1
|
He Z, Uto T, Tanigawa S, Sakao K, Kumamoto T, Xie K, Pan X, Wu S, Yang Y, Komatsu M, Hou DX. Fisetin is a selective adenosine triphosphate-competitive inhibitor for mitogen-activated protein kinase kinase 4 to inhibit lipopolysaccharide-stimulated inflammation. Biofactors 2024. [PMID: 39087587 DOI: 10.1002/biof.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4), a member of the MAP kinase kinase family, directly phosphorylates and activates the c-Jun NH2-terminal kinases (JNK), in response to proinflammatory cytokines and cellular stresses. Regulation of the MKK4 activity is considered to be a novel approach for the prevention and treatment of inflammation. The aim of this study was to identify whether fisetin, a potential anti-inflammatory compound, targets MKK4-JNK cascade to inhibit lipopolysaccharide (LPS)-stimulated inflammatory response. RAW264 macrophage pretreated with fisetin following LPS stimulation was used as a cell model to investigate the transactivation and expression of related-inflammatory genes by transient transfection assay, electrophoretic mobility shift assay (EMSA), or enzyme-linked immunosorbent assay (ELISA), and cellular signaling as well as binding of related-signal proteins by Western blot, pull-down assay and kinase assay, and molecular modeling. The transactivation and expression of cyclooxygenase-2 (COX-2) gene as well as prostaglandin E2 (PGE2) secretion induced by LPS were inhibited by fisetin in a dose-dependent manner. Signaling transduction analysis demonstrated that fisetin selectively inhibited MKK4-JNK1/2 signaling to suppress the phosphorylation of transcription factor AP-1 without affecting the NF-κB and Jak2-Stat3 signaling as well as the phosphorylation of Src, Syk, and TAK1. Furthermore, in vitro and ex vivo pull-down assay using cell lysate or purified protein demonstrated that fisetin could bind directly to MKK4. Molecular modeling using the Molecular Operating Environment™ software indicated that fisetin docked into the ATP-binding pocket of MKK4 with a binding energy of -71.75 kcal/mol and formed a 1.70 Å hydrogen bound with Asp247 residue of MKK4. The IC50 of fisetin against MKK4 was estimated as 2.899 μM in the kinase assay, and the ATP-competitive effect was confirmed by ATP titration. Taken together, our data revealed that fisetin is a potent selective ATP-competitive MKK4 inhibitor to suppress MKK4-JNK1/2-AP-1 cascade for inhibiting LPS-induced inflammation.
Collapse
Affiliation(s)
- Ziyu He
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuhiro Uto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Takuma Kumamoto
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kun Xie
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Xuchi Pan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yili Yang
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou, People's Republic of China
| | - Masaharu Komatsu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Mao T, Fan J. Myricetin Restores Autophagy to Attenuate Lumbar Intervertebral Disk Degeneration Via Negative Regulation of the JAK2/STAT3 Pathway. Biochem Genet 2024:10.1007/s10528-024-10838-x. [PMID: 38842745 DOI: 10.1007/s10528-024-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Autophagy is a critical player in lumbar intervertebral disk degeneration (IDD), and autophagy activation has been suggested to prevent the apoptosis of nucleus pulposus cells (NPCs). Myricetin has anti-cancer, anti-inflammatory, and antioxidant potentials and can activate autophagy. Thus, this study focused on the roles and mechanisms of myricetin in IDD. A puncture-induced rat IDD model was established and intraperitoneally injected with 20-mg/kg/day myricetin. Histopathological changes of intervertebral disks (IVDs) were assessed by hematoxylin and eosin staining and Safranin O/Fast Green staining. The isolated NPCs from IVDs of healthy rats were stimulated with IL-1β to mimic IDD-like conditions. The roles of myricetin in cell apoptosis, extracellular matrix (ECM) degradation, autophagy repression, and the JAK2/STAT3 pathway activation were examined by cell counting kit-8, flow cytometry, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence staining. Myricetin treatment attenuated the apoptosis and ECM degradation, and enhanced autophagy in the IL-1β-treated NPCs, whereas the myricetin-mediated protection was limited by autophagy inhibition. Mechanistically, myricetin activated autophagy through blocking the JAK2/STAT3 signaling. In vivo experiments revealed that intraperitoneal injection of myricetin activated NPC autophagy to relieve puncture injury in rats. Myricetin prevents IDD by attenuating NPC apoptosis and ECM degradation through blocking the JAK2/STAT3 pathway to enhance autophagy.
Collapse
Affiliation(s)
- Tian Mao
- School of Acupuncture-Moxibustion and Orthopedic, Hubei University of Chinese Medicine, Wuhan, 430060, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
3
|
Bai L, Deng Z, Xu M, Zhang Z, Guo G, Xue X, Wang S, Yang J, Xia Z. CETSA-MS-based target profiling of anti-aging natural compound quercetin. Eur J Med Chem 2024; 267:116203. [PMID: 38342014 DOI: 10.1016/j.ejmech.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE This study aimed to profile protein targets of quercetin at the proteome level. METHODS A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- Lin Bai
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengfei Xu
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhehao Zhang
- Department of Biochemistry, Faculty of Life Science, Faculty of Natural Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Guangyu Guo
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinli Xue
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shaochi Wang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinghua Yang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Rodosy FB, Azad MAK, Halder SK, Limon MBH, Jaman S, Lata NA, Sarker M, Riya AI. The potential of phytochemicals against epidermal growth factor receptor tyrosine kinase (EGFRK): an insight from molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:2482-2493. [PMID: 37154806 DOI: 10.1080/07391102.2023.2207656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023]
Abstract
Cancer is an umbrella term used to define various diseases with abnormal cell proliferation at the focal point. According to the WHO, cancer is the leading cause of death worldwide, with lung cancer being the second most common perpetrator after breast cancer. There are several proteins acting in harmony that lead to cancer. EGFR has been identified as one of the proteins that is linked to cell division, even when it is cancerous in nature. Cancer can be treated using therapeutic agents that target EGFR or their signaling networks. Available drugs that could inhibit EGFR have acquired resistance in most cases and multiple side effects on the human body. That is why phytochemicals are being studied for their role in this case. Around 8000 compounds were retrieved from our previously created phytochemdb database for their drug activity, and the 3D protein structure was collected from the protein data bank. The selected dataset of ligands was virtually screened through HTVS, SP, and XP to retain the top 4 hits. Molecular dynamics revealed the stability and flexibility of protein-(selected)ligand interactions. The non-bond interactions of each of the compounds with EGFR, such as Gossypetin interacting with active site MET769 and ASP831; Muxiangrine III interacting with MET769 and ASP831; Quercetagetin showing non-bonded interactions with GLU738, GLN767, and MET769 for >100% of the simulation timeframe These findings suggest further research into these compounds, which can yield a potential phytochemical drug against cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fabliha Bashashat Rodosy
- Department of Microbiology, Bhashasoinik Gaziul Haque Institute of Bioscience, Bogura, Bangladesh
| | - Md Abul Kalam Azad
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Foy's Lake, Bangladesh
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar university, Dhaka, Bangladesh
| | | | - Sadia Jaman
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Nure Asma Lata
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Mohua Sarker
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Ananna Islam Riya
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Chen L, Fan T, Wang M, Zhu CY, Feng WY, Li Y, Yang H. Myricetin, a natural inhibitor of CD147, increases sensitivity of cisplatin in ovarian cancer. Expert Opin Ther Targets 2024; 28:83-95. [PMID: 38235574 DOI: 10.1080/14728222.2024.2306345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological tumor, but it currently lacks effective therapeutic targets. CD147, which is overexpressed in OC, plays a crucial role in promoting malignant progression and is associated with poor prognosis in patients. Therefore, CD147 has been identified as a potential therapeutic target. However, there is a limited amount of research on the development of CD147 inhibitors. METHODS Surface plasmon resonance (SPR) assay and virtual molecular docking analysis were performed to identify potential natural compounds targeting CD147. The anti‑tumor effects of myricetin were evaluated using various assays, including CCK8, Alkaline comet, immunofluorescence and xenograft mouse models. The underlying mechanism was investigated through western blot analysis and lentivirus short hairpin RNA (LV-shRNA) transfection. RESULTS Myricetin, a flavonoid commonly found in plants, was discovered to be a potent inhibitor of CD147. Our findings demonstrated that myricetin exhibited a strong affinity for CD147 and down-regulated the protein level of CD147 by facilitating its proteasome-dependent degradation. Additionally, we observed synergistic antitumor effects of myricetin and cisplatin both in vivo and in vitro. Mechanistically, myricetin suppressed the expression of FOXM1 and its downstream DNA damage response (DDR) genes E×O1and BRIP1, thereby enhancing the DDR induced by cisplatin. CONCLUSION Our data demonstrate that myricetin, a natural inhibitor of CD147, may have clinical utility in the treatment of OC due to its ability to increase genomic toxicity when combined with cisplatin.
Collapse
Affiliation(s)
- Lin Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Fan
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Miao Wang
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Chun-Yu Zhu
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Wang-You Feng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Li
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Zhang Y, Zhang J, Li M, Qiao Y, Wang W, Ma L, Liu K. Target discovery of bioactive natural products with native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB): Applications, mechanisms and outlooks. Bioorg Med Chem 2023; 96:117483. [PMID: 37951136 DOI: 10.1016/j.bmc.2023.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/13/2023]
Abstract
Natural products (NPs) represent a treasure trove for drug discovery and development due to their chemical structural diversity and a broad spectrum of biological activities. Uncovering the biological targets and understanding their molecular mechanism of actions are crucial steps in the development of clinical therapeutics. However, the structural complexity of NPs and intricate nature of biological system present formidable challenges in target identification of NPs. Although significant advances have been made in the development of new chemical tools, these methods often require high levels of synthetic skills for preparing chemical probes. This can be costly and time-consuming relaying on operationally complicated procedures and instruments. In recent efforts, we and others have successfully developed an operationally simple and practical chemical tool known as native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB) for NP target identification. In this approach, a native compound readily reacts with commercial CNBr-activated Sepharose 4B beads with a process that is easily performed in any biology laboratory. Based on NCCB, our group has identified the direct targets of more than 60 NPs. In this review, we will elucidate the application scopes, including flavonoids, quinones, terpenoids and others, characteristics, chemical mechanisms, procedures, advantages, disadvantages, and future directions of NCCB in specific target discovery.
Collapse
Affiliation(s)
- Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junjie Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Wang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Lu Ma
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
7
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
8
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
9
|
Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed Pharmacother 2023; 161:114460. [PMID: 36870282 DOI: 10.1016/j.biopha.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.
Collapse
|
10
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
11
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022; 22:239. [PMID: 35902860 PMCID: PMC9336020 DOI: 10.1186/s12935-022-02663-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- grid.512552.40000 0004 5376 6253Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- grid.441783.d0000 0004 0487 9411Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- grid.412163.30000 0001 2287 9552Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- grid.32566.340000 0000 8571 0482Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Javed Iqbal
- grid.513947.d0000 0005 0262 5685Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Qamar Raza
- grid.412967.f0000 0004 0609 0799Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Haleema Sadia
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100 Pakistan
| | - Shahid Raza
- grid.512552.40000 0004 5376 6253Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Munir Bhinder
- grid.412956.d0000 0004 0609 0537Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Daniela Calina
- grid.413055.60000 0004 0384 6757Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - William C. Cho
- grid.415499.40000 0004 1771 451XDepartment of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
12
|
Chen YC, He XL, Qi L, Shi W, Yuan LW, Huang MY, Xu YL, Chen X, Gu L, Zhang LL, Lu JJ. Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cells. Biochem Pharmacol 2022; 197:114940. [PMID: 35120895 DOI: 10.1016/j.bcp.2022.114940] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/02/2022]
Abstract
Programmed death ligand-1 (PD-L1) and indoleamine 2, 3-dioxygenase 1 (IDO1) are immune checkpoints induced by interferon-γ (IFN-γ) in the tumor microenvironment, leading to immune escape of tumors. Myricetin (MY) is a flavonoid distributed in many edible and medicinal plants. In this study, MY was identified to inhibit IFN-γ-induced PD-L1 expression in human lung cancer cells. It also reduced the expression of IDO1 and the production of kynurenine which is the product catalyzed by IDO1, while didn't show obvious effect on the expression of major histocompatibility complex-I (MHC-I), a crucial molecule for antigen presentation. In addition, the function of T cells was evaluated using a co-culture system consist of lung cancer cells and the Jurkat-PD-1 T cell line overexpressing PD-1. MY restored the survival, proliferation, CD69 expression and interleukin-2 (IL-2) secretion of Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells. Mechanistically, IFN-γ up-regulated PD-L1 and IDO1 at the transcriptional level through the JAK-STAT-IRF1 axis, which was targeted and inhibited by MY. Together, our research revealed a new mechanism of MY mediated anti-tumor activity and highlighted the potential implications of MY in tumor immunotherapy.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luo-Wei Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
13
|
Liu Y, Qian J, Li J, Xing M, Grierson D, Sun C, Xu C, Li X, Chen K. Hydroxylation decoration patterns of flavonoids in horticultural crops: chemistry, bioactivity and biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhab068. [PMID: 35048127 PMCID: PMC8945325 DOI: 10.1093/hr/uhab068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/20/2021] [Indexed: 05/14/2023]
Abstract
Flavonoids are the most widespread polyphenolic compounds and are important dietary constituents present in horticultural crops such as fruits, vegetables, and tea. Natural flavonoids are responsible for important quality traits, such as food colors and beneficial dietary antioxidants and numerous investigations have shown that intake of flavonoids can reduce the incidence of various non-communicable diseases (NCDs). Analysis of the thousands of flavonoids reported so far has shown that different hydroxylation modifications affect their chemical properties and nutritional values. These diverse flavonoids can be classified based on different hydroxylation patterns in the B, C, A rings and multiple structure-activity analyses have shown that hydroxylation decoration at specific positions markedly enhances their bioactivities. This review focuses on current knowledge concerning hydroxylation of flavonoids catalyzed by several different types of hydroxylase enzymes. Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3'5'-hydroxylase (F3'5'H) are important enzymes for the hydroxylation of the B ring of flavonoids. Flavanone 3-hydroxylase (F3H) is key for the hydroxylation of the C ring, while flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H) are key enzymes for hydroxylation of the A ring. These key hydroxylases in the flavonoid biosynthesis pathway are promising targets for the future bioengineering of plants and mass production of flavonoids with designated hydroxylation patterns of high nutritional importance. In addition, hydroxylation in key places on the ring may help render flavonoids ready for degradation, the catabolic turnover of which may open the door for new lines of inquiry.
Collapse
Affiliation(s)
- Yilong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jiafei Qian
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
14
|
Yang W, Su J, Li M, Li T, Wang X, Zhao M, Hu X. Myricetin Induces Autophagy and Cell Cycle Arrest of HCC by Inhibiting MARCH1-Regulated Stat3 and p38 MAPK Signaling Pathways. Front Pharmacol 2021; 12:709526. [PMID: 34733155 PMCID: PMC8558373 DOI: 10.3389/fphar.2021.709526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Myricetin is a type of natural flavonol known for its anticancer activity. However, the molecular mechanism of myricetin in anti-hepatocellular carcinoma (HCC) is not well defined. Previous studies indicated that downregulation of membrane-associated RING-CH finger protein 1 (MARCH1) contributed to the treatment of a variety of cancers. Whether the anticancer property of myricetin is associated with MARCH1 expression remains to be investigated. This research explored the anti-HCC mechanism of myricetin. Our results indicate that myricetin induces autophagy and arrests cell cycle at the G2/M phase to suppress the proliferation of HCC cells by downregulating MARCH1. Myricetin reduces MARCH1 protein in Hep3B and HepG2 cells. Interestingly, myricetin upregulates the MARCH1 mRNA level in Hep3B cells but downregulates it in HepG2 cells. The knockdown of MARCH1 by siRNAs (small interfering RNAs) decreases the phosphorylated p38 MAPK (p-p38 MAPK) and Stat3 (p-Stat3), and inhibits HCC cell viability. Moreover, myricetin inhibits p38 MAPK and Stat3 signaling pathways by downregulating MARCH1 to repress HCC growth both in vitro and in vivo. Bafilomycin A1 (BafA1), an autophagy inhibitor, has synergetic effect with myricetin to inhibit HCC growth. Taken together, our results reveal that myricetin inhibits the proliferation of HCC cells by inhibiting MARCH1-regulated p38 MAPK and Stat3 signaling pathways. This research provides a new molecular mechanism for myricetin in anti-HCC and suggests that targeting MARCH1 could be a novel treatment strategy in developing anticancer therapeutics.
Collapse
Affiliation(s)
- Wei Yang
- Department of Imaging, Binzhou Medical University, Yantai, China
| | - Jiaqi Su
- Department of Imaging, Binzhou Medical University, Yantai, China
| | - Mingjing Li
- Department of Chinese Medicine Prescription, Binzhou Medical University, Yantai, China
| | - Tiantian Li
- Department of Immunology, Medical School, Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Nuclear Medicine, Binzhou Medical University, Binzhou, China
| | - Mingdong Zhao
- Department of Imaging, Binzhou Medical University, Yantai, China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
15
|
Xing M, Cao Y, Ren C, Liu Y, Li J, Grierson D, Martin C, Sun C, Chen K, Xu C, Li X. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:411-425. [PMID: 34331782 DOI: 10.1111/tpj.15449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Flavonols are health-promoting bioactive compounds important for plant defense and human nutrition. Quercetin (Q) and kaempferol (K) biosynthesis have been studied extensively while little is known about myricetin (M) biosynthesis. The roles of flavonol synthases (FLSs) and flavonoid 3',5'-hydroxylase (F3'5'H) in M biosynthesis in Morella rubra, a member of the Myricaceae rich in M-based flavonols, were investigated. The level of MrFLS transcripts alone did not correlate well with the accumulation of M-based flavonols. However, combined transcript data for MrFLS1 and MrF3'5'H showed a good correlation with the accumulation of M-based flavonols in different tissues of M. rubra. Recombinant MrFLS1 and MrFLS2 proteins showed strong activity with dihydroquercetin (DHQ), dihydrokaempferol (DHK), and dihydromyricetin (DHM) as substrates, while recombinant MrF3'5'H protein preferred converting K to M, amongst a range of substrates. Tobacco (Nicotiana tabacum) overexpressing 35S::MrFLSs produced elevated levels of K-based and Q-based flavonols without affecting M-based flavonol levels, while tobacco overexpressing 35S::MrF3'5'H accumulated significantly higher levels of M-based flavonols. We conclude that M accumulation in M. rubra is affected by gene expression and enzyme specificity of FLS and F3'5'H as well as substrate availability. In the metabolic grid of flavonol biosynthesis, the strong activity of MrF3'5'H with K as substrate additionally promotes metabolic flux towards M in M. rubra.
Collapse
Affiliation(s)
- Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yilong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
16
|
Zhang Q, Zhao Y, Zhang M, Zhang Y, Ji H, Shen L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J Pharm Anal 2021; 11:555-563. [PMID: 34765268 PMCID: PMC8572699 DOI: 10.1016/j.jpha.2020.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Vine tea has been used as an herbal tea by several ethnic minorities for hundreds of years in China. Flavonoids, a kind of indispensable component in a variety of nutraceutical, pharmaceutical and cosmetic applications, are identified to be the major metabolites and bioactive ingredients in vine tea. Interestingly, vine tea exhibits a wide range of significant bioactivities including anti-oxidant, anti-inflammatory, anti-tumor, antidiabetic, neuroprotective and other activities, but no toxicity. These bioactivities, to some extent, enrich the understanding about the role of vine tea in disease prevention and therapy. The health benefits of vine tea, particularly dihydromyricetin and myricetin, are widely investigated. However, there is currently no comprehensive review available on vine tea. Therefore, this report summarizes the most recent studies investigating bioactive constituents, pharmacological effects and possible mechanisms of vine tea, which will provide a better understanding about the health benefits and preclinical assessment of novel application of vine tea.
Collapse
Affiliation(s)
- Qili Zhang
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yanfang Zhao
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meiyan Zhang
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yalu Zhang
- Department of Pharmacy, The Affiliated Hospital of Jining Medical College, Jining, Shandong 272100, China
| | - Hongfang Ji
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Liang Shen
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
17
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
18
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
19
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
20
|
Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur J Med Chem 2020; 206:112677. [PMID: 32823005 DOI: 10.1016/j.ejmech.2020.112677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) inhibitors have demonstrated a great clinical achievement in hematological malignancies. However, the efficacy of HDACs inhibitors in treating solid tumors remains limited due to the complicated tumor microenvironment. In this study, we designed and synthesized a class of novel HDACs inhibitors based on the structure of flavones and isoflavones, followed by biological evaluation. To be specific, a lead compound 15a was discovered with strong anti-proliferative effects on a variety of solid tumor cells, especially for breast cancer cells with resistance to SAHA. Studies demonstrated that 15a could significantly inhibit the activity of HDAC 1, 2, 3 (class I) and 6 (class IIB), leading to a dose-dependent accumulation of acetylated histones and α-Tubulin, cell cycle arrest (G1/S phase) and apoptosis in breast cancer cells. Furthermore, the lead compound 15a could also antagonize the activation of STAT3 induced by HDACs inhibition in some breast cancer cells, which further reduced the level of pro-survive proteins in tumor cells and enhanced anti-tumor activity regulated by STAT3 signaling in vivo. Overall, our findings demonstrated that the novel compound 15a might be a HDACs inhibitor candidate, which could be used as promising chemotherapeutic agent for breast cancer.
Collapse
|
21
|
Kunjiappan S, Govindaraj S, Parasuraman P, Sankaranarayanan M, Arunachalam S, Palanisamy P, Mohan UP, Babkiewicz E, Maszczyk P, Vellaisamy S, Panneerselvam T. Design, in silico modelling and functionality theory of folate-receptor-targeted myricetin-loaded bovine serum albumin nanoparticle formulation for cancer treatment. NANOTECHNOLOGY 2020; 31:155102. [PMID: 31775133 DOI: 10.1088/1361-6528/ab5c56] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Targeted drug delivery systems are a promising field of research. Nano-engineered material-mediated drug delivery possesses remarkable potential for the treatment of various malignancies. Here, folic acid (FA)-conjugated bovine serum albumin (BSA) nanoparticles (NPs) were used to encapsulate myricetin (Myr). Subsequently, the delivery of Myr via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. Myr-loaded BSA NPs were assembled by modified desolvation cross-linking technique. An FA-conjugated carrier, N-hydroxysuccinimide (NHS)-FA ester, was successfully synthesized. Its functional and structural characteristics were confirmed by ultraviolet, Fourier-transform infrared, and proton nuclear magnetic resonance spectroscopy. Biocompatible FA-conjugated, Myr-loaded BSA NPs (FA-Myr-BSA NPs) were successfully formulated using a carbonate/bicarbonate buffer. Their morphology, size, shape, physiological stability, and drug release kinetics were studied. Molecular docking studies revealed that FA-Myr-BSA NPs readily bound non-covalently to folate receptors and facilitated active drug endocytosis. FA-Myr-BSA NPs could trigger fast release of Myr in an acidic medium (pH 5.4), and showed high biocompatibility in a physiological medium. FA-Myr-BSA NPs effectively decreased the viability of MCF-7 cells after 24 h with 72.45 μg ml-1 IC50 value. In addition, FA-Myr-BSA NPs enhanced the uptake of Myr in MCF-7 cells. After incubation, a typical apoptotic morphology of condensed nuclei and distorted membrane bodies was observed. The NPs also targeted mitochondria of MCF-7 cells, significantly increasing reactive oxygen species release and contributing to the loss of mitochondrial membrane integrity. The observed results confirm that the newly developed FA-Myr-BSA NPs can serve as a potential carrier for Myr to increase the anticancer activity of this chemotherapeutic.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sajadimajd S, Bahramsoltani R, Iranpanah A, Kumar Patra J, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F, Battino M, Tundis R, Campos MG, Farzaei MH, Xiao J. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol Res 2019; 151:104584. [PMID: 31809853 DOI: 10.1016/j.phrs.2019.104584] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
Abstract
Polyphenols are one of most important phytochemicals distributing in herb plants, vegetables and fruits, which known as important anticancer agents. Given the high incidence and mortality of skin cancer, this study aimed to uncover the chemopreventive effects of polyphenols against skin cancer metastasis. Electronic databases including Scopus, PubMed, and Cochrane library were used to compile the literature from 2000 to August 2019. Only in vivo mechanistic studies with English full-texts were chosen for this review. Polyphenols were included in this study if they were administered in purified form; while total extract and fractions were excluded. Among the 8254 primarily selected papers, only a final number of 34 studies were included. The chemopreventive effects of polyphenols as anthocyanins, ellagitanins, EGCG, oleuropeindihydroxy phenyl, punicalagin, quercetin, resveratrol and theaflavin, were mainly examined in treatment of melanoma as the highly metastatic form of this cutaneous cancer. Those properties are mediated by modulation of angiogenesis, apoptosis, inflammation, metastasis, proliferation, pathways such as EGFR/MAPK, mTOR/PI3K/Akt, JAK/STAT, FAK/RTK2, PGE-2/VEGF, PGE-1/ERK/HIIF-1α, and modulation of related signals including NF-κB, P21WAF/CIP1, Bim, Bax, Bcl2, Bclx, Bim, Puma, Noxa, ILs and MMPs. Chemopreventive effects of polyphenols are mediated by several signaling pathways against skin carcinogenesis and metastasis, implying the importance of polyphenols to open up new horizons in development of anti-skin cancer therapeutic strategies.
Collapse
Affiliation(s)
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sushanto Gouda
- Amity Institute of Forestry and Wildlife, Amity University, Noida, Uttar Pradesh, India.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Elnaz Rezaeiamiri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hui Cao
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong, 519031, China.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy.
| | - Maria G Campos
- Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, Coimbra, Portugal; Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, Coimbra, Portugal.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Myricetin inhibits migration and invasion of hepatocellular carcinoma MHCC97H cell line by inhibiting the EMT process. Oncol Lett 2019; 18:6614-6620. [PMID: 31788118 PMCID: PMC6865832 DOI: 10.3892/ol.2019.10998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
The recurrence and metastasis of hepatocellular carcinoma (HCC) are a major concern in current research. Epithelial-mesenchymal transition (EMT) is the leading cause underlying the high mobility and invasiveness of tumor cells. Myricetin is a natural flavonol with various pharmacological activities. The effects of myricetin on the migration and invasion of HCC MHCC97H cells were evaluated in the present study. Wound healing, Transwell migration and invasion assays were used to examine cell migration and invasion. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to examine the expression of epithelial (E)-cadherin, neural (N)-cadherin and vimentin. The present study aimed to investigate the effects of myricetin on the migration and invasion of HCC MHCC97H cells. It was indicated that myricetin decreased the viability of MHCC97H cells in a concentration and time-dependent manner, and inhibited MHCC97H cells migration and invasion. As the concentration of myricetin increased, filopodia and lamellipodia in cells weakened and cells were arranged more closely. RT-qPCR and western blotting revealed that myricetin upregulated E-cadherin expression and downregulated N-cadherin. Collectively, the results of the present study demonstrate that myricetin may inhibit the migration and invasion of HCC MHCC97H cells by inhibiting the EMT process.
Collapse
|
24
|
Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother 2019; 120:109506. [PMID: 31586904 DOI: 10.1016/j.biopha.2019.109506] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Myricetin (3, 5, 7, 3', 4', 5'-hexahydroxyflavone) is a natural flavonol compound found in a large variety of plants, including berries, oranges, grapes, herbs, teas, and wine. In the last decade, a convergence of evidence has demonstrated that myricetin has good biological activity as an anti-tumor, anti-inflammatory, and anti-oxidation agent. In studies involving various types of cancer cells, myricetin has been shown to suppress cancer cell invasion and metastasis, to induce cell cycle arrest and apoptosis of cancer cells, and to inhibit their proliferation. These findings have raised interest in myricetin as a potential tumor inhibitor in human patients. In this review, evidence of myricetin's anti-tumor activity and its underlying molecular mechanisms published in the last decade are summarized.
Collapse
|
25
|
Li M, Chen J, Yu X, Xu S, Li D, Zheng Q, Yin Y. Myricetin Suppresses the Propagation of Hepatocellular Carcinoma via Down-Regulating Expression of YAP. Cells 2019; 8:cells8040358. [PMID: 30999669 PMCID: PMC6523269 DOI: 10.3390/cells8040358] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
Myricetin is a naturally occurring flavonoid with protective effects against a variety of cancers. However, the molecular mechanism of myricetin against hepatocellular carcinoma (HCC) has still not been fully elucidated. Previous studies have indicated that YAP is essential for cancer initiation and progression. However, whether YAP contributes to the anti-cancer effects of myricetin remains unclear. Herein, we aimed to investigate the effect of myricetin on HCC, and identify the underlying mechanisms. We report that myricetin induced apoptosis and proliferation inhibition in HepG2 and Huh-7 cells. Myricetin inhibited expression of YAP by promoting its phosphorylation and subsequent degradation. Myricetin inhibited YAP expression by stimulating kinase activation of LATS1/2. Knockdown expression of LATS1/2 by shRNA attenuated myricetin-induced phosphorylation and degradation of YAP. Furthermore, myricetin sensitized HCC cells to cisplatin treatment through inhibiting YAP and its target genes, both in vitro and in vivo. The identification of the LATS1/2-YAP pathway as a target of myricetin may help with the design of novel strategies for human HCC prevention and therapy.
Collapse
Affiliation(s)
- Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Jinliang Chen
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Xiaofei Yu
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Sen Xu
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Defang Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Qiusheng Zheng
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
26
|
Ikram N, Mirza MU, Vanmeert M, Froeyen M, Salo-Ahen OMH, Tahir M, Qazi A, Ahmad S. Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds. Biomolecules 2019; 9:E124. [PMID: 30925835 PMCID: PMC6523505 DOI: 10.3390/biom9040124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Tumorigenesis in humans is a multistep progression that imitates genetic changes leading to cell transformation and malignancy. Oncogenic kinases play a central role in cancer progression, rendering them putative targets for the design of anti-cancer drugs. The presented work aims to identify the potential multi-target inhibitors of oncogenic receptor tyrosine kinases (RTKs) and serine/threonine kinases (STKs). For this, chemoinformatics and structure-based virtual screening approaches were combined with an in vitro validation of lead hits on both cancerous and non-cancerous cell lines. A total of 16 different kinase structures were screened against ~739,000 prefiltered compounds using diversity selection, after which the top hits were filtered for promising pharmacokinetic properties. This led to the identification of 12 and 9 compounds against RTKs and STKs, respectively. Molecular dynamics (MD) simulations were carried out to better comprehend the stability of the predicted hit kinase-compound complexes. Two top-ranked compounds against each kinase class were tested in vitro for cytotoxicity, with compound F34 showing the most promising inhibitory activity in HeLa, HepG2, and Vero cell lines with IC50 values of 145.46 μM, 175.48 μM, and 130.52 μM, respectively. Additional docking of F34 against various RTKs was carried out to support potential multi-target inhibition. Together with reliable MD simulations, these results suggest the promising potential of identified multi-target STK and RTK scaffolds for further kinase-specific anti-cancer drug development toward combinatorial therapies.
Collapse
Affiliation(s)
- Nazia Ikram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Usman Mirza
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Michiel Vanmeert
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Muhammad Tahir
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
| | - Aamer Qazi
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
| | - Sarfraz Ahmad
- Institute of Pharmaceutical Sciences, Riphah University, 54000 Lahore, Pakistan.
- Department of Chemistry, Faculty of Sciences, University Malaya, 59100, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Ghassemi-Rad J, Maleki M, Knickle AF, Hoskin DW. Myricetin-induced oxidative stress suppresses murine T lymphocyte activation. Cell Biol Int 2018; 42:1069-1075. [PMID: 29745443 DOI: 10.1002/cbin.10977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
A number of polyphenolic compounds present in fruits and vegetables have the capacity to modulate immune responses; however, the impact of the common plant-derived flavonoid myricetin on T lymphocyte function has not been investigated. We show that myricetin inhibited mouse T lymphocyte activation by bead-immobilized anti-CD3 and anti-CD28 monoclonal antibodies, as indicated by a dose-dependent reduction in cell proliferation and decreased synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17 associated with different T helper cell subsets. This effect was attributed to myricetin-induced reactive oxygen species (ROS) since myricetin caused hydrogen peroxide (H2 O2 ) to accumulate in cell-free culture medium and H2 O2 inhibited T cell proliferation and cytokine synthesis. In addition, the antioxidant N-acetyl cysteine restored the ability of myricetin-treated T lymphocytes to proliferate in response to a mitogenic stimulus. The presence of dendritic cells or bone marrow-derived macrophages negated the inhibitory effect of myricetin on T cell activation, and H2 O2 in T cell cultures that were treated with exogenous H2 O2 was reduced when antigen-presenting cells were also present. These findings suggest that antioxidant molecules produced by dendritic cells and macrophages protected T cells from myricetin-induced oxidative stress, and underscore the importance of considering immune cell interactions when evaluating the immunomodulatory activity of ROS-generating phytochemicals.
Collapse
Affiliation(s)
| | - Mahdis Maleki
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Allison F Knickle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
28
|
de Silva MB, Tencomnao T. The protective effect of some Thai plants and their bioactive compounds in UV light-induced skin carcinogenesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:80-89. [PMID: 29879588 DOI: 10.1016/j.jphotobiol.2018.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Skin cancer, represents a major public health concern. While the vast majority is non-melanoma skin cancers, melanomas are mostly responsible for mortality. Solar UVB radiation is mutagenic and carcinogenic. It is primarily responsible for both non-melanoma and melanoma skin cancers via excessive production of reactive oxygen species (ROS), which mediate changes in inflammation and immunity, and have been implicated in all three stages of skin cancer development. Due to their regulatory role in numerous functions of cells, signaling pathways are targets for chemoprevention. The current standards in melanoma therapy are targeted and combination therapies, which, albeit prolong survival responses, are still prone to development of drug resistance. To this extent, drugs of natural origin continue to spark great interest. Thailand has a rich biodiversity of indigenous flora, which have traditionally been used to treat a variety of pathologies. The active components in plant extracts that have medicinal properties, termed 'bioactive compounds,' are efficient chemopreventive agents due to their antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification properties. Thai plants and their bioactive compounds have shown protective effects on UV light-induced skin cancer in different experimental models. This warrants further in vivo investigations and translation to clinical studies to determine efficacy and safety, for use as lead compounds in targeted/combination therapy or adjuvant therapy with existing regimes. Coupled with a strategy for prevention, this offers a promising outlook for protection against photocarcinogenesis.
Collapse
Affiliation(s)
- Madhura B de Silva
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama I Road, Pathumwan, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama I Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M, Ivanova A, Venkova L, Borisov N, Buzdin A, Mamoshina P, Putin E, Swick AG, Moskalev A, Zhavoronkov A. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 2017; 8:2127-2152. [PMID: 27677171 PMCID: PMC5076455 DOI: 10.18632/aging.101047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022]
Abstract
Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Aleksey V Belikov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Andrew Garazha
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Center for Biogerontology and Regenerative Medicine, Moscow, 121099, Russia
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Maria Suntsova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Alena Ivanova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Larisa Venkova
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Nicolas Borisov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Anton Buzdin
- Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Polina Mamoshina
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Evgeny Putin
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.,School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA.,Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, Oxford, UK
| |
Collapse
|
30
|
Structural evidence of quercetin multi-target bioactivity: A reverse virtual screening strategy. Eur J Pharm Sci 2017. [PMID: 28636950 DOI: 10.1016/j.ejps.2017.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitous flavonoid quercetin is broadly recognized for showing diverse biological and health-promoting effects, such as anti-cancer, anti-inflammatory and cytoprotective activities. The therapeutic potential of quercetin and similar compounds for preventing such diverse oxidative stress-related pathologies has been generally attributed to their direct antioxidant properties. Nevertheless, accumulated evidence indicates that quercetin is also able to interact with multiple cellular targets influencing the activity of diverse signaling pathways. Even though there are a number of well-established protein targets such as phosphatidylinositol 3 kinase and xanthine oxidase, there remains a lack of a comprehensive knowledge of the potential mechanisms of action of quercetin and its target space. In the present work we adopted a reverse screening strategy based on ligand similarity (SHAFTS) and target structure (idTarget, LIBRA) resulting in a set of predicted protein target candidates. Furthermore, using this method we corroborated a broad array of previously experimentally tested candidates among the predicted targets, supporting the suitability of this screening approach. Notably, all of the predicted target candidates belonged to two main protein families, protein kinases and poly [ADP-ribose] polymerases. They also included key proteins involved at different points within the same signaling pathways or within interconnected signaling pathways, supporting a pleiotropic, multilevel and potentially synergistic mechanism of action of quercetin. In this context we highlight the value of quercetin's broad target profile for its therapeutic potential in diseases like inflammation, neurodegeneration and cancer.
Collapse
|
31
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016; 8:90. [PMID: 26891321 PMCID: PMC4772053 DOI: 10.3390/nu8020090] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023] Open
Abstract
Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson's and Alzheimer's. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound's ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.
Collapse
|
33
|
Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 2015; 142:19-25. [PMID: 26455550 DOI: 10.1016/j.lfs.2015.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Dietary guidelines published in the past two decades have acknowledged the beneficial effects of myricetin, an important and common type of herbal flavonoid, against several human diseases such as inflammation, cardiovascular pathologies, and cancer. An increasing number of studies have shown the beneficial effects of myricetin against different types of cancer by modifying several cancer hallmarks including aberrant cell proliferation, signaling pathways, apoptosis, angiogenesis, and tumor metastasis. Most importantly, myricetin interacts with oncoproteins such as protein kinase B (PKB) (Akt), Fyn, MEK1, and JAK1-STAT3 (Janus kinase-signal transducer and activator of transcription 3), and it attenuates the neoplastic transformation of cancer cells. In addition, myricetin exerts antimitotic effects by targeting the overexpression of cyclin-dependent kinase 1 (CDK1) in liver cancer. Moreover, it also targets the mitochondria and promotes different kinds of cell death in various cancer cells. In the present paper, a critical review of the available literature is presented to identify the molecular targets underlying the anticancer effects of myricetin.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, UK
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Discovery of γ-Mangostin as an Amyloidogenesis Inhibitor. Sci Rep 2015; 5:13570. [PMID: 26310724 PMCID: PMC4550876 DOI: 10.1038/srep13570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein involved in human hereditary amyloidoses. The discovery and development of small molecules that inhibit the amyloid fibril formation of TTR is one of the therapeutic strategies for these diseases. Herein, we discovered that γ-mangostin (γ-M) is an effective inhibitor against the amyloid fibril formation of V30M amyloidogenic TTR. In-vitro binding assays revealed that γ-M was the most potent of the selected xanthone derivatives, and it bound to the thyroxine (T4)-binding sites and stabilized the TTR tetramer. X-ray crystallographic analysis revealed the diagonal binding mode of γ-M and the two binding sites of chloride ions at the T4-binding site. One of the chloride ions was replaced with a water molecule in the α-mangostin complex, which is a methylated derivative of γ-M. The stronger inhibitory potency of γ-M could be explained by the additional hydrogen bonds with the chloride ion. The present study establishes γ-M as a novel inhibitor of TTR fibrillization.
Collapse
|
35
|
Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest New Drugs 2015; 33:575-93. [PMID: 25895100 DOI: 10.1007/s10637-015-0240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023]
Abstract
Myricetin is a naturally omnipresent benzo-α-pyrone flavonoids derivative; has potent anticancer activity. Receptor tyrosine kinases family provides the decisive role in cancer initiation and progression. These receptors have recently caught the attention of the researchers as an attractive target to combat cancer, owing to the evidences endorsed their over-expression on cancer cells. This study is a concerted effort to explore the potent and specific multi-targeted inhibitor against RTKs and AR\ER employing molecular docking approach. IR, IGF1R, EGFR, VEGFR1, VEGFR2, and AR\ER were chosen as a protein and natural compounds as a ligand. Molecular docking procedure followed by using Maestro 9.6 (Schrödinger Inc). All natural compounds were docked with the X-ray crystal structures of selected proteins by employing grid-based ligand docking with energetics Maestro 9.6. IBS natural compounds docked with each selected protein molecules by using GLIDE high throughput virtual screening. On the basis of Gscore, we selected 20 compounds from IBS (50,000 compounds) along with 68 anticancer compounds from published literature for GLIDE extra precision molecular docking. Calculated docking free energy yielded the excellent dock score for the myricetin when docked with proteins EGFR, IR, and AR\ER. Protein-ligand interactions profile highlighted that the lipophilic, hydrogen bonding and π-π stacking interactions play a central role in protein-ligand interactions at the active site. The results of MTT assay reveal that the myricetin inhibit the viability and proliferation of cancer cells in a dose-dependent manner. Treatment with the myricetin led to down-regulation of mRNA expression of EGFR, IR, mTOR, and Bcl-2. Although, further in vitro and in vivo experimental studies are required for the experimental validation of our findings.
Collapse
|
36
|
Singh P, Bast F. High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1328-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Qin S, Deng F, Wu W, Jiang L, Yamashiro T, Yano S, Hou DX. Baicalein modulates Nrf2/Keap1 system in both Keap1-dependent and Keap1-independent mechanisms. Arch Biochem Biophys 2014; 559:53-61. [PMID: 24704364 DOI: 10.1016/j.abb.2014.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
Baicalein, a major component of Scutellaria baicalensis Georgi (Huang Qin), is widely used in the traditional Chinese medicine. However, the mechanisms underlying cancer chemoprevention are still not clear. The present study aimed to clarify how baicalein modulate Nrf2/Keap1 system to exert its cytoprotection and cancer chemoprevention. In the upstream cellular signaling, baicalein stimulated the phosphorylation of MEK1/2, AKT and JNK1/2, which were demonstrated to be essential for baicalein-induced Nrf2 expression by their inhibitors. Immunoprecipitation with Nrf2 found that baicalein increased the amount of phosphorylated MEK1/2, AKT and JNK1/2 bound to Nrf2, and also stabilized Nrf2 protein by inhibiting the ubiquitination and proteasomal turnover of Nrf2. Simultaneously, baicalein down-regulated Keap1 by stimulating modification and degradation of Keap1 without affecting the dissociation of Keap1-Nrf2. Silencing Nrf2 using Nrf2 siRNA markedly reduced the ARE activity under both baseline and baicalein-induced conditions. Thus, baicalein positively modulate Nrf2/Keap1 system through both Keap1-independent and -dependent pathways. These finding provide an insight to understand the mechanisms of baicalein in cytoprotection and cancer chemoprevention.
Collapse
Affiliation(s)
- Si Qin
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China; Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Fangming Deng
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weiguo Wu
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liwen Jiang
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Takaaki Yamashiro
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Satoshi Yano
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - De-Xing Hou
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China; Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
38
|
Gutiérrez-Venegas G, Luna OA, Arreguín-Cano JA, Hernández-Bermúdez C. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts. Cell Mol Biol Lett 2014; 19:126-39. [PMID: 24569980 PMCID: PMC6276007 DOI: 10.2478/s11658-014-0186-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 02/18/2014] [Indexed: 02/01/2023] Open
Abstract
Periodontitis is an infectious disease caused by microorganisms present in dental bacterial plaque. Lipoteichoic acid (LTA) is a component of the external membrane of Gram-positive bacteria. It causes septic shock. Ingested flavonoids have been reported to directly affect the regulation of cyclooxygenase-2 (COX-2) expression induced by bacterial toxins. In this study, we examined the effects of four flavonoids (luteolin, fisetin, morin and myricetin) on the activation of ERK1/2, p38 and AKT, and on the synthesis of COX-2 in human gingival fibroblasts treated with LTA from Streptococcus sanguinis. We found that luteolin and myricetin blocked AKT and p38 activation and that myricetin blocked LTA-induced COX-2 expression. The results of our study are important for elucidating the mechanism of action of flavonoid regulation of inflammatory responses.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, México,
| | | | | | | |
Collapse
|
39
|
Vasantha Rupasinghe H, Nair SV, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
40
|
Abstract
SIGNIFICANCE Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. RECENT ADVANCES Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. CRITICAL ISSUES One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. FUTURE DIRECTIONS The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention.
Collapse
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | |
Collapse
|
41
|
Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem 2013; 138:48-53. [DOI: 10.1016/j.foodchem.2012.09.102] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 09/14/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022]
|
42
|
Fu RH, Liu SP, Chu CL, Lin YH, Ho YC, Chiu SC, Lin WY, Shyu WC, Lin SZ. Myricetin attenuates lipopolysaccharide-stimulated activation of mouse bone marrow-derived dendritic cells through suppression of IKK/NF-κB and MAPK signalling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:76-84. [PMID: 22689051 DOI: 10.1002/jsfa.5733] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/30/2012] [Accepted: 04/16/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Myricetin is a naturally occurring flavonoid that is found in many fruits, vegetables, teas and medicinal herbs. It has been demonstrated to have anti-inflammatory properties, but, to date, no studies have described the immunomodulatory effects of myricetin on the functions of dendritic cells (DCs). The aim of this study was to evaluate the potential for myricetin to modulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs. RESULTS Our experimental data showed that treatment with myricetin up to 10 µg mL(-1) does not cause cytotoxicity in cells. Myricetin significantly decreased the secretion of tumour necrosis factor-α, interleukin-6 and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility class II, CD40 and CD86 on DCs was also inhibited by myricetin, and the endocytic and migratory capacity of LPS-stimulated DCs was blocked by myricentin. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was reduced by myricetin. Moreover, our results confirmed that myricetin attenuates the responses of LPS-stimulated activation of DCs via suppression of IκB kinase/nuclear factor-κB and mitogen-activated protein kinase-dependent pathways. CONCLUSION Myricetin has novel immunopharmacological activity, and modulation of DCs by myricetin may be an attractive strategy for the treatment of inflammatory and autoimmune disorders, and for transplantation.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan; Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1. Biochem Pharmacol 2012; 85:898-912. [PMID: 23279849 DOI: 10.1016/j.bcp.2012.12.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/15/2012] [Accepted: 12/20/2012] [Indexed: 01/24/2023]
Abstract
The major goal of cancer drug discovery is to find an agent that is safe and affordable, yet effective against cancer. Here we show that morin (3,5,7,2',4'-pentahydroxyflavone) has potential against cancer cells through suppression of the signal transducer and activator of transcription 3 (STAT3) pathway, which is closely linked to the transformation, survival, proliferation, and metastasis of cancer. We found that morin completely suppressed inducible and constitutively activated STAT3 and blocked the nuclear translocation of STAT3 and its DNA binding in multiple myeloma and head and neck squamous carcinoma cells. Morin inhibited activated Src, JAK-1, and JAK-2, all of which are linked to STAT3 activation, while up-regulating a protein inhibitor of activated STAT3, PIAS3. Pervanadate reversed the effects of morin on STAT3 phosphorylation, indicating the role of a protein tyrosine phosphatase. Furthermore, morin induced SHP1 expression at both the mRNA and protein levels, and silencing of SHP1 abrogated the effect of morin on STAT3 phosphorylation, indicating that morin mediates its effects on STAT3 through SHP1. Suppression of STAT3 correlated with the down-regulation of various gene products linked to tumor survival, proliferation, and angiogenesis and led to sensitization of tumor cells to thalidomide and bortezomib. Comparing the activities of morin with those of four structurally related flavonols demonstrated the importance of hydroxyl groups in the B ring in inhibiting STAT3 activation. These findings suggest that morin suppresses the STAT3 pathway, leading to the down-regulation of STAT3-dependent gene expression and chemosensitization of tumor cells.
Collapse
|
44
|
Murakami A, Ohnishi K. Target molecules of food phytochemicals: food science bound for the next dimension. Food Funct 2012; 3:462-76. [PMID: 22377900 DOI: 10.1039/c2fo10274a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phytochemicals are generally defined as secondary metabolites in plants that play crucial roles in their adaptation to a variety of environmental stressors. There is a great body of compelling evidence showing that these metabolites have pronounced potentials for regulating and modulating human health and disease onset, as shown by both experimental and epidemiological approaches. Concurrently, enormous efforts have been made to elucidate the mechanism of actions underlying their biological and physiological functions. For example, the pioneering work of Tachibana et al. uncovered the receptor for (-)-epigallocatechin-3-gallate (EGCg) as the 67 kDa laminin receptor, which was shown to partially mediate the functions of EGCg, such as anti-inflammatory, anti-allergic, and anti-proliferative activities. Thereafter, several protein kinases were identified as binding proteins of flavonoids, including myricetin, quercetin, and kaempferol. Isothiocyanates, sulfur-containing phytochemicals present in cruciferous plants, are well known to target Keap1 for activating the transcription factor Nrf2 for inducing self-defensive and anti-oxidative gene expression. In addition, we recently identified CD36 as a cell surface receptor for ursolic acid, a triterpenoid ubiquitously occurring in plants. Importantly, the above mentioned target proteins are indispensable for phytochemicals to exhibit, at least in part, their bioactivities. Nevertheless, it is reasonable to assume that some of the activities and potential toxicities of metabolites are exerted via their interactions with unidentified, off-target proteins. This notion may be supported by the fact that even rationally designed drugs occasionally display off-target effects and induce unexpected outcomes, including toxicity. Here we update the current status and future directions of research related to target molecules of food phytochemicals.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
45
|
Swami SB, Thakor NSJ, Patil MM, Haldankar PM. Jamun (<i>Syzygium cumini </i>(L.)): A Review of Its Food and Medicinal Uses. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.38146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
WACHTER J, NEUREITER D, ALINGER B, PICHLER M, FUEREDER J, OBERDANNER C, Di FAZIO P, OCKER M, BERR F, KIESSLICH T. Influence of five potential anticancer drugs on wnt pathway and cell survival in human biliary tract cancer cells. Int J Biol Sci 2012; 8:15-29. [PMID: 22211101 PMCID: PMC3226029 DOI: 10.7150/ijbs.8.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/21/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of Wnt signalling in carcinogenesis suggests compounds targeting this pathway as potential anti-cancer drugs. Several studies report activation of Wnt signalling in biliary tract cancer (BTC) thus rendering Wnt inhibitory drugs as potential candidates for targeted therapy of this highly chemoresistant disease. METHODS In this study we analysed five compounds with suggested inhibitory effects on Wnt signalling (DMAT, FH535, myricetin, quercetin, and TBB) for their cytotoxic efficiency, mode of cell death, time- and cell line-dependent characteristics as well as their effects on Wnt pathway activity in nine different BTC cell lines. RESULTS Exposure of cancer cells to different concentrations of the compounds results in a clear dose-dependent reduction of viability for all drugs in the order FH535 > DMAT > TBB > myricetin > quercetin. The first three substances show high cytotoxicity in all tested cell lines, cause a direct cytotoxic effect by induction of apoptosis and inhibit pathway-specific signal transduction in a Wnt transcription factor reporter activity assay. Selected target genes such as growth-promoting cyclin D1 and the cell cycle progression inhibitor p27 are down- and up-regulated after treatment, respectively. CONCLUSIONS Taken together, these data demonstrate that the small molecular weight inhibitors DMAT, F535 and TBB have a considerable cytotoxic and possibly Wnt-specific effect on BTC cell lines in vitro. Further in vivo investigation of these drugs as well as of new Wnt inhibitors may provide a promising approach for targeted therapy of this difficult-to-treat tumour.
Collapse
Affiliation(s)
- Julia WACHTER
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Daniel NEUREITER
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Beate ALINGER
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Martin PICHLER
- 3. Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Julia FUEREDER
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | | | - Pietro Di FAZIO
- 5. Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, 35033 Marburg, Germany
| | - Matthias OCKER
- 5. Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, 35033 Marburg, Germany
| | - Frieder BERR
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Tobias KIESSLICH
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
- ✉ Corresponding author: Tobias KIESSLICH, Department of Internal Medicine I, Paracelsus Medical University / SALK, Muellner Hauptstrasse 48, 5020 Salzburg, Austria. Tel: ++43 662 448258346, Fax: ++43 662 44824837,
| |
Collapse
|
47
|
Kang NJ, Jung SK, Lee KW, Lee HJ. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci 2011; 1229:124-32. [PMID: 21793847 DOI: 10.1111/j.1749-6632.2011.06122.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myricetin is a widely distributed flavonol that is found in many plants, including tea, berries, fruits, vegetables, and medicinal herbs. Abundant sources provide interesting insights into the multiple mechanisms by which myricetin mediates chemopreventive effects on skin cancer. Myricetin strongly inhibited tumor promoter-induced neoplastic cell transformation by inhibiting MEK, JAK1, Akt, and MKK4 kinase activity directly. In a mouse skin model, myricetin attenuated the ultraviolet B (UVB)-induced COX-2 expression and skin tumor formation by regulating Fyn. Myricetin-mediated inactivation of Akt in the UVB response plays a role in regulating UVB-induced carcinogenesis. Recently, myricetin was found to inhibit UVB-induced angiogenesis by targeting PI3-K in an SKH-1 hairless mouse skin tumorigenesis model. Raf kinase is a critical target for myricetin in inhibiting the UVB-induced formation of wrinkles and suppression of type I procollagen and collagen levels in mouse skin. Accumulated data suggest that myricetin acts as a promising agent for the chemoprevention of skin cancer.
Collapse
Affiliation(s)
- Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Morales P, Haza AI. Selective apoptotic effects of piceatannol and myricetin in human cancer cells. J Appl Toxicol 2011; 32:986-93. [PMID: 21935971 DOI: 10.1002/jat.1725] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 11/07/2022]
Abstract
Numerous studies have shown the potential of dietary polyphenols as anticarcinogenic agents. The aim of the present study was to evaluate the apoptotic effects of piceatannol and myricetin, naturally occurring polyphenols in red wine, alone or in combination, in two human cell lines: HL-60 (leukemia) and HepG2 (hepatoma). Apoptotic cells were identified by chromatin condensation, poly(ADP-ribose) polymerase cleavage and flow cytometry analysis. Results from TUNEL assay showed that piceatannol or myricetin alone induced apoptotic cell death in a concentration- and time-dependent manners in HL-60 cells. Furthermore, in combined treatment the percentage of apoptotic HL-60 cells was significantly higher. Nevertheless, the percentage of TUNEL positive HepG2 cells only was significant after piceatannol treatment and in combined treatment was even lower than in cells treated with piceatannol alone. Moreover, we also studied the relative reactive oxygen species (ROS) production. Our results indicate that apoptosis induced by piceatannol or myricetin occurs through an ROS-independent cell death pathway. In conclusion, piceatannol and myricetin synergistically induced apoptosis in HL-60 cells but not in HepG2 cells. These findings suggest that the potential anticarcinogenic properties of dietary polyphenols depend largely on the cell line used. The relevance of these data needs to be verified in human epidemiological studies.
Collapse
Affiliation(s)
- Paloma Morales
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | |
Collapse
|
49
|
Bobe G, Murphy G, Albert PS, Sansbury LB, Young MR, Lanza E, Schatzkin A, Colburn NH, Cross AJ. Do interleukin polymorphisms play a role in the prevention of colorectal adenoma recurrence by dietary flavonols? Eur J Cancer Prev 2011; 20:86-95. [PMID: 21160427 PMCID: PMC3029494 DOI: 10.1097/cej.0b013e3283429e45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chemopreventive dietary compounds, such as flavonols, may inhibit colorectal carcinogenesis partly by altering cytokine expression and attenuating inflammation. Single nucleotide polymorphisms (SNPs) in the promoter regions of genes encoding cytokines may influence flavonol-induced changes in cytokine expression and consequently cancer risk. Using logistic regression, we estimated odds ratios (OR) and 95% confidence intervals (CI) for the association between SNPs of interleukin (IL)-1β, 6, 8, and 10 alone or combined with flavonol intake or serum IL concentration changes, and adenoma recurrence in 808 participants from the intervention arm of the Polyp Prevention Trial, a 4-year intervention study evaluating the effectiveness of a low-fat, high-fiber, high-fruit and vegetable diet on adenoma recurrence. Overall, SNPs in genes encoding IL-1β, 6, 8, and 10 were not associated with their corresponding serum concentrations or adenoma recurrence. However, individuals homozygous for IL-10 -592 C (OR=2.23, 95% CI: 1.07-4.66, P(interaction)=0.03) orIL-10 -819 C (OR=2.18, 95% CI: 1.05-4.51, P(interaction)=0.05) had an elevated risk of high-risk adenoma recurrence when their serum IL-10 concentrations increased during the trial. In addition, IL-6 -174 GG in combination with above median flavonol intake (OR=0.14, 95% CI: 0.03-0.66) or with decreased IL-6 concentrations (OR=0.14, 95% CI: 0.03-0.65) reduced the risk of advanced adenoma recurrence, although the interaction term was not statistically significant. In conclusion, our results suggest that IL SNPs, in combination with a flavonol-rich diet or decreased serum IL, may lower the risk of adenoma recurrence.
Collapse
Affiliation(s)
- Gerd Bobe
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Although successful for a limited number of tumour types, the efficacy of cancer therapies, especially for late-stage disease, remains poor overall. Many have argued that this could be avoided by focusing on cancer prevention, which has now entered the arena of targeted therapies. During the process of identifying preventive agents, dietary phytochemicals, which are thought to be safe for human use, have emerged as modulators of key cellular signalling pathways. The task now is to understand how these chemicals perturb these pathways by modelling their interactions with their target proteins.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143701, Republic of Korea
| | | | | |
Collapse
|