulating factor) which induce neutrophil infiltration and differentiation. However, molecular mechanisms by which STAT3 and C/EBPβ cooperatively interact had not been fully elucidated. In this study, we found that the level of C/EBPβ protein, but not that of its mRNA transcript, was decreased in the absence of STAT3 in H-Ras transformed human mammary epithelial (H-Ras MCF10A) cells. In addition, silencing STAT3 dramatically induced ubiquitination of C/EBPβ for proteasomal degradation. Furthermore, direct interaction between STAT3 and C/EBPβ was confirmed by immunoprecipitation and proximity ligation assays. Taken together, these results suggest that STAT3 stabilizes C/EBPβ, thereby promoting cancer-associated inflammation.
Collapse
Affiliation(s)
- Lil-Li Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Young-Il Hahn
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
14
|
Ottaiano A, Caraglia M, Di Mauro A, Botti G, Lombardi A, Galon J, Luce A, D’Amore L, Perri F, Santorsola M, Hermitte F, Savarese G, Tatangelo F, Granata V, Izzo F, Belli A, Scala S, Delrio P, Circelli L, Nasti G. Evolution of Mutational Landscape and Tumor Immune-Microenvironment in Liver Oligo-Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12103073. [PMID: 33096795 PMCID: PMC7589866 DOI: 10.3390/cancers12103073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary About 10% of colorectal cancer patients presents with oligo-metastatic disease. The aim of our study was to assess genetic and immunologic dynamics underlying the oligo-metastatic status, evaluating genotype-phenotype correlations in a clean and homogeneous clinical model of liver-limited metastatic colorectal cancer. We show that loss of KRAS and SMAD4 mutations characterizes the oligo-metastatic disease while a progressive mutational evolution (gain in KRAS, PI3KCA, BRAF and SMAD4) is observed in poly-metastatic evolving disease. Furthermore, high granzyme-B+ T-cells infiltration is found in oligo-metastatic lesions. This study can support innovative strategies to monitor clinical evolution and to induce regressive genetic trajectories in cancer. Abstract Genetic dynamics underlying cancer progression are largely unknown and several genes involved in highly prevalent illnesses (e.g., hypertension, obesity, and diabetes) strongly concur to cancer phenotype heterogeneity. To study genotype-phenotype relationships contributing to the mutational evolution of colorectal cancer (CRC) with a focus on liver metastases, we performed genome profiling on tumor tissues of CRC patients with liver metastatic disease and no co-morbidities. We studied 523 cancer-related genes and tumor-immune microenvironment characteristics in primary and matched metastatic tissues. We observed a loss of KRAS and SMAD4 alterations and a high granzyme-B+ T-cell infiltration when the disease did not progress. Conversely, gain in KRAS, PIK3CA and SMAD4 alterations and scarce granzyme-B+ T-cells infiltration were observed when the tumor evolved towards a poly-metastatic spread. These findings provide novel insights into the identification of tumor oligo-metastatic status, indicating that some genes are on a boundary line between these two clinical settings (oligo- vs. poly-metastatic CRC). We speculate that the identification of these genes and modification of their evolution could be a new approach for anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
- Correspondence: ; Tel.: +39-081-590-3510; Fax: +39-081-771-4224
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.C.); (A.L.); (A.L.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031 Ariano Irpino, Italy
| | - Annabella Di Mauro
- Department of Pathology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (A.D.M.); (G.B.); (F.T.)
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (A.D.M.); (G.B.); (F.T.)
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.C.); (A.L.); (A.L.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031 Ariano Irpino, Italy
| | - Jerome Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, F-75006 Paris, France;
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.C.); (A.L.); (A.L.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031 Ariano Irpino, Italy
| | - Luigi D’Amore
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy; (L.D.); (G.S.); (L.C.)
| | - Francesco Perri
- Head and Neck Cancer Medical Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Mariachiara Santorsola
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | | | - Giovanni Savarese
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy; (L.D.); (G.S.); (L.C.)
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (A.D.M.); (G.B.); (F.T.)
| | - Vincenza Granata
- Department of Radiology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Francesco Izzo
- Hepatic Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (F.I.); (A.B.)
| | - Andrea Belli
- Hepatic Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (F.I.); (A.B.)
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumori, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Paolo Delrio
- Colorectal Abdominal Surgery Division, Istituto Nazionale Tumori, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Luisa Circelli
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy; (L.D.); (G.S.); (L.C.)
| | - Guglielmo Nasti
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| |
Collapse
|
15
|
The Gene scb-1 Underlies Variation in Caenorhabditis elegans Chemotherapeutic Responses. G3-GENES GENOMES GENETICS 2020; 10:2353-2364. [PMID: 32385045 PMCID: PMC7341127 DOI: 10.1534/g3.120.401310] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most organisms and has broad implications for medicine and agriculture. The identification of the molecular mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our understanding of both genetic and phenotypic complexity by characterizing novel gene functions. Quantitative trait locus (QTL) mapping has been used to identify several pleiotropic regions in many organisms. However, gene knockout studies are needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we use a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to identify a single large-effect QTL on the center of chromosome V associated with variation in responses to eight chemotherapeutics. We validate this QTL with near-isogenic lines and pair genome-wide gene expression data with drug response traits to perform mediation analysis, leading to the identification of a pleiotropic candidate gene, scb-1, for some of the eight chemotherapeutics. Using deletion strains created by genome editing, we show that scb-1, which was previously implicated in response to bleomycin, also underlies responses to other double-strand DNA break-inducing chemotherapeutics. This finding provides new evidence for the role of scb-1 in the nematode drug response and highlights the power of mediation analysis to identify causal genes.
Collapse
|
16
|
Mao X, Xiao X, Chen D, Yu B, He J. Tea and Its Components Prevent Cancer: A Review of the Redox-Related Mechanism. Int J Mol Sci 2019; 20:E5249. [PMID: 31652732 PMCID: PMC6862630 DOI: 10.3390/ijms20215249] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a worldwide epidemic and represents a major threat to human health and survival. Reactive oxygen species (ROS) play a dual role in cancer cells, which includes both promoting and inhibiting carcinogenesis. Tea remains one of the most prevalent beverages consumed due in part to its anti- or pro-oxidative properties. The active compounds in tea, particularly tea polyphenols, can directly or indirectly scavenge ROS to reduce oncogenesis and cancerometastasis. Interestingly, the excessive levels of ROS induced by consuming tea could induce programmed cell death (PCD) or non-PCD of cancer cells. On the basis of illustrating the relationship between ROS and cancer, the current review discusses the composition and efficacy of tea including the redox-relative (including anti-oxidative and pro-oxidative activity) mechanisms and their role along with other components in preventing and treating cancer. This information will highlight the basis for the clinical utilization of tea extracts in the prevention or treatment of cancer in the future.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Xiangjun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
17
|
Li M, Li C, Liu WX, Liu C, Cui J, Li Q, Ni H, Yang Y, Wu C, Chen C, Zhen X, Zeng T, Zhao M, Chen L, Wu J, Zeng R, Chen L. Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. J Mol Cell Biol 2019; 9:489-503. [PMID: 28655161 PMCID: PMC5907842 DOI: 10.1093/jmcb/mjx021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Little is known about how chronic inflammation contributes to the progression of hepatocellular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c-myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocarcinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.
Collapse
Affiliation(s)
- Meiyi Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Xin Liu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of sciences, Beijing, China
| | - Conghui Liu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of sciences, Beijing, China
| | - Jingru Cui
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ni
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingcheng Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Chaochao Wu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Chunlei Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Xing Zhen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Mujun Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Mulligan LM. GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential. Front Physiol 2019; 9:1873. [PMID: 30666215 PMCID: PMC6330338 DOI: 10.3389/fphys.2018.01873] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
The Glial cell line-derived neurotrophic Family Ligands (GFL) are soluble neurotrophic factors that are required for development of multiple human tissues, but which are also important contributors to human cancers. GFL signaling occurs through the transmembrane RET receptor tyrosine kinase, a well-characterized oncogene. GFL-independent RET activation, through rearrangement or point mutations occurs in thyroid and lung cancers. However, GFL-mediated activation of wildtype RET is an increasingly recognized mechanism promoting tumor growth and dissemination of a much broader group of cancers. RET and GFL expression have been implicated in metastasis or invasion in diverse human cancers including breast, pancreatic, and prostate tumors, where they are linked to poorer patient prognosis. In addition to directly inducing tumor growth in these diseases, GFL-RET signaling promotes changes in the tumor microenvironment that alter the surrounding stroma and cellular composition to enhance tumor invasion and metastasis. As such, GFL RET signaling is an important target for novel therapeutic approaches to limit tumor growth and spread and improve disease outcomes.
Collapse
Affiliation(s)
- Lois M. Mulligan
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
19
|
Interleukin-1α as an intracellular alarmin in cancer biology. Semin Immunol 2018; 38:3-14. [PMID: 30554608 DOI: 10.1016/j.smim.2018.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
|
20
|
Triulzi T, Forte L, Regondi V, Di Modica M, Ghirelli C, Carcangiu ML, Sfondrini L, Balsari A, Tagliabue E. HER2 signaling regulates the tumor immune microenvironment and trastuzumab efficacy. Oncoimmunology 2018; 8:e1512942. [PMID: 30546951 PMCID: PMC6287794 DOI: 10.1080/2162402x.2018.1512942] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Through whole-transcriptome profiling of HER2+ breast carcinomas (BCs), we previously showed that those sensitive to trastuzumab are addicted to this oncoprotein and are enriched in immune pathways, raising the hypothesis that HER2 itself regulates immune cell recruitment. In the present study we investigated the relationship between HER2 activity and the pro-trastuzumab tumor immune milieu. Gene expression profiling and immunohistochemistry analysis of 53 HER2+ BCs showed that trastuzumab-sensitive tumors expressed significantly higher levels of chemokines involved in immune cell recruitment, with higher infiltration of T cells and monocytes, and higher levels of PD-1 ligands than tumors that do not benefit from trastuzumab. In vitro analysis in HER2+ BC cells revealed that CCL2 production was induced by HER2 stimulation with EGF/HRG via the PI3K-NF-kB axis, and down-modulated by HER2 inhibition with trastuzumab. CCL2 expression was higher in HER2+/ER- than HER2+/ER+ BC cell lines, and degradation of ER by fulvestrant induced an enhancement in NF-κB transcriptional activity and consequent CCL2 expression. Trastuzumab efficacy relied on CCL2 levels and monocytes present in the tumor microenvironment in FVB mice bearing HER2+ mammary carcinoma cells. HER2 signals were also found to sustain the expression of PD-1 ligands in tumor cells via the MEK pathway. Overall, our results support the concept that the activated HER2 oncogene regulates recruitment and activation of tumor infiltrating immune cells and trastuzumab activity by inducing CCL2 and PD-1 ligands and that ER activity negatively controls the HER2-driven pro-trastuzumab tumor microenvironment.
Collapse
Affiliation(s)
- Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Luca Forte
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Viola Regondi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Maria Luisa Carcangiu
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Andrea Balsari
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| |
Collapse
|
21
|
Abstract
Abnormally activated RAS proteins are the main oncogenic driver that governs the functioning of major signaling pathways involved in the initiation and development of human malignancies. Mutations in RAS genes and or its regulators, most frequent in human cancers, are the main force for incessant RAS activation and associated pathological conditions including cancer. In general, RAS is the main upstream regulator of the highly conserved signaling mechanisms associated with a plethora of important cellular activities vital for normal homeostasis. Mutated or the oncogenic RAS aberrantly activates a web of interconnected signaling pathways including RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase), phosphoinositide-3 kinase (PI3K)/AKT (protein kinase B), protein kinase C (PKC) and ral guanine nucleotide dissociation stimulator (RALGDS), etc., leading to uncontrolled transcriptional expression and reprogramming in the functioning of a range of nuclear and cytosolic effectors critically associated with the hallmarks of carcinogenesis. This review highlights the recent literature on how oncogenic RAS negatively use its signaling web in deregulating the expression and functioning of various effector molecules in the pathogenesis of human malignancies.
Collapse
|
22
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Hung CS, Huang CY, Lee CH, Chen WY, Huang MT, Wei PL, Chang YJ. IGFBP2 plays an important role in heat shock protein 27-mediated cancer progression and metastasis. Oncotarget 2017; 8:54978-54992. [PMID: 28903396 PMCID: PMC5589635 DOI: 10.18632/oncotarget.18989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a key chaperone that interacts with over 200 client proteins. The expression of Hsp27 might be correlated with poor outcome in many types of cancer. Previous study indicated that Hsp27 might be an important biomarker in hepatocellular carcinoma (HCC). However, the detailed mechanism is less well understood. The shRNA-mediated silencing of Hsp27 decreased the proliferation, migration and invasion of HCC cells. In a xenograft model, the silencing of Hsp27 reduced tumor progression. We revealed that the silencing of Hsp27 led to a reduction in insulin-like growth factor binding protein 2 (IGFBP2), which might mediate proliferation and metastasis through vimentin, snail and beta-catenin. The overexpression of IGFBP2 reversed the reductions in cell growth, migration and invasion. The tissue array results showed that HCC patients with high Hsp27 expression exhibited poor prognosis and increased metastasis. The Hsp27 expression was highly correlated with IGFPB2 in CRC specimen. ChIP and luciferase assays showed that Hsp27 does not directly bind the IGFBP2 promoter region to regulate the transcription of IGFBP2. In conclusion, our study demonstrated that Hsp27 is a key mediator of HCC progression and metastasis and that Hsp27 might regulate proliferation and metastasis through IGFBP2. This pathway might provide a new direction for the development of a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ming-Te Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
24
|
Sánchez-Zauco N, Torres J, Gómez A, Camorlinga-Ponce M, Muñoz-Pérez L, Herrera-Goepfert R, Medrano-Guzmán R, Giono-Cerezo S, Maldonado-Bernal C. Circulating blood levels of IL-6, IFN-γ, and IL-10 as potential diagnostic biomarkers in gastric cancer: a controlled study. BMC Cancer 2017; 17:384. [PMID: 28558708 PMCID: PMC5450104 DOI: 10.1186/s12885-017-3310-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Gastric adenocarcinoma is the third most common cause of cancer-associated death worldwide. Helicobacter pylori infection activates a signaling cascade that induces production of cytokines and chemokines involved in the chronic inflammatory response that drives carcinogenesis. We evaluated circulating cytokines and chemokines as potential diagnostic biomarkers for gastric cancer. Methods We included 201 healthy controls and 162 patients with distal gastric cancer who underwent primary surgical resection between 2009 and 2012 in Mexico City. The clinical and pathological data of patients were recorded by questionnaire, and the cancer subtype was classified as intestinal or diffuse. Pathological staging of cancer was based on the tumor–node–metastasis staging system of the International Union Against Cancer. Concentrations of IL-1β, IL-6, TNF-α, IL-10, and MCP-1 in serum were measured using multiplex analyte profiling technology and concentrations of IL-8, IFN-γ, and TGF-β in plasma were measured using enzyme-linked immunosorbent assay. Results Levels of IL-1β, IL-6, IFN-γ, and IL-10 were significantly higher and that of MCP-1 was lower in gastric cancer patients compared with controls. No differences in IL-8 or TNF-α levels were observed between gastric cancer and controls. IFN-γ and IL-10 were significantly higher in both intestinal and diffuse gastric cancer, whereas IL-1β and IL-6 were higher and TGF-β lower only in intestinal gastric cancer; MCP-1 was lower only in diffuse gastric cancer. IFN-γ and IL-10 levels were significantly higher in early (I/II) and late stage (III/IV) gastric cancer; IL-1β and IL-8 were higher and MCP-1 was lower only in late stage (IV) patients. Receiver-operating characteristic analysis showed that for diagnosis of GC, IL-6 had high specificity (0.97) and low sensitivity (0.39), IL-10 had moderate specificity (0.82) and low sensitivity (0.48), and IL-1β and IFN-γ showed low specificity (0.43 and 0.53, respectively) and moderate sensitivity (0.76 and 0.71, respectively). Conclusions Increased levels of IL-6, IFN-γ, and IL-10 might be useful as diagnostic biomarkers for GC; however, this needs to be confirmed with larger number of patients and with control groups other than blood donors, properly age paired. IL-1β, IL-6, MCP-1, and TGF-β differentiate intestinal from diffuse GC. IFN-γ and IL-10 might be useful for diagnosis of early stage GC, and IL-1β, IL-8, and MCP-1 for late stages of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norma Sánchez-Zauco
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Col. Doctores, 06720, Mexico City, Mexico.,División de Auxiliares de Diagnóstico y Tratamiento UMAE Hospital de Especialidades, Centro Médico Nacional-Siglo XXI, IMSSl, Avenida Cuauhtémoc 330, Col Doctores, 06720, Mexico City, Mexico.,Laboratorio de Bacteriología, Escuela Nacional de Ciencias Biológicas-IPN, Prolongación Manuel Carpio y Plan de Ayala, Santo Tomás, 11350, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Col Doctores, 06720, Mexico City, Mexico
| | - Alejandro Gómez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Col Doctores, 06720, Mexico City, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Col Doctores, 06720, Mexico City, Mexico
| | - Leopoldo Muñoz-Pérez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Col Doctores, 06720, Mexico City, Mexico
| | - Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología, Secretaría de Salud, Av. San Fernando 22, Tlalpan, 1408, Mexico City, Mexico
| | - Rafael Medrano-Guzmán
- Departamento de Sarcomas, Tracto Digestivo Bajo, UMAE Oncología, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col Doctores, 06720, Mexico City, Mexico
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología, Escuela Nacional de Ciencias Biológicas-IPN, Prolongación Manuel Carpio y Plan de Ayala, Santo Tomás, 11350, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Col. Doctores, 06720, Mexico City, Mexico.
| |
Collapse
|
25
|
Gezgin G, Dogrusöz M, van Essen TH, Kroes WGM, Luyten GPM, van der Velden PA, Walter V, Verdijk RM, van Hall T, van der Burg SH, Jager MJ. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol Immunother 2017; 66:903-912. [PMID: 28391358 PMCID: PMC5489616 DOI: 10.1007/s00262-017-1991-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/20/2017] [Indexed: 01/14/2023]
Abstract
Uveal melanoma (UM) is characterized by a number of genetic aberrations that follow a certain chronology and are tightly linked to tumor recurrence and survival. Loss of chromosome 3, bi-allelic loss of BAP1 expression, and gain in chromosome 8q have been associated with metastasis formation and death, while loss of chromosome 3 has been associated with the influx of macrophages and T cells. We used a set of genetically-classified UM to study immune infiltration in the context of their genetic evolution. We show in two independent cohorts that lack of BAP1 expression is associated with an increased density of CD3+ T cells and CD8+ T cells. The presence of extra copies of chromosome 8q in disomy 3 tumors with a normal BAP1 expression is associated with an increased influx of macrophages (but not T cells). Therefore, we propose that the genetic evolution of UM is associated with changes in the inflammatory phenotype. Early changes resulting in gain of chromosome 8q may activate macrophage infiltration, while sequential loss of BAP1 expression seems to drive T cell infiltration in UM.
Collapse
Affiliation(s)
- Gülçin Gezgin
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Mehmet Dogrusöz
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - T Huibertus van Essen
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Wilhelmina G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Vonn Walter
- Department of Biochemistry, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Robert M Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
26
|
Lim H, Moon A. Inflammatory fibroblasts in cancer. Arch Pharm Res 2016; 39:1021-31. [DOI: 10.1007/s12272-016-0787-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023]
|
27
|
Sadat-Hatamnezhad L, Tanomand A, Mahmoudi J, Sandoghchian Shotorbani S. Activation of Toll-Like Receptors 2 by High-Mobility Group Box 1 in Monocytes from Patients with Ischemic Stroke. IRANIAN BIOMEDICAL JOURNAL 2016; 20:223-8. [PMID: 27040385 PMCID: PMC4983677 DOI: 10.7508/ibj.2016.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Stroke is a leading cause of death all around the world, and ischemic stroke is considered to be the most common stroke type. Toll-like receptors (TLRs) are important molecules for detection of both pathogen invasion and tissue damage. In this regard, the purpose of this study was to assess the expression level of TLR2 on monocytes in patients with ischemic stroke and to evaluate the expression change profile following high-mobility group box 1 (HMGB1) stimulation. Methods: A total of 30 patients with ischemic stroke were enrolled from November 2013 to September 2014. The real-time PCR and ELISA assays were applied to detect the concentrations of TLR2 mRNAs. Results: TLR2 expression was found to be increased in patients with ischemic stroke, as compared to the healthy control group (P<0.001). Also, anti-TLR2 antibodies were able to decrease the expression levels of IL-17, IL-6 and IL-33. This result implies that the enhanced TLR2 pathway and Th17 cell polarization may be due to HMGB1 stimulation in ischemic stroke. Conclusion: Further clinical studies are needed for development of a new treatment strategy to inhibit the HMGB1 pathway, thus preventing the inflammation in ischemic stroke patients.
Collapse
Affiliation(s)
| | - Asghar Tanomand
- Department of Microbiology, Maraghe University of Medical Sciences, Maraghe, Iran
| | - Javad Mahmoudi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Bao Z, Duan C, Gong C, Wang L, Shen C, Wang C, Cui G. Protein phosphatase 1γ regulates the proliferation of human glioma via the NF-κB pathway. Oncol Rep 2016; 35:2916-26. [PMID: 26936744 DOI: 10.3892/or.2016.4644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1γ (PP1γ), a member of mammalian protein phosphatases, serine/threonine phosphatases, catalyzes the majority of protein dephosphorylation events and regulates diverse cellular processes, such as neuronal signaling, muscle contraction, glycogen synthesis, and cell proliferation. However, its expression and potential functions in human glioma is unclear. In this study, we detected the high expression of PP1γ and phosphorylated p65 (p-p65) in human glioma tissues. Besides, we demonstrated that upregulation of PP1γ was tightly related to poor 5-year survival via systemic statistical analysis. Employing serum-starved and re-feeding models of U251 and U87MG, we observed the increasing expression of PP1γ and p-p65 were accompanied by the cell proliferation markers cyclin D1 and proliferating cell nuclear antigen (PCNA). Employing depletion-PP1γ models, we found downregulated PP1γ and p-p65 compared with upregulated IκBα, which indicates the inhibition of NF-κB pathway, and flow cytometry analysis confirmed the weakened cell proliferation. Moreover, we found that the translocation of p65 into the nucleus was impaired. Collectively, we identified the positive correlation between upregulation of PP1γ and human glioma cell proliferation and that knock-down of PP1γ alleviated the glioma proliferation by reducing p65 transportation into the nucleus. The results showed that PP1γ could accelerate human glioma proliferation via the NF-κB pathway.
Collapse
Affiliation(s)
- Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Chengwei Duan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Cheng Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Chaoyan Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Cheng Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
29
|
Interactions between Myc and Mediators of Inflammation in Chronic Liver Diseases. Mediators Inflamm 2015; 2015:276850. [PMID: 26508814 PMCID: PMC4609837 DOI: 10.1155/2015/276850] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
Most chronic liver diseases (CLDs) are characterized by inflammatory processes with aberrant expressions of various pro- and anti-inflammatory mediators in the liver. These mediators are the driving force of many inflammatory liver disorders, which often result in fibrosis, cirrhosis, and liver tumorigenesis. c-Myc is involved in many cellular events such as cell growth, proliferation, and differentiation. c-Myc upregulates IL-8, IL-10, TNF-α, and TGF-β, while IL-1, IL-2, IL-4, TNF-α, and TGF-β promote c-Myc expression. Their interactions play a central role in fibrosis, cirrhosis, and liver cancer. Molecular interference of their interactions offers possible therapeutic potential for CLDs. In this review, current knowledge of the molecular interactions between c-Myc and various well known inflammatory mediators is discussed.
Collapse
|
30
|
Vizioli MG, Santos J, Pilotti S, Mazzoni M, Anania MC, Miranda C, Pagliardini S, Pierotti MA, Gil J, Greco A. Oncogenic RAS-induced senescence in human primary thyrocytes: molecular effectors and inflammatory secretome involved. Oncotarget 2015; 5:8270-83. [PMID: 25268744 PMCID: PMC4226682 DOI: 10.18632/oncotarget.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a robust and sustained antiproliferative response to oncogenic stress and constitutes an efficient barrier to tumour progression. We have recently proposed that OIS may be involved in the pathogenesis of thyroid carcinoma by restraining tumour progression as well as the transition of well differentiated to more aggressive variants. Here, an OIS inducible model was established and used for dissecting the molecular mechanisms and players regulating senescence in human primary thyrocytes. We show that oncogenic RAS induces senescence in thyrocytes as judged by changes in cell morphology, activation of p16INK4a and p53/p21CIP1 tumour suppressor pathways, senescence-associated β-galactosidase (SA-β-Gal) activity, and induction of proinflammatory components including IL-8 and its receptor CXCR2. Using RNA interference (RNAi) we demonstrate that p16INK4a is necessary for the onset of senescence in primary thyrocytes as its depletion rescues RAS-induced senescence. Furthermore, we found that IL-8/CXCR2 network reinforces the growth arrest triggered by oncogenic RAS, as its abrogation is enough to resume proliferation. Importantly, we observed that CXCR2 expression coexists with OIS markers in thyroid tumour samples, suggesting that CXCR2 contributes to senescence, thus limiting thyroid tumour progression.
Collapse
Affiliation(s)
- Maria Grazia Vizioli
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London, UK
| | - Joana Santos
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London, UK
| | - Silvana Pilotti
- Laboratory of Molecular Pathology, Department of Pathology, IRCCS Foundation - Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Mazzoni
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Chiara Anania
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Miranda
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sonia Pagliardini
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Scientific Directorate, IRCCS Foundation - Istituto Nazionale dei Tumori, Milan, Italy
| | - Jesus Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London, UK. Senior co-authors
| | - Angela Greco
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. Senior co-authors
| |
Collapse
|
31
|
Miranda A, Funes JM, Sánchez N, Limia CM, Mesa M, Quezada SA, Pérez R, de León J. Oncogenic Transformation Can Orchestrate Immune Evasion and Inflammation in Human Mesenchymal Stem Cells Independently of Extrinsic Immune-Selective Pressure. Cancer Res 2015; 75:3032-42. [PMID: 26069249 DOI: 10.1158/0008-5472.can-14-3276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/12/2015] [Indexed: 11/16/2022]
Abstract
Immune escape is a hallmark of cancer, but whether it relies upon extrinsic immune-selective pressure or is inherently orchestrated by oncogenic pathways is unresolved. To address this question, we took advantage of an in vitro model of sequentially transformed human mesenchymal stem cells (hMSC). Neoplastic transformation in this model increased the natural immune-evasive properties of hMSC, both by reducing their immunogenicity and by increasing their capacity to inhibit mitogen-driven T-cell proliferation. We also found that IFNγ signaling was globally affected in transformed hMSC. As a consequence, the natural inhibitory effect of hMSC on T-cell proliferation switched from an inducible mechanism depending on IFNγ signaling and mediated by indoleamine 2,3-dioxygenase to a constitutive mechanism that relied upon IL1β involving both secreted and membrane-expressed molecules. After transformation, increased IL1β expression both sustained the immunosuppressive properties of hMSC and increased their tumorigenicity. Thus, in this model system, IL1β acted as intrinsic inflammatory mediator that exerted an autocrine influence on tumor growth by coordinately linking immune escape and tumorigenicity. Collectively, our findings show how oncogenes directly orchestrate inflammation and immune escape to drive the multistep process of cancer progression, independently of any need for immunoediting in the tumor microenvironment.
Collapse
Affiliation(s)
- Alex Miranda
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Juan M Funes
- Cancer Institute, University College of London, London, United Kingdom
| | - Nilda Sánchez
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Celia M Limia
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), Havana, Cuba. Tropical Medicine Institute, Havana, Cuba
| | - Mónica Mesa
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Sergio A Quezada
- Cancer Institute, University College of London, London, United Kingdom
| | - Rolando Pérez
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Joel de León
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), Havana, Cuba.
| |
Collapse
|
32
|
Lebrec H, Ponce R, Preston BD, Iles J, Born TL, Hooper M. Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk. Curr Med Res Opin 2015; 31:557-74. [PMID: 25651481 DOI: 10.1185/03007995.2015.1011778] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Tumor necrosis factor (TNF) is a highly pleiotropic cytokine with multiple activities other than its originally discovered role of tumor necrosis in rodents. TNF is now understood to play a contextual role in driving either tumor elimination or promotion. Using both animal and human data, this review examines the role of TNF in cancer development and the effect of TNF and TNF inhibitors (TNFis) on malignancy risk. RESEARCH DESIGN A literature review was performed using relevant search terms for TNF and malignancy. RESULTS Although administration of TNF can cause tumor regression in specific rodent tumor models, human expression polymorphisms suggest that TNF can be a tumor-promoting cytokine, whereas blocking the TNF pathway in a variety of tumor models inhibits tumor growth. In addition to direct effects of TNF on tumors, TNF can variously affect immunity and the tumor microenvironment. Whereas TNF can promote immune surveillance designed to eliminate tumors, it can also drive chronic inflammation, autoimmunity, angiogenesis, and other processes that promote tumor initiation, growth, and spread. Key players in TNF signaling that shape this response include NF-κB and JNK, and malignant-inflammatory cell interactions, each of which may have different responses to TNF signaling. Focusing on rheumatoid arthritis (RA) patients, where clinical experience is most extensive, a review of the clinical literature shows no increased risk of overall malignancy or solid tumors such as breast and lung cancers with exposure to TNFis. Lymphoma rates are not increased with use of TNFis. Conflicting data exist regarding the risks of melanoma and nonmelanoma skin cancer. Data regarding the risk of recurrent malignancy are limited. CONCLUSIONS Overall, the available data indicate that elevated TNF is a risk factor for cancer, whereas its inhibition in RA patients is not generally associated with an increased cancer risk. In particular, TNF inhibition is not associated with cancers linked to immune suppression. A better understanding of the tumor microenvironment, molecular events underlying specific tumors, and epidemiologic studies of malignancies within specific disease indications should enable more focused pharmacovigilance studies and a better understanding of the potential risks of TNFis.
Collapse
|
33
|
Ehlers M, Schott M. Hashimoto's thyroiditis and papillary thyroid cancer: are they immunologically linked? Trends Endocrinol Metab 2014; 25:656-64. [PMID: 25306886 DOI: 10.1016/j.tem.2014.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/14/2023]
Abstract
Hashimoto's thyroiditis (HT) is the most common autoimmune disease in humans frequently leading to hypothyroidism. HT is characterized by a cellular immune response with lymphatic infiltration of the thyroid gland by T and B cells, as well as by a humoral immune response leading to specific antibody production. The synchronous appearance of HT and papillary thyroid cancer (PTC) indicates an immunological link between the two entities. Three different pathomechanisms may be postulated, including preexisting autoimmunity leading to malignancy due to inflammation, immunity towards preexisiting tumor cells leading to specific autoimmunity, and immune tolerance leading to malignancy despite (auto)immunity. In this article we review data describing these potential mechanisms that might lead to the synchronous appearance of HT and PTC.
Collapse
Affiliation(s)
- Margret Ehlers
- Division for Specific Endocrinology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany.
| | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
34
|
Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2014; 45:17-31. [PMID: 25328099 DOI: 10.1002/eji.201444972] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/19/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022]
Abstract
Commensal microorganisms colonize barrier surfaces of all multicellular organisms, including those of humans. For more than 500 million years, commensal microorganisms and their hosts have coevolved and adapted to each other. As a result, the commensal microbiota affects many immune and nonimmune functions of their hosts, and de facto the two together comprise one metaorganism. The commensal microbiota communicates with the host via biologically active molecules. Recently, it has been reported that microbial imbalance may play a critical role in the development of multiple diseases, such as cancer, autoimmune conditions, and increased susceptibility to infection. In this review, we focus on the role of the commensal microbiota in the development, progression, and immune evasion of cancer, as well as some modulatory effects on the treatment of cancer. In particular, we discuss the mechanisms of microbiota-mediated regulation of innate and adaptive immune responses to tumors, and the consequences on cancer progression and whether tumors subsequently become resistant or susceptible to different anticancer therapeutic regiments.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Leidos Biomedical Research, Inc, Frederick, MD, USA
| | | | | | | | | |
Collapse
|
35
|
De Caridi G, Butrico L, Grande R, Massara M, Spinelli F, de Franciscis S, Serra R. Concomitant Aortic Leiomyosarcoma and Takayasu Arteritis in a 55-Year-Old Male Patient. Ann Vasc Surg 2014; 28:1931.e13-6. [DOI: 10.1016/j.avsg.2014.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
|
36
|
Prognostic impact of COX-2 in non-small cell lung cancer: a comprehensive compartment-specific evaluation of tumor and stromal cell expression. Cancer Lett 2014; 356:837-45. [PMID: 25449785 DOI: 10.1016/j.canlet.2014.10.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme that has been extensively investigated as a prognostic marker in cancer. In non-small cell lung cancer (NSCLC) previous results regarding the prognostic impact of COX-2 expression are inconsistent. Therefore we evaluated the association between transcript levels and overall survival in nine publicly available gene expression data sets (total n = 1337) and determined in situ compartment-specific tumor and stromal cell protein expression in two independent cohorts (n = 616). Gene expression did not show any correlation with clinical parameters or with overall survival. Protein expression in tumor and stromal cells did not correlate with any clinical parameter or with overall survival in one of the analyzed cohorts, while a significant association of high stromal expression with longer survival was observed in both univariate and multivariate analysis in the other cohort. Stromal expression of COX-2 has not been separately evaluated in NSCLC previously and may be a subject of further investigation, whereas the presented findings from this comprehensive compartment specific evaluation clearly reject the hypothesis of COX-2 tumor cell expression having a prognostic value in NSCLC.
Collapse
|
37
|
Qie S, Chu C, Li W, Wang C, Sang N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 2014; 115:498-509. [PMID: 24122876 DOI: 10.1002/jcb.24684] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
Abstract
Active glutamine utilization is critical for tumor cell proliferation. Glutaminolysis represents the first and rate-limiting step of glutamine utilization and is catalyzed by glutaminase (GLS). Activation of ErbB2 is one of the major causes of breast cancers, the second most common cause of death for women in many countries. However, it remains unclear whether ErbB2 signaling affects glutaminase expression in breast cancer cells. In this study, we show that MCF10A-NeuT cell line has higher GLS1 expression at both mRNA and protein levels than its parental line MCF10A, and knockdown of ErbB2 decreases GLS1 expression in MCF10A-NeuT cells. We further show that in these cells, ErbB2-mediated upregulation of GLS1 is not correlated to c-Myc expression. Moreover, activation of neither PI3K-Akt nor MAPK pathway is sufficient to upregulate GLS1 expression. Interestingly, inhibition of NF-κB blocks ErbB2-stimulated GLS1 expression, whereas stimulation of NF-κB is sufficient to enhance GLS1 levels in MCF10A cells, suggesting a PI3K-Akt-independent activation of NF-κB upregulates GLS1 in ErbB2-positive breast cancer cells. Finally, knockdown or inhibition of GLS1 significantly decreased the proliferation of breast cancer cells with high GLS1 levels. Taken together, our data indicate that ErbB2 activation promotes GLS1 expression via a PI3K-Akt-independent NF-κB pathway in breast cancer cells, identifying another oncogenic signaling pathway which stimulates GLS1 expression, and thus promoting glutamine utilization in cancer cells. These findings, if validated by in vivo model, may facilitate the identification of novel biochemical targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
38
|
Cytotoxicity of probiotics from Philippine commercial dairy products on cancer cells and the effect on expression of cfos and cjun early apoptotic-promoting genes and Interleukin-1 β and Tumor Necrosis Factor-α proinflammatory cytokine genes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:491740. [PMID: 25276792 PMCID: PMC4170743 DOI: 10.1155/2014/491740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
This study determined cytotoxicity of probiotic Lactobacillus spp. from Philippine dairy products on cancer cells and normal fibroblasts and their effects on expression of early apoptotic-promoting cfos, cjun and proinflammatory cytokine IL-1β, TNF-α genes. Cultures were from Yakult, Bear Brand Probiotic Drink, Nido3+ Powdered Milk. Filter-sterilized supernatants from cultures of Lactobacillus spp. were evaluated for cytotoxicity to colon cancer cells (HT-29 and HCT116), leukemia cells (THP-1), and normal human dermal fibroblasts (HDFn) using PrestoBlue. Bleomycin was the positive control. Absolute quantification of transcript levels was conducted using qRT-PCR. Cytotoxicity index profiles on HDFn, THP-1 of all probiotic supernatants and negative controls suggest nontoxicity to the cells when compared to bleomycin, whereas all probiotic supernatants were found to be cytotoxic to HT-29 and HCT-116 colon cancer cell lines. Expression of cfos, cjun transcripts was significantly upregulated in HT-29 and HCT116 cells treated with probiotic supernatants compared to untreated baseline levels (P < 0.05). Expression of IL-1β and TNF-α by lipopolysaccharide-treated macrophages was significantly downregulated in cells with probiotic supernatants compared to those exposed to MRS medium (P < 0.05). Results provide strong support for the role of Lactobacillus spp. studied in anticancer therapy and in prevention of inflammation that may act as precursor to carcinogenesis.
Collapse
|
39
|
Lapraz JC, Hedayat KM, Pauly P. Endobiogeny: a global approach to systems biology (part 2 of 2). Glob Adv Health Med 2014; 2:32-44. [PMID: 24416662 PMCID: PMC3833520 DOI: 10.7453/gahmj.2013.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ENDOBIOGENY AND THE BIOLOGY OF FUNCTIONS ARE BASED ON FOUR SCIENTIFIC CONCEPTS THAT ARE KNOWN AND GENERALLY ACCEPTED: (1) human physiology is complex and multifactorial and exhibits the properties of a system; (2) the endocrine system manages metabolism, which is the basis of the continuity of life; (3) the metabolic activity managed by the endocrine system results in the output of biomarkers that reflect the functional achievement of specific aspects of metabolism; and (4) when biomarkers are related to each other in ratios, it contextualizes one type of function relative to another to which is it linked anatomically, sequentially, chronologically, biochemically, etc.
Collapse
Affiliation(s)
- Jean-Claude Lapraz
- Société internationale de médecine endobiogénique et de physiologie intégrative, Paris, France
| | - Kamyar M Hedayat
- American Society of Endobiogenic Medicine and Integrative physiology, San Diego, California, United States
| | - Patrice Pauly
- Société internationale de médecine endobiogénique et de physiologie intégrative, Paris, France
| |
Collapse
|
40
|
Zeineldin M, Miller MA, Sullivan R, Neufeld KL. Nuclear adenomatous polyposis coli suppresses colitis-associated tumorigenesis in mice. Carcinogenesis 2014; 35:1881-90. [PMID: 24894865 DOI: 10.1093/carcin/bgu121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutation of tumor suppressor adenomatous polyposis coli (APC) initiates most colorectal cancers and chronic colitis increases risk. APC is a nucleo-cytoplasmic shuttling protein, best known for antagonizing Wnt signaling by forming a cytoplasmic complex that marks β-catenin for degradation. Using our unique mouse model with compromised nuclear Apc import (Apc(mNLS)), we show that Apc(mNLS/mNLS) mice have increased susceptibility to tumorigenesis induced with azoxymethane (AOM) and dextran sodium sulfate (DSS). The AOM-DSS-induced colon adenoma histopathology, proliferation, apoptosis, stem cell number and β-catenin and Kras mutation spectra were similar in Apc(mNLS/mNLS) and Apc(+/+) mice. However, AOM-DSS-treated Apc(mNLS/mNLS) mice showed more weight loss, more lymphoid follicles and edema, and increased colon shortening than treated Apc(+/+) mice, indicating a colitis predisposition. To test this directly, we induced acute colitis with a 7 day DSS treatment followed by 5 days of recovery. Compared with Apc(+/+) mice, DSS-treated Apc(mNLS/mNLS) mice developed more severe colitis based on clinical grade and histopathology. Apc(mNLS/mNLS) mice also had higher lymphocytic infiltration and reduced expression of stem cell markers, suggesting an increased propensity for chronic inflammation. Moreover, colons from DSS-treated Apc(mNLS/mNLS) mice showed fewer goblet cells and reduced Muc2 expression. Even in untreated Apc(mNLS/mNLS) mice, there were significantly fewer goblet cells in jejuna, and a modest decrease in colonocyte Muc2 expression compared with Apc(+/+) mice. Colonocytes from untreated Apc(mNLS/mNLS) mice also showed increased expression of inflammatory mediators cyclooxygenase-2 (Cox-2) and macrophage inflammatory protein-2 (MIP-2). These findings reveal novel functions for nuclear Apc in goblet cell differentiation and protection against inflammation-induced colon tumorigenesis.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA, Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt and
| | - Matthew A Miller
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Ruth Sullivan
- Carbone Cancer Center and Research Animal Resources Center, University of Wisconsin, Madison, WI 53706, USA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA,
| |
Collapse
|
41
|
Scrib heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo. Oncogene 2013; 33:5523-33. [DOI: 10.1038/onc.2013.498] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023]
|
42
|
The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN ONCOLOGY 2013; 2013:859154. [PMID: 24224100 PMCID: PMC3810054 DOI: 10.1155/2013/859154] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/08/2013] [Indexed: 02/08/2023]
Abstract
Although the functions of chemokines in the regulation of immune processes have been studied in some detail, the role of these biomolecules in cancer is not fully understood. Chemokines mediate migration of immune cells and other functions related to immunity. They are also involved in oncogenesis and in tumor progression, invasion, and metastasis through mechanisms similar to their roles in immune functions. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. Consequently, chemokines and their receptors present potential therapeutic targets for anticancer drugs. The chemokine CXCL8, also known as interleukin-8 (IL8), is a proinflammatory molecule that has functions within the tumor microenvironment. Due to its potent angiogenic effects and the activity of the chemokine and its receptors in the promotion of invasion and metastasis, CXCL8 and its receptors are now considered as attractive targets for cancer therapy. This review relates the current understanding of the regulation, signaling, and functions of CXCL8 that contribute to tumor growth and metastasis, and of its role in drug response.
Collapse
|
43
|
Salcedo R, Cataisson C, Hasan U, Yuspa SH, Trinchieri G. MyD88 and its divergent toll in carcinogenesis. Trends Immunol 2013; 34:379-89. [PMID: 23660392 PMCID: PMC3847901 DOI: 10.1016/j.it.2013.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/21/2013] [Accepted: 03/31/2013] [Indexed: 02/07/2023]
Abstract
Toll-like and interleukin-1 (IL-1) family receptors recognize microbial or endogenous ligands and inflammatory mediators, respectively, and with the exception of Toll-like receptor 3 (TLR3), signal via the adaptor molecule myeloid differentiation factor 88 (MyD88). MyD88 is involved in oncogene-induced cell intrinsic inflammation and in cancer-associated extrinsic inflammation, and as such MyD88 contributes to skin, liver, pancreatic, and colon carcinogenesis, as well as sarcomagenesis. MyD88 is also protective, for example in oncogenic virus carcinogenesis or, acting downstream of IL-18R to strengthen mucosal repair, in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon carcinogenesis. Here, we discuss the mechanisms of the divergent effects of MyD88 and the balance of its protumor role in cancer-enhancing inflammation and immunity and its antitumor role in tissue homeostasis, repair, and immunity against the tumor or oncogenic pathogens.
Collapse
Affiliation(s)
- Rosalba Salcedo
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 217023, USA
| | | | | | | | | |
Collapse
|
44
|
Voronov E, Dotan S, Krelin Y, Song X, Elkabets M, Carmi Y, Rider P, Idan Cohen, Romzova M, Kaplanov I, Apte RN. Unique Versus Redundant Functions of IL-1α and IL-1β in the Tumor Microenvironment. Front Immunol 2013; 4:177. [PMID: 23847618 PMCID: PMC3703603 DOI: 10.3389/fimmu.2013.00177] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1 (IL-1) is a major “alarm” upstream pro-inflammatory cytokine that also affects immunity and hematopoiesis by inducing cytokine cascades. In the tumor arena, IL-1 is produced by malignant or microenvironmental cells. As a pleiotropic cytokine, IL-1 is involved in tumorigenesis and tumor invasiveness but also in the control of anti-tumor immunity. IL-1α and IL-1β are the major agonists of IL-1, while IL-1Ra is a physiological inhibitor of pre-formed IL-1. In their secreted form, IL-1α and IL-1β bind to the same receptors and induce the same biological functions, but IL-1α and IL-1β differ in their compartmentalization within the producing cell or the microenvironment. IL-1β is only active in its processed, secreted form, and mediates inflammation, which promotes carcinogenesis, tumor invasiveness, and immunosuppression, whereas IL-1α is mainly cell-associated and in the tumor context, when expressed on the cell membrane, it stimulates anti-tumor cell immunity manifested by tumor regression. In the tumor milieu, extracellular levels of IL-1α are usually low and do not stimulate broad inflammation that promotes progression. Immunosuppression induced by IL-1β in the tumor microenvironment, mainly through MDSC induction, usually inhibits or masks anti-tumor cell immunity induced by cell-associated IL-1α. However, in different tumor systems, redundant or unique patterns of IL-1α and IL-1β expression and function have been observed. Recent breakthroughs in inflammasome biology and IL-1β processing/secretion have spurred the development of novel anti-IL-1 agents, which are being used in clinical trials in patients with diverse inflammatory diseases. Better understanding of the integrative role of IL-1α and IL-1β in distinct malignancies will facilitate the application of novel IL-1 modulation approaches at the bedside, in cancer patients with minimal residual disease (MRD), as an adjunct to conventional approaches to reduce the tumor burden.
Collapse
Affiliation(s)
- Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Choyce A, Yong M, Narayan S, Mattarollo SR, Liem A, Lambert PF, Frazer IH, Leggatt GR. Expression of a single, viral oncoprotein in skin epithelium is sufficient to recruit lymphocytes. PLoS One 2013; 8:e57798. [PMID: 23469070 PMCID: PMC3582605 DOI: 10.1371/journal.pone.0057798] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/26/2013] [Indexed: 11/19/2022] Open
Abstract
Established cancers are frequently associated with a lymphocytic infiltrate that fails to clear the tumour mass. In contrast, the importance of recruited lymphocytes during premalignancy is less well understood. In a mouse model of premalignant skin epithelium, transgenic mice that express the human papillomavirus type 16 (HPV16) E7 oncoprotein under a keratin 14 promoter (K14E7 mice) display epidermal hyperplasia and have a predominant infiltrate of lymphocytes consisting of both CD4 and CD8 T cells. Activated, but not naïve T cells, were shown to preferentially traffic to hyperplastic skin with an increased frequency of proliferative CD8+ T cells and CD4+ T cells expressing CCR6 within the tissue. Disruption of the interaction between E7 protein and retinoblastoma tumour suppressor protein (pRb) led to reduced epithelial hyperplasia and T cell infiltrate. Finally, while K14E7 donor skin grafts are readily accepted onto syngeneic, non-transgenic recipients, these same skin grafts lacking skin-resident lymphocytes were rejected. Our data suggests that expression of a single oncoprotein in the epidermis is sufficient for lymphocyte trafficking (including immunosuppressive lymphocytes) to premalignant skin.
Collapse
Affiliation(s)
- Allison Choyce
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Michelle Yong
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Sharmal Narayan
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Stephen R. Mattarollo
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Amy Liem
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- * E-mail:
| |
Collapse
|
46
|
Gleyzer N, Scarpulla RC. Activation of a PGC-1-related coactivator (PRC)-dependent inflammatory stress program linked to apoptosis and premature senescence. J Biol Chem 2013; 288:8004-8015. [PMID: 23364789 DOI: 10.1074/jbc.m112.426841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction.
Collapse
Affiliation(s)
- Natalie Gleyzer
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611
| | - Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611.
| |
Collapse
|
47
|
Abstract
There is considerable evidence suggesting that epigenetic mechanisms may mediate development of chronic inflammation by modulating the expression of pro-inflammatory cytokine TNF-α, interleukins, tumor suppressor genes, oncogenes and autocrine and paracrine activation of the transcription factor NF-κB. These molecules are constitutively produced by a variety of cells under chronic inflammatory conditions, which in turn leads to the development of major diseases such as autoimmune disorders, chronic obstructive pulmonary diseases, neurodegenerative diseases and cancer. Distinct or global changes in the epigenetic landscape are hallmarks of chronic inflammation driven diseases. Epigenetics include changes to distinct markers on the genome and associated cellular transcriptional machinery that are copied during cell division (mitosis and meiosis). These changes appear for a short span of time and they necessarily do not make permanent changes to the primary DNA sequence itself. However, the most frequently observed epigenetic changes include aberrant DNA methylation, and histone acetylation and deacetylation. In this chapter, we focus on pro-inflammatory molecules that are regulated by enzymes involved in epigenetic modifications such as arginine and lysine methyl transferases, DNA methyltransferase, histone acetyltransferases and histone deacetylases and their role in inflammation driven diseases. Agents that modulate or inhibit these epigenetic modifications, such as HAT or HDAC inhibitors have shown great potential in inhibiting the progression of these diseases. Given the plasticity of these epigenetic changes and their readiness to respond to intervention by small molecule inhibitors, there is a tremendous potential for the development of novel therapeutics that will serve as direct or adjuvant therapeutic compounds in the treatment of these diseases.
Collapse
|
48
|
Todinova S, Krumova S, Kurtev P, Dimitrov V, Djongov L, Dudunkov Z, Taneva SG. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim Biophys Acta Gen Subj 2012; 1820:1879-85. [DOI: 10.1016/j.bbagen.2012.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/17/2012] [Accepted: 08/03/2012] [Indexed: 12/31/2022]
|
49
|
mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 2012; 7:e37807. [PMID: 23115614 PMCID: PMC3480355 DOI: 10.1371/journal.pone.0037807] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/24/2012] [Indexed: 12/25/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most lethal form of thyroid neoplasia and represents the end stage of thyroid tumor progression. No effective treatment exists so far. ATC frequently derive from papillary thyroid carcinomas (PTC), which have a good prognosis. In this study, we analyzed the mRNA expression profiles of 59 thyroid tumors (11 ATC and 48 PTC) by microarrays. ATC and PTC showed largely overlapping mRNA expression profiles with most genes regulated in all ATC being also regulated in several PTC. 43% of the probes regulated in all the PTC are similarly regulated in all ATC. Many genes modulations observed in PTC are amplified in ATC. This illustrates the fact that ATC mostly derived from PTC. A molecular signature of aggressiveness composed of 9 genes clearly separates the two tumors. Moreover, this study demonstrates gene regulations corresponding to the ATC or PTC phenotypes like inflammatory reaction, epithelial to mesenchymal transition (EMT) and invasion, high proliferation rate, dedifferentiation, calcification and fibrosis processes, high glucose metabolism and glycolysis, lactate generation and chemoresistance. The main qualitative differences between the two tumor types bear on the much stronger EMT, dedifferentiation and glycolytic phenotypes showed by the ATC.
Collapse
|
50
|
Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S, Chosdol K. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 2012; 32:3798-808. [DOI: 10.1038/onc.2012.393] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|