1
|
Xie B, Du S, Gao H, Zhang J, Fu H, Liao Y. An electrochemical biosensor equipped with a logic circuit as a smart automaton for two-miRNA pattern detection. Analyst 2024; 149:5110-5117. [PMID: 39235287 DOI: 10.1039/d4an00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Detecting multiple targets in complex cellular and biological environments yields more reliable results than single-label assays. Here, we introduced an electrochemical biosensor equipped with computing functions, acting as a smart automaton to enable computing-based detection. By defining the logic combinations of miR-21 and miR-122 as detection patterns, we proposed the corresponding AND and OR detection automata. In both logic gate modes, miR-21 and miR-122 could be replaced with single-stranded FO or FA, modified with Fc, binding to the S chain on the electrode surface. This process led to a significant decrease in the square wave voltammetry (SWV) of Fc on the same sensing platform, as numerous ferrocene (Fc)-tagged DNA fragments escaped from the electrode surface. Experimental results indicated that both automata efficiently and sensitively detected the presence of the two targets. This strategy highlighted how a small amount of target could generate a large current signal decrease in the logic automata, significantly reducing the detection limit for monitoring low-abundance targets. Moreover, the short-stranded DNA components of the detection automata exhibited a simple composition and easy programmability of probe sequences, offering an innovative detection mode. This simplified the complex process of detection, data collection, computation, and evaluation. The direct detection result ("0" or "1") was exported according to the embedded computation code. This approach could be expanded into a detection system for identifying other sets of biomarkers, enhancing its potential for clinical applications.
Collapse
Affiliation(s)
- Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Shimao Du
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, China.
| |
Collapse
|
2
|
Kawai M, Fukuda A, Otomo R, Obata S, Minaga K, Asada M, Umemura A, Uenoyama Y, Hieda N, Morita T, Minami R, Marui S, Yamauchi Y, Nakai Y, Takada Y, Ikuta K, Yoshioka T, Mizukoshi K, Iwane K, Yamakawa G, Namikawa M, Sono M, Nagao M, Maruno T, Nakanishi Y, Hirai M, Kanda N, Shio S, Itani T, Fujii S, Kimura T, Matsumura K, Ohana M, Yazumi S, Kawanami C, Yamashita Y, Marusawa H, Watanabe T, Ito Y, Kudo M, Seno H. Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning. Br J Cancer 2024; 131:1158-1168. [PMID: 39198617 PMCID: PMC11442445 DOI: 10.1038/s41416-024-02794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pancreatic cancer is often diagnosed at advanced stages, and early-stage diagnosis of pancreatic cancer is difficult because of nonspecific symptoms and lack of available biomarkers. METHODS We performed comprehensive serum miRNA sequencing of 212 pancreatic cancer patient samples from 14 hospitals and 213 non-cancerous healthy control samples. We randomly classified the pancreatic cancer and control samples into two cohorts: a training cohort (N = 185) and a validation cohort (N = 240). We created ensemble models that combined automated machine learning with 100 highly expressed miRNAs and their combination with CA19-9 and validated the performance of the models in the independent validation cohort. RESULTS The diagnostic model with the combination of the 100 highly expressed miRNAs and CA19-9 could discriminate pancreatic cancer from non-cancer healthy control with high accuracy (area under the curve (AUC), 0.99; sensitivity, 90%; specificity, 98%). We validated high diagnostic accuracy in an independent asymptomatic early-stage (stage 0-I) pancreatic cancer cohort (AUC:0.97; sensitivity, 67%; specificity, 98%). CONCLUSIONS We demonstrate that the 100 highly expressed miRNAs and their combination with CA19-9 could be biomarkers for the specific and early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| | - Ryo Otomo
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Shunsuke Obata
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masanori Asada
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Uenoyama
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Nobuhiro Hieda
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryuki Minami
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yoshitaka Nakai
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Kozo Ikuta
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Naoki Kanda
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Seiji Shio
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Toshinao Itani
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Shigehiko Fujii
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Toshiyuki Kimura
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kazuyoshi Matsumura
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Masaya Ohana
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Chiharu Kawanami
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Yukitaka Yamashita
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
3
|
Wang J, Ma S, Ge K, Xu R, Shen F, Gao X, Yao Y, Chen Y, Chen Y, Gao F, Wu G. Face-to-face Assembly Strategy of Au Nanocubes: Induced Generation of Broad Hotspot Regions for SERS-Fluorescence Dual-Signal Detection of Intracellular miRNAs. Anal Chem 2024; 96:8922-8931. [PMID: 38758935 DOI: 10.1021/acs.analchem.3c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
While designing anisotropic noble metal nanoparticles (NPs) can enhance the signal intensity of Raman dyes, more sensitive surface-enhanced Raman scattering (SERS) probes can be designed by oriented self-assembly of noble metal nanomaterials into dimers or higher-order nanoclusters. In this study, we engineered a self-assembly strategy in living cells for real-time fluorescence and SERS dual-channel detection of intracellular microRNAs (miRNAs), using Mg2+-dependent 8-17E DNAzyme sequences as the driving motors, gold nanocubes (AuNCs) as the driver components, and three-branched double-stranded DNA as the linking tool. The assembly selects adenine in DNA as a reporter molecule, simplifying the labeling process of Raman reporter molecules and reducing the synthesis process. In addition, adenine is stably distributed between the faces of AuNCs and the wide hotspot region gives good reproducibility of the adenine SERS signal. In this strategy, the SERS channel was consistently stable and more sensitive compared to the fluorescence channel. Among them, the detection limit of the SERS channel was 2.1 pM and the coefficient of variation was 1.26% in the in vitro liquid phase and 1.49% in MCF-7 cells. The strategy successfully achieved accurate tracking and quantification of miRNA-21 in cancer cells, showing good reproducibility in complex samples as well as cells. The reported strategy provides ideas for exploring intracellular specific triggering of nanoparticles for precise control of self-assembly.
Collapse
Affiliation(s)
- Jiwei Wang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Xu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fuzhi Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
4
|
Lei S, Ji Y, Zhang Q, Li G, Zou L, Chai G, Mao J, Zhang J, Ye B. A rapid one-step electrochemical method based on cleat-equipped molecular walking machine. Talanta 2024; 272:125756. [PMID: 38364562 DOI: 10.1016/j.talanta.2024.125756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Various nucleic acid molecular machines have emerged in recent years. However, when the nucleic acid tracks are fully depleted, these walkers are highly susceptible to premature release or stalling in regions where the tracks are locally exhausted. In this work, a molecular walking machine with a cleat domain preventing dissociation from the track was explored for ultrasensitive detection of miRNA. It has been verified that the cleat design can enhance the signal amplification efficiency of molecular walking machines for electrochemical miRNA-141 detection. Notably, the single-step electrochemical biosensing platform utilizing the cleat-equipped molecular walking machine (CMWM) is exceptionally straightforward and rapid, concluding the reaction within 90 min and achieving a remarkable low detection limit of 0.26 fM. The proposed molecular walking machine with this specific cleat structure was utilized for the identification of miRNA-141 in cellular lysates, exhibiting remarkable selectivity and consistent reproducibility, showcasing its effective utility in bioanalysis. Therefore, the cleat walker developed in this study introduces an innovative method for constructing a miRNA electrochemical biosensing platform, offering new perspectives for its application in biomolecule detection and clinical disease diagnosis.
Collapse
Affiliation(s)
- Sheng Lei
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yanli Ji
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, 450001, PR China; Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, 450001, PR China; Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, 450001, PR China; Beijing Life Science Academy, Beijing, 102299, PR China
| | - Jianxun Zhang
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, 450001, PR China; Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Baoxian Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
5
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
6
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Pandey C, Tiwari P. Differential microRNAs Expression during Cancer Development, and Chemoprevention by Natural Compounds: A Comprehensive Review. J Environ Pathol Toxicol Oncol 2024; 43:65-80. [PMID: 39016142 DOI: 10.1615/jenvironpatholtoxicoloncol.2024050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
MicroRNAs are short non-coding RNAs that inhibit gene expression at the post-transcriptional level. Abnormal microRNA expression has been associated with different human diseases, including cancer. Epigenetic changes, mutation, transcriptional deregulation, DNA copy number abnormalities, and defects in the biogenesis machinery play an important role in abnormal microRNA expression. Modulation of microRNAs by natural agents has emerged to enhance the efficacy of conventional chemotherapy through combinatorial therapeutic approach. This review summarizes the current understanding of abnormal microRNA expression in cancer, the different cellular mechanisms of microRNA, and their prevention by natural compounds. Understanding microRNA expression patterns during cancer development may help to identify stage-specific molecular markers. Natural compounds that exert regulatory effects by modulating microRNAs can be used in better cancer chemopreventive strategies by directly targeting microRNAs or as a way to increase sensitivity to existing chemotherapy regimens.
Collapse
Affiliation(s)
- Chhaya Pandey
- School of Environmental Biology, Awadhesh Pratap Singh University, Rewa-486001, Madhya Pradesh, India
| | | |
Collapse
|
8
|
Emami Nejad A, Mostafavi Zadeh SM, Nickho H, Sadoogh Abbasian A, Forouzan A, Ahmadlou M, Nedaeinia R, Shaverdi S, Manian M. The role of microRNAs involved in the disorder of blood-brain barrier in the pathogenesis of multiple sclerosis. Front Immunol 2023; 14:1281567. [PMID: 38193092 PMCID: PMC10773759 DOI: 10.3389/fimmu.2023.1281567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
miRNAs are involved in various vital processes, including cell growth, development, apoptosis, cellular differentiation, and pathological cellular activities. Circulating miRNAs can be detected in various body fluids including serum, plasma, saliva, and urine. It is worth mentioning that miRNAs remain stable in the circulation in biological fluids and are released from membrane-bound vesicles called exosomes, which protect them from RNase activity. It has been shown that miRNAs regulate blood-brain barrier integrity by targeting both tight junction and adherens junction molecules and can also influence the expression of inflammatory cytokines. Some recent studies have examined the impact of certain commonly used drugs in Multiple Sclerosis on miRNA levels. In this review, we will focus on the recent findings on the role of miRNAs in multiple sclerosis, including their role in the cause of MS and molecular mechanisms of the disease, utilizing miRNAs as diagnostic and clinical biomarkers, using miRNAs as a therapeutic modality or target for Multiple Sclerosis and drug responses in patients, elucidating their importance as prognosticators of disease progression, and highlighting their potential as a future treatment for MS.
Collapse
Affiliation(s)
| | - Seyed Mostafa Mostafavi Zadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sadoogh Abbasian
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azim Forouzan
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saham Shaverdi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Islamic Azad University, Kermanshah, Iran
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Wang C, Bai M, Sun Z, Yao N, Zhang A, Guo S, Asemi Z. Epigallocatechin-3-gallate and cancer: focus on the role of microRNAs. Cancer Cell Int 2023; 23:241. [PMID: 37838685 PMCID: PMC10576883 DOI: 10.1186/s12935-023-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that affect gene expression. The role of miRNAs in different types of cancers has been published and it was shown that several miRNAs are inappropriately expressed in different cancers. Among the mechanisms that can cause this lack of proper expression are epigenetics, chromosomal changes, polymorphisms or defects in processing proteins. Recent research shows that phytochemicals, including epigallocatechin-3-gallate (EGCG), exert important epigenetic-based anticancer effects such as pro-apoptotic or anti proliferative through miRNA gene silencing. Given that EGCG is able to modulate a variety of cancer-related process i.e., angiogenesis, proliferation, metastasis and apoptosis via targeting various miRNAs such as let-7, miR-16, and miR-210. The discovery of new miRNAs and the differences observed in their expression when exposed to EGCG provides evidence that targeting these miRNAs may be beneficial as a form of treatment. In this review, we aim to provide an overview, based on current knowledge, on how phytochemicals, including epigallocatechin-3-gallate, can be considered as potential miRNAs modulator to improve efficacy of current cancer treatments.
Collapse
Affiliation(s)
- Chunguang Wang
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Meiling Bai
- Basic Medical College of Hebei North University, Zhang Jiakou, 075000, Hebei, China.
| | - Zhiguang Sun
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Nan Yao
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Aiting Zhang
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Shengyu Guo
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Zhang W, Zhang L, Dong Q, Wang X, Li Z, Wang Q. Hsa_circ_0003928 regulates the progression of diabetic nephropathy through miR-136-5p/PAQR3 axis. J Endocrinol Invest 2023; 46:2103-2114. [PMID: 37017919 DOI: 10.1007/s40618-023-02061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the complications of diabetes and has a high mortality, but its specific pathogenesis is not clear. In recent years, researches on the mechanism of circRNAs in DN have been proved a lot, whereas the functional mechanism of circ_0003928 in DN remains open and it must be investigated to value its important role in DN prevention. METHODS HK-2 cells were treated with high glucose (HG), normal glucose (NG) or Mannitol. Cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Enzyme-linked immunosorbent assay (ELISA) was applied to analyze malondialdehyde (MDA) and superoxide dismutase 1 (SOD) levels. Flow cytometry and western blot were preformed to measure cell apoptosis. Real-time quantitative PCR (RT-qPCR) was used to test the levels of circ_0003928, miR-136-5p and progestin and adipoQ receptor family member 3 (PAQR3) mRNA. Western blot was executed to detect Bcl2 associated X (Bax), B cell leukemia/lymphoma 2 (Bcl2), smooth muscle (αSMA), apolipoprotein (C-IV) and PAQR3 levels. Luciferase reporter assay and RNA pull-down assay were used to analyze the target relationship between miR-136-5p and circ_0003928 or PAQR3. RESULTS Circ_0003928 and PAQR3 expression were up-regulated, whereas miR-136-5p was decreased in DN serum and HG-induced HK-2 cells. Circ_0003928 knockdown promoted cell proliferation, and inhibit cell apoptosis, oxidative stress, and fibrosis in HK-2 cells under HG condition. MiR-136-5p silencing overturned the protective effects of si-circ_0003928 on HG-induced HK-2 cells. MiR-136-5p was targeted by circ_0003928 and directly targeted PAQR3. Overexpression of PAQR3 counteracted the inhibitory functions of circ_0003928 knockdown or miR-136-5p overexpression on HG-induced HK-2 cell injury. CONCLUSION Circ_0003928 acted as a sponge of miR-136-5p to up-regulating PAQR3 expression, and then regulate the proliferation, oxidative stress, fibrosis and apoptosis in HG-induced HK-2 cells.
Collapse
Affiliation(s)
- W Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - L Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - X Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Z Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
11
|
Li H, Wang Z, Zhao B, Zhang H, Fan D, Ma H, Zhang Y, Wang Y. Sperm-borne lncRNA loc100847420 improves development of early bovine embryos. Anim Reprod Sci 2023; 257:107333. [PMID: 37729849 DOI: 10.1016/j.anireprosci.2023.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs) that play a significant role in bovine embryo development; but the influence of sperm-borne lncRNA on the preimplantation development of bovine embryos has not been reported in detail. In this study, we aimed to clarify how sperm-borne lncRNAs can act to regulate early development of bovine embryos. Utilizing high-throughput sequencing technology and quantitative real-time PCR (qPCR), we found that the lncRNA, loc100847420, was highly enriched in bovine sperm and was carried into the oocyte during fertilization. Introduction of wild-type loc100847420 had no effect on cleavage rate of parthenogenetic embryos compared with injection of mutant loc100847420 (70.58 ± 2.85% vs 70.46 ± 1.98%, p > 0.05), but significantly improved the blastocyst rate (33.67 ± 2.40% vs 28.35 ± 3.06%, p < 0.05), total numbers of cells (p < 0.05), numbers of inner cell mass (ICM) cells (p < 0.05) and numbers of trophoblast (TE) cells (p < 0.05). In summary, the sperm-borne lncRNA, loc100847420, can improve the developmental potential of early bovine embryos.
Collapse
Affiliation(s)
- Heqiang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China
| | - Zheng Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China
| | - Baobao Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China
| | - Han Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China
| | - Dexiang Fan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China.
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture and Rural Affairs, Northwest A&∼F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
12
|
Liu R, Huang B, Shao Y, Cai Y, Liu X, Ren Z. Identification of memory B-cell-associated miRNA signature to establish a prognostic model in gastric adenocarcinoma. J Transl Med 2023; 21:648. [PMID: 37735667 PMCID: PMC10515266 DOI: 10.1186/s12967-023-04366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Memory B cells and microRNAs (miRNAs) play important roles in the progression of gastric adenocarcinoma (GAC), also known as stomach adenocarcinoma (STAD). However, few studies have investigated the use of memory B-cell-associated miRNAs in predicting the prognosis of STAD. METHODS We identified the marker genes of memory B cells by single-cell RNA sequencing (scRNA-seq) and identified the miRNAs associated with memory B cells by constructing an mRNA‒miRNA coexpression network. Then, univariate Cox, random survival forest (RSF), and stepwise multiple Cox regression (StepCox) algorithms were used to identify memory B-cell-associated miRNAs that were significantly related to overall survival (OS). A prognostic risk model was constructed and validated using these miRNAs, and patients were divided into a low-risk group and a high-risk group. In addition, the differences in clinicopathological features, tumour microenvironment, immune blocking therapy, and sensitivity to anticancer drugs in the two groups were analysed. RESULTS Four memory B-cell-associated miRNAs (hsa-mir-145, hsa-mir-125b-2, hsa-mir-100, hsa-mir-221) with significant correlations to OS were identified and used to construct a prognostic model. Time-dependent receiver operating characteristic (ROC) curve analysis confirmed the feasibility of the model. Kaplan‒Meier (K‒M) survival curve analysis showed that the prognosis was poor in the high-risk group. Comprehensive analysis showed that patients in the high-risk group had higher immune scores, matrix scores, and immune cell infiltration and a poor immune response. In terms of drug screening, we predicted eight drugs with higher sensitivity in the high-risk group, of which CGP-60474 was associated with the greatest sensitivity. CONCLUSIONS In summary, we identified memory B-cell-associated miRNA prognostic features and constructed a novel risk model for STAD based on scRNA-seq data and bulk RNA-seq data. Among patients in the high-risk group, STAD showed the highest sensitivity to CGP-60474. This study provides prognostic insights into individualized and precise treatment for STAD patients.
Collapse
Affiliation(s)
- Ruquan Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Biaojie Huang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Xi Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhonglu Ren
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| |
Collapse
|
13
|
Jahromi FNA, Dowran R, Jafari R. Recent advances in the roles of exosomal microRNAs (exomiRs) in hematologic neoplasms: pathogenesis, diagnosis, and treatment. Cell Commun Signal 2023; 21:88. [PMID: 37127640 PMCID: PMC10152632 DOI: 10.1186/s12964-023-01102-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023] Open
Abstract
In clinical diagnosis, the capability of exosomes to serve as biomarkers is one of the most important biological functions of exosomes. The superior stability of exosome biomarkers makes them superior to those isolated from traditional samples such as serum and urine. Almost all body fluids contain exosomes, which contain proteins, nucleic acids, and lipids. Several molecular components of exosomes, including exosome proteins and microRNAs (miRNAs), are promising diagnostic biomarkers. These exosomes may carry genetic information by containing messenger RNA (mRNA) and miRNA. The miRNAs are small noncoding RNAs that regulate protein-coding genes by acting as translational repressors. It has been shown that miRNAs are mis-expressed in a range of conditions, including hematologic neoplasms. Additionally, miRNAs found within exosomes have been linked with specific diseases, including hematologic neoplasms. Numerous studies suggest that circulating exosomes contain miRNAs similar to those found in parental cancer cells. Exosomes contain miRNAs that are released by almost all kinds of cells. MiRNAs are packaged into exosomes and delivered to recipient cells, and manipulate its function. It has been recognized that exosomes are new therapeutic targets for immunotherapy and biomedicine of cancers. The current review discusses the current evidence around exosomal miRNAs involved in the pathogenesis, diagnosis, and treatment of hematologic neoplasms. Video Abstract.
Collapse
Affiliation(s)
- Faride Nam Avar Jahromi
- Department of Hematology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, P.O. BoX: 1138, Shafa St., Ershad Blvd., 57147, Urmia, Iran.
| |
Collapse
|
14
|
Du S, Xie B, Gao H, Zhang J, Fu H, Liao F, Liao Y. Self-Powered DNAzyme Walker Enables Dual-Mode Biosensor Construction for Electrochemiluminescence and Electrochemical Detection of MicroRNA. Anal Chem 2023; 95:7006-7013. [PMID: 37083199 DOI: 10.1021/acs.analchem.3c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Herein, an electrochemiluminescence (ECL) and electrochemical (EC) dual-mode biosensor platform with a self-powered DNAzyme walking machine was established for accurate and sensitive detection of miRNA-21. By employing a magnesium ion (Mn2+)-dependent DNAzyme cleavage cycling reaction, the walking machine was built by assembling DNAzyme walking strands and ferrocene (Fc)-labeled substrate strands on the Au nanoparticles and graphitic carbon nitride nanosheet (g-C3N4 NS)-covered electrode. The DNAzyme walking strand was first prohibited by a blocker strand. After the addition of target miRNA-21 and Mn2+, the DNAzyme walker could be activated and produce autonomous movements along the electrode track fueled by Mn2+-dependent DNAzyme-catalyzed substrate cleavage without additional energy supply. Notably, each walking step resulted in the cleavage of a substrate strand and the release of a Fc-labeled DNA strand fragment, allowing us to acquire an extreme ECL signal recovery of g-C3N4 inhibited by Fc. Meanwhile, numerous Fc-labeled DNA fragments escaped from the surface of the electrode, directly producing an obvious decrease in the square wave voltammetry (SWV) signal from Fc on the same sensing platform. This work not only avoided difficultly assembling various signal indicators but also significantly improved the sensitivity through using self-powered DNAzyme-walker amplification. Moreover, the proposed design employed the same reaction to produce two signal output modes, which could eliminate the interference from diverse reactive pathways on the outcome to mutually improve the accuracy. Therefore, the dual-mode miRNA-21 biosensor exhibited wide detection ranges of 100 aM to 100 nM with low detection limits of 54.3 and 78.6 aM by ECL and SWV modes, respectively, which provided an efficient and universal biosensing approach with extensive applications in early disease diagnosis and bioanalysis.
Collapse
Affiliation(s)
- Shimao Du
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Fang Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China
| |
Collapse
|
15
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Wang J, Fu J, Chen H, Wang A, Ma Y, Yan H, Li Y, Yu D, Gao F, Li S. Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs. Biosens Bioelectron 2023; 224:115051. [PMID: 36621084 DOI: 10.1016/j.bios.2022.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Accurate quantitative, in situ and temporal tracking imaging of tumor-associated miRNAs in living cells could provide a basis for cancer diagnosis and prognosis. In this strategy, a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-spectral sensor (DSS) was constructed based on the nanoscale photophysical properties of AuNPs, mediated by functionalized DNA, to achieve rapid imaging of FL and accurate SERS quantification of intracellular miRNAs. The dual-spectrum sensor in the strategy is highly sensitive, specific and reproducibly stable. The LOD values of the dual spectra were 3.58 pM (SERS) as well as 11.8 pM (FL) with RSD values less than 2.69%. The bispectral sensor self-assembled into a trimer by the lapidation of Y-type DNA under the excitation of the target, generating a stable enhanced electric field coupling; and selected adenine located in the enhanced electric field as the reporter molecule, simplifying the labeling process and variables of the Raman reporter molecule, distinguishing it from other traditional methods. This strategy successfully achieved accurate tracking and quantification of miR-21 in cancer cells and showed good stability in the cells. The reported probes are potential tools for reliable monitoring of biomolecular dynamics in living cells.
Collapse
Affiliation(s)
- Jiwei Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Jingjing Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Jiangsu, 221116, Xuzhou, China
| | - Han Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, 221004, China
| | - Ali Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Ma
- Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Dehong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; The Affiliated Pizhou Hospital of Xuzhou Medical University, Xuzhou, 221399, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China.
| | - Shibao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Medical Laboratory Department, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, Xuzhou, China.
| |
Collapse
|
17
|
Exosomal hsa-let-7g-3p and hsa-miR-10395-3p derived from peritoneal lavage predict peritoneal metastasis and the efficacy of neoadjuvant intraperitoneal and systemic chemotherapy in patients with gastric cancer. Gastric Cancer 2023; 26:364-378. [PMID: 36738390 DOI: 10.1007/s10120-023-01368-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The prognosis of advanced gastric cancer (GC) invading the gastric serosa remains poor, mainly owing to high incidence of peritoneal recurrence. Patients with peritoneal metastases are often treated with neoadjuvant intraperitoneal and systemic chemotherapies (NIPS). Good responders to NIPS often undergo conversion gastrectomy. This study aims to explore biomarkers predicting the occurrence of peritoneal metastasis (PM) and evaluating the efficacy of NIPS in GC patients. METHODS We collected six peritoneal lavage (PL) samples from two patients with PM, two without PM, and two with diminished PM after NIPS via intraperitoneal access ports. We equally isolated microRNAs from exosomes derived from PL samples for deep sequencing. Two microRNAs (hsa-let-7g-3p and hsa-miR-10395-3p) were identified, and their expression levels were examined in PL samples of 99 GC patients using qRT-PCR. Moreover, we performed in vivo and in vitro functional assays to investigate effects of these microRNAs on metastasis and chemoresistance of GC cells. RESULTS Exosomal microRNA expression profiling of six PL samples indicated that the microRNA signature in exosomes of PLs from patients with diminished PM was similar to that from patients without PM. Expression levels of hsa-let-7g-3p and hsa-miR-10395-3p were associated with PM. In vivo and in vitro functional assays confirmed that hsa-let-7g-3p and hsa-miR-10395-3p are involved in GC metastasis and chemoresistance. CONCLUSION PL-derived exosomes in GC contain large amounts of microRNAs related to PM. Moreover, hsa-let-7g-3p and hsa-miR-10395-3p could be used as biomarkers predicting PM and NIPS efficacy and are involved in GC metastasis and chemoresistance.
Collapse
|
18
|
Rezaee M, Mohammadi F, Keshavarzmotamed A, Yahyazadeh S, Vakili O, Milasi YE, Veisi V, Dehmordi RM, Asadi S, Ghorbanhosseini SS, Rostami M, Alimohammadi M, Azadi A, Moussavi N, Asemi Z, Aminianfar A, Mirzaei H, Mafi A. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Front Pharmacol 2023; 14:1152672. [PMID: 37153758 PMCID: PMC10154547 DOI: 10.3389/fphar.2023.1152672] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.
Collapse
Affiliation(s)
- Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Veisi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Nushin Moussavi
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| |
Collapse
|
19
|
Bhandari R, Shaikh II, Bhandari R, Chapagain S. LINC01023 Promotes the Hepatoblastoma Tumorigenesis via miR-378a-5p/WNT3 Axis. Mol Cell Biochem 2022:10.1007/s11010-022-04636-5. [PMID: 36576714 DOI: 10.1007/s11010-022-04636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Hepatoblastoma is the most common type of hepatic tumors occurring in children between 0 and 5 years. And the exact pathophysiology of the disease is still mysterious. Accumulating studies on LncRNA have shown its pivotal role in the development and progression of distinct human cancers. However, the role of LINC01023 in hepatoblastoma is unknown. The relative expression of LINC01023, miR-378a-5p, and Wnt3 on hepatoblastoma tissue and cell lines was determined by quantitative polymerase chain reaction (qRT-PCR). The effect of LINC01023 downregulation and upregulation on cell proliferation, colony formation and apoptosis activities in HUH6 and HepG2 Cells was assessed by CKK8, clonogenic and flow cytometry analysis, respectively. Dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down were performed to confirm the interaction between LINC01023 and miR-378a-5p. Similarly, Dual luciferase assay was performed to confirmed the interaction between Wnt3 and miR-378a-5p. The xenograft tumorgenicity test was performed to elucidate the tumorgenicity potential of LINC01023. LINC01023 was significantly upregulated in hepatoblastoma tissue and cell lines rather than in adjacent normal hepatic tissue and QSG7701 cell lines. LINC01023 silencing attenuated cell proliferation, colony formation and increased cell apoptosis. Conversely, LINC01023 upregulation results in significant increase in cell proliferation, and colony formation activities however, a significant reduction in apoptosis activity was reported. Interaction between the LINC01023 and WNT3 was confirmed by dual luciferase assay. Xenograft animal tumorgenicity test confirmed the in-vivo tumorigenesis potential of LINC01203. To the best of our knowledge, this study is the first study demonstrating the role of LINC01023 in hepatoblastoma tumorigenesis through the LINC01023/miR-378a-5p/Wnt3 axis. It could be a potential therapeutic target and a prognostic biomarker in hepatoblastoma.
Collapse
Affiliation(s)
- Ramesh Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Imran Ibrahim Shaikh
- Department of Orthopedics, Tongji Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Rajeev Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Sadikchha Chapagain
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
20
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Wejman J, Ostrowska J, Gondek A, Włodarski PK. Decreased expression of miR-23b is associated with poor survival of endometrial cancer patients. Sci Rep 2022; 12:18824. [PMID: 36335210 PMCID: PMC9637218 DOI: 10.1038/s41598-022-22306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common types of cancer of the female reproductive system. EC is classified into two types (EC1 and EC2). MiRNAs are single-stranded RNA molecules that regulate gene expression posttranscriptionally. They have aberrant expression profiles in cancer, including EC. This study aimed to assess the level of expression of a panel of 16 miRNAs in both types of EC and healthy endometrium (HE). A total of 45 patients were enrolled into the study, 18 patients diagnosed with EC1, 12 diagnosed with EC2, and 15 HE controls. Tumor tissues or healthy endometrial tissues were dissected from archival formalin-fixed paraffin-embedded (FFPE) using laser capture microdissection (LCM). RNA was isolated from collected material and the expression of selected miRNAs was determined using the real-time qPCR. We found that miR-23b, miR-125b-5p, miR-199a-3p, miR-221-3p, and miR-451a were downregulated in EC in comparison to HE. Moreover, the expression of miR-34a-5p and miR-146-5p was higher in EC1 compared to EC2. Analysis of The Cancer Genome Atlas (TCGA) database confirmed decreased levels of miR-23b, miR-125b-5p, and miR-199a-3p in EC. Decreased miR-23b expression was associated with worse survival of EC patients.
Collapse
Affiliation(s)
- Klaudia Klicka
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Mielniczuk
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jarosław Wejman
- grid.414852.e0000 0001 2205 7719Department of Pathology, Medical Center of Postgraduate Education, 01-826 Warsaw, Poland
| | - Joanna Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Pathology, Medical Center of Postgraduate Education, 01-826 Warsaw, Poland
| | - Agata Gondek
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł K. Włodarski
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Wang B, Wang X, Zheng X, Han Y, Du X. JSCSNCP-LMA: a method for predicting the association of lncRNA-miRNA. Sci Rep 2022; 12:17030. [PMID: 36220862 PMCID: PMC9552706 DOI: 10.1038/s41598-022-21243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have long been considered the "white elephant" on the genome because they lack the ability to encode proteins. However, in recent years, more and more biological experiments and clinical reports have proved that ncRNAs account for a large proportion in organisms. At the same time, they play a decisive role in the biological processes such as gene expression and cell growth and development. Recently, it has been found that short sequence non-coding RNA(miRNA) and long sequence non-coding RNA(lncRNA) can regulate each other, which plays an important role in various complex human diseases. In this paper, we used a new method (JSCSNCP-LMA) to predict lncRNA-miRNA with unknown associations. This method combined Jaccard similarity algorithm, self-tuning spectral clustering similarity algorithm, cosine similarity algorithm and known lncRNA-miRNA association networks, and used the consistency projection to complete the final prediction. The results showed that the AUC values of JSCSNCP-LMA in fivefold cross validation (fivefold CV) and leave-one-out cross validation (LOOCV) were 0.9145 and 0.9268, respectively. Compared with other models, we have successfully proved its superiority and good extensibility. Meanwhile, the model also used three different lncRNA-miRNA datasets in the fivefold CV experiment and obtained good results with AUC values of 0.9145, 0.9662 and 0.9505, respectively. Therefore, JSCSNCP-LMA will help to predict the associations between lncRNA and miRNA.
Collapse
Affiliation(s)
- Bo Wang
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xinwei Wang
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xiaodong Zheng
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Yu Han
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xiaoxin Du
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| |
Collapse
|
22
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
23
|
Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosens Bioelectron 2022; 212:114423. [DOI: 10.1016/j.bios.2022.114423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
|
24
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
25
|
Malik J, Klammer M, Rolny V, Chan HLY, Piratvisuth T, Tanwandee T, Thongsawat S, Sukeepaisarnjaroen W, Esteban JI, Bes M, Köhler B, Swiatek-de Lange M. Comprehensive evaluation of microRNA as a biomarker for the diagnosis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:3917-3933. [PMID: 36157551 PMCID: PMC9367234 DOI: 10.3748/wjg.v28.i29.3917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Current guidelines for HCC management recommend surveillance of high-risk patients every 6 mo using ultrasonography. Serum biomarkers, like alpha-fetoprotein (AFP), protein induced by vitamin K absence/antagonist-II (PIVKA-II) and lectin-reactive AFP, show suboptimal performance for detection of HCC, which is crucial for successful resection or treatment. Thus, there is a significant need for new biomarkers to aid early diagnosis of HCC. Studies have shown that the expression level of human microRNAs (miRNAs), a small, non-coding RNA species released into the blood, can serve as an early marker for various diseases, including HCC.
AIM To evaluate the diagnostic role of miRNAs in HCC as single markers, signatures or in combination with known protein biomarkers.
METHODS Our prospective, multicenter, case-control study recruited 660 participants (354 controls with chronic liver disease and 306 participants with HCC) and employed a strategy of initial screening by two independent methods, real-time quantitative PCR (n = 60) and next-generation sequencing (n = 100), to assess a large number of miRNAs. The results from the next-generation sequencing and real-time quantitative PCR screening approaches were then combined to select 26 miRNAs (including two putative novel miRNAs). Those miRNAs were analyzed for their diagnostic potential as single markers or in combination with other miRNAs or established protein biomarkers AFP and PIVKA-II via real-time quantitative PCR in training (n = 200) and validation cohorts (n = 300).
RESULTS We identified 26 miRNAs that differentiated chronic liver disease controls from (early) HCC via two independent discovery approaches. Three miRNAs, miR-21-5p (miR-21), miR-320a and miR-186-5p, were selected by both methods. In the training cohort, only miR-21, miR-320d and miR-423 could significantly distinguish (Q < 0.05) between the HCC and chronic liver disease control groups. In the multivariate setting, miR-21 with PIVKA-II was selected as the best combination, resulting in an area under the curve of 0.87 for diagnosis and area under the curve of 0.74 for early diagnosis of HCC. In the validation cohort, only miR-21 and miR-423 could be confirmed as potential HCC biomarkers. A combination of miRNAs did not perform better than any single miRNA. Improvement of PIVKA-II performance through combination with miRNAs could not be confirmed in the validation panel. Two putative miRs, put-miR-6 and put-miR-99, were tested in the training and validation panels, but their expression could only be detected in very few samples and at a low level (cycle threshold between 31.24 and 34.97).
CONCLUSION miRNAs alone or as a signature in combination with protein biomarkers AFP and PIVKA-II do not improve the diagnostic performance of the protein biomarkers.
Collapse
Affiliation(s)
| | | | | | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Hat Yai 90112, Thailand
| | - Tawesak Tanwandee
- Division of Gastroenterology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Marta Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Barcelona 08005, Spain
| | - Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg 69120, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | |
Collapse
|
26
|
Dysregulated expression of microRNAs acts as prognostic and diagnostic biomarkers for glioma patients. Mol Genet Genomics 2022; 297:1389-1401. [DOI: 10.1007/s00438-022-01927-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
|
27
|
Zhou ZW, Zheng W, Xiang Z, Ye CS, Yin QQ, Wang SH, Xu CA, Wu WH, Hui TC, Wu QQ, Zhao LY, Pan HY, Xu KY. Clinical implications of exosome-derived noncoding RNAs in liver. J Transl Med 2022; 102:464-473. [PMID: 35013531 DOI: 10.1038/s41374-021-00723-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes, one of three main types of extracellular vesicles, are ~30-100 nm in diameter and have a lipid bilayer membrane. They are widely distributed in almost all body fluids. Exosomes have the potential to regulate unknown cellular and molecular mechanisms in intercellular communication, organ homeostasis, and diseases. They are critical signal carriers that transfer nucleic acids, proteins, lipids, and other substances into recipient cells, participating in cellular signal transduction and material exchange. ncRNAs are non-protein-coding genes that account for over 90% of the genome and include microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). ncRNAs are crucial for physiological and pathological activities in the liver by participating in gene transcription, posttranscriptional epigenetic regulation, and cellular processes through interacting with DNA, RNA, or proteins. Recent evidence from both clinical and preclinical studies indicates that exosome-derived noncoding RNAs (ncRNAs) are highly involved in the progression of acute and chronic liver diseases by regulating hepatic lipid metabolism, innate immunity, viral infection, fibrosis, and cancer. Therefore, exosome-derived ncRNAs have promising potential and clinical implications for the early diagnosis, targeted therapy, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Zhe Wen Zhou
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Wei Zheng
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Zheng Xiang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Cun Si Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Qiao Qiao Yin
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shou Hao Wang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Cheng An Xu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wen Hao Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Tian Chen Hui
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qing Qing Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Ling Yun Zhao
- Emergency Medicine Unit, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Hong Ying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui, China.
| | - Ke Yang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| |
Collapse
|
28
|
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers (Basel) 2022; 14:cancers14081865. [PMID: 35454774 PMCID: PMC9032679 DOI: 10.3390/cancers14081865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Mitochondria are important organelles involved in several key cellular processes including energy production and cell death regulation. For this reason, it is unsurprising that mitochondrial function and structure are altered in several pathological states including cancer. Cancer cells present variate strategies to generate sufficient energy to sustain their high proliferation rates. These adaptative strategies can be mediated by extracellular signals such as extracellular vesicles. These vesicles can alter recipient cellular behavior by delivering their molecular cargo. This review explores the different EV-mediated mitochondrial reprogramming mechanisms supporting cancer survival and progression. Abstract Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
Collapse
|
29
|
Wang W, Hao LP, Song H, Chu XY, Wang R. The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma. Front Oncol 2022; 12:790916. [PMID: 35280805 PMCID: PMC8912917 DOI: 10.3389/fonc.2022.790916] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth highest-incidence cancer and the 4th most deadly cancer all over the world, with a high fatality and low diagnostic rate. Nowadays, Excessive alcohol consumption, type-2 diabetes, smoking and obesity have become some primary risk factors of HCC. As intercellular messenger transporting information cargoes between cells, exosomes are a type of extracellular vesicles (EVs) released by most types of cells including tumor cells and non-tumor cells and play a pivotal role in establishing an HCC microenvironment. Exosomes, and more generally EVs, contain different molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids and transcription factors. The three main ncRNAs in exosomes are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs). NcRNAs, identified as essential components, are selectively sorted into exosomes and exosomal ncRNAs show great potential in regulating tumor development, including proliferation, invasion, angiogenesis, metastasis, immune escape and drug resistance. Here, we chiefly review the formation and uptake of exosomes, classification of exosomal ncRNAs and current research on the roles of exosomal ncRNAs in HCC progression. We also explored their clinical applications as new diagnostic biomarkers and therapeutic avenues in HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Ping Hao
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
MicroRNAs and drug resistance in colorectal cancer with special focus on 5-fluorouracil. Mol Biol Rep 2022; 49:5165-5178. [PMID: 35212928 DOI: 10.1007/s11033-022-07227-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is globally one of the most common cancers in all age groups. The current chemotherapy combinations for colorectal cancer treatment include 5-fluorouracil-based regimens; however, drug resistance remains one of the main reasons for chemotherapy failure and disease recurrence. Many studies have determined colorectal cancer chemoresistance mechanisms such as drug efflux, cell cycle arrest, DNA damage repair, apoptosis, autophagy, vital enzymes, epigenetic, epithelial-mesenchymal transition, stem cells, and immune system suppression. Several microRNAs affect drug resistance by regulating the drug resistance-related target genes in colorectal cancer. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with colorectal cancer. This work reviews and discuss the role of selected microRNAs in 5-fluorouracil resistance and their molecular mechanisms in colorectal cancer.
Collapse
|
31
|
Non-enzymatic detection of miR-21 in cancer cells using a homogeneous mix-and-read smart probe assay. Anal Biochem 2022; 645:114601. [PMID: 35182494 DOI: 10.1016/j.ab.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
Abstract
We report a new assay system for the detection of miR-21 in cancer cells. The new assay works at room temperature and it does not involve enzymatic amplification. It consists a hairpin smart probe, designed to specifically recognize miR-21 target sequence. We tested the performance and sequence recognition capability of the smart probe to confirm desired specifications. We used the smart probe for the sequence-specific recognition of synthetic miR-21 oligonucleotides as well as mismatch sequences and we found that the probe recognizes the target sequence-specifically, while discriminating against mismatched sequences. We determined the limit of detection and limit of quantitation for the miR-21 oligonucleotides to be 1.72 nM and 5.78 nM, respectively, while the sensitivity is 6.90 × 1011 c.p.sM-1. More importantly, we showed that the smart probe-based method is also sensitive and selective for miR-21 when applied to crude extractions from MCF-7 cancer cell line at room temperature, with the results showing high fluorescence signals for the MCF-7 samples while showing much less signals for samples that did not contain miR-21. Thus, this new smart probe system constitutes a homogeneous, mix-and-read detection technique that can provide reliable diagnostics of miR-21 cancer biomarker at room temperature.
Collapse
|
32
|
Zhou S, Sun W, Zhang P, Li L. Predicting Pseudogene-miRNA Associations Based on Feature Fusion and Graph Auto-Encoder. Front Genet 2021; 12:781277. [PMID: 34966413 PMCID: PMC8710693 DOI: 10.3389/fgene.2021.781277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudogenes were originally regarded as non-functional components scattered in the genome during evolution. Recent studies have shown that pseudogenes can be transcribed into long non-coding RNA and play a key role at multiple functional levels in different physiological and pathological processes. microRNAs (miRNAs) are a type of non-coding RNA, which plays important regulatory roles in cells. Numerous studies have shown that pseudogenes and miRNAs have interactions and form a ceRNA network with mRNA to regulate biological processes and involve diseases. Exploring the associations of pseudogenes and miRNAs will facilitate the clinical diagnosis of some diseases. Here, we propose a prediction model PMGAE (Pseudogene–MiRNA association prediction based on the Graph Auto-Encoder), which incorporates feature fusion, graph auto-encoder (GAE), and eXtreme Gradient Boosting (XGBoost). First, we calculated three types of similarities including Jaccard similarity, cosine similarity, and Pearson similarity between nodes based on the biological characteristics of pseudogenes and miRNAs. Subsequently, we fused the above similarities to construct a similarity profile as the initial representation features for nodes. Then, we aggregated the similarity profiles and associations of nodes to obtain the low-dimensional representation vector of nodes through a GAE. In the last step, we fed these representation vectors into an XGBoost classifier to predict new pseudogene–miRNA associations (PMAs). The results of five-fold cross validation show that PMGAE achieves a mean AUC of 0.8634 and mean AUPR of 0.8966. Case studies further substantiated the reliability of PMGAE for mining PMAs and the study of endogenous RNA networks in relation to diseases.
Collapse
Affiliation(s)
- Shijia Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ping Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Gao Y, Zhang S, Wu C, Li Q, Shen Z, Lu Y, Wu ZS. Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. ACS NANO 2021; 15:19211-19224. [PMID: 34854292 DOI: 10.1021/acsnano.1c04260] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abnormal expression of miRNAs is often detected in various human cancers. DNAzyme machines combined with gold nanoparticles (AuNPs) hold promise for detecting specific miRNAs in living cells but show short circulation time due to the fragility of catalytic core. Using miRNA-21 as the model target, by introducing a circular bulging DNA shield into the middle of the catalytic core, we report herein a self-protected DNAzyme (E) walker capable of fully stepping on the substrate (S)-modified AuNP for imaging intracellular miRNAs. The DNAzyme walker exhibits 5-fold enhanced serum resistance and more than 8-fold enhanced catalytic activity, contributing to the capability to image miRNAs much higher than commercial transfection reagent and well-known FISH technique. Diseased cells can accurately be distinguished from healthy cells. Due to its universality, DNAzyme walker can be extended for imaging other miRNAs only by changing target binding domain, indicating a promising tool for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Chengwei Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Li J, Liu S, Wang J, Liu R, Yang X, Wang K, Huang J. Photocaged amplified FRET nanoflares: spatiotemporal controllable of mRNA-powered nanomachines for precise and sensitive microRNA imaging in live cells. Nucleic Acids Res 2021; 50:e40. [PMID: 34935962 PMCID: PMC9023253 DOI: 10.1093/nar/gkab1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
There is considerable interest in creating a precise and sensitive strategy for in situ visualizing and profiling intracellular miRNA. Present here is a novel photocaged amplified FRET nanoflare (PAFN), which spatiotemporal controls of mRNA-powered nanomachine for precise and sensitive miRNA imaging in live cells. The PAFN could be activated remotely by light, be triggered by specific low-abundance miRNA and fueled by high-abundance mRNA. It offers high spatiotemporal control over the initial activity of nanomachine at desirable time and site, and a ‘one-to-more’ ratiometric signal amplification model. The PAFN, an unprecedented design, is quiescent during the delivery process. However, upon reaching the interest tumor site, it can be selectively activated by light, and then be triggered by specific miRNA, avoiding undesirable early activation and reducing nonspecific signals, allowing precise and sensitive detection of specific miRNA in live cells. This strategy may open new avenues for creating spatiotemporally controllable and endogenous molecule-powered nanomachine, facilitating application at biological and medical imaging.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China.,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Ruiting Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| |
Collapse
|
35
|
Nimitrungtawee N, Inmutto N, Chattipakorn SC, Chattipakorn N. Extracellular vesicles as a new hope for diagnosis and therapeutic intervention for hepatocellular carcinoma. Cancer Med 2021; 10:8253-8271. [PMID: 34708589 PMCID: PMC8633266 DOI: 10.1002/cam4.4370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer with a high mortality rate. Early diagnosis and treatment before tumor progression into an advanced stage is ideal. The current diagnosis of HCC is mainly based on imaging modalities such as ultrasound, computed tomography, and magnetic resonance imaging. These methods have some limitations including diagnosis in the case of very small tumors with atypical imaging patterns. Extracellular vesicles (EVs) are nanosized vesicles which have been shown to act as an important vector for cell-to-cell communication. In the past decade, EVs have been investigated with regard to their roles in HCC formation. Since these EVs contain biomolecular cargo such as nucleic acid, lipids, and proteins, it has been proposed that they could be a potential source of tumor biomarkers and a vector for therapeutic cargo. In this review, reports on the roles of HCC-derived EVs in tumorigenesis, and clinical investigations using circulating EVs as a biomarker for HCC and their potential diagnostic roles have been comprehensively summarized and discussed. In addition, findings from in vitro and in vivo reports investigating the potential roles of EVs as therapeutic interventions are also presented. These findings regarding the potential benefits of EVs will encourage further investigations and may allow us to devise novel strategies using EVs in the early diagnosis as well as for treatment of HCC in the future.
Collapse
Affiliation(s)
- Natthaphong Nimitrungtawee
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Nakarin Inmutto
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
36
|
Norollahi SE, Foumani MG, Pishkhan MK, Shafaghi A, Alipour M, Jamkhaneh VB, Marghoob MN, Vahidi S. DNA Methylation Profiling of MYC, SMAD2/3 and DNMT3A in Colorectal Cancer. Oman Med J 2021; 36:e315. [PMID: 34804598 PMCID: PMC8581152 DOI: 10.5001/omj.2020.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
Epigenetic modifications, particularly DNA methylation, is commonplace and a remarkable factor in carcinogenesis transformation. Conspicuously, previous findings have presented a cluster of irregular promoter methylation alterations related with silencing of tumor suppressor genes, little is accepted regarding their sequential DNA methylation (hypo and hyper) modifications during the cancer progression. In this way, fluctuations of DNA methylation of many genes, especially MYC, SMAD2/3, and DNMT3A, have an impressive central key role in many different cancers, including colorectal cancer (CRC). CRC is distinguished by DNA methylation, which is related to tumorigenesis and also genomic instability. Importantly, molecular heterogeneity between multiple adenomas in different patients with CRC may show diverse developmental phenotypes for these kinds of tumors. Conclusively, studying factors that are involved in CRC carcinogenesis, especially the alterations in epigenetic elements, such as DNA methylation besides RNA remodeling, and histone modification, acetylation and phosphorylation, can be influential to find new therapeutic and diagnostic biomarkers in this type of malignancy. In this account, we discuss and address the potential significant methylated modifications of these genes and their importance during the development of CRC carcinogenesis.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Afshin Shafaghi
- Faculty of Medicine, Department of Gastroenterology, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Alipour
- Department of Biology, Islamic Azad University of Babol Branch, Babol, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Mohammad Namayan Marghoob
- Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran.,Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
37
|
Yang Q, Yang F, Dai W, Meng X, Wei W, Cheng Y, Dong J, Lu H, Dong H. DNA Logic Circuits for Multiple Tumor Cells Identification Using Intracellular MicroRNA Molecular Bispecific Recognition. Adv Healthc Mater 2021; 10:e2101130. [PMID: 34486246 DOI: 10.1002/adhm.202101130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Indexed: 12/19/2022]
Abstract
The aberrant expression level of intracellular microRNAs (miRNAs) holds great promise for differentiating cell types at the molecular level. However, cell subtype discrimination based on a single miRNA molecular level is not sufficient and reliable. Herein, multiple identifiable and reporting modules are integrated into a single DNA circuit for multiple cancer cell subtypes identification based on miRNAs bispecific recognition. The DNA three-dimensional (3D) logic gate nano-hexahedron framework extends three recognition modules and three reporting modules to form three "AND" logic gates. Each Boolean operator "AND" returns an "ON" signal in the presence of bispecific miRNAs, simultaneously enabling three types of cell subtype identification. It not only enables the discrimination of cancer cells A549 and MCF-7 from normal cells NHDF but also successfully distinguishes different types of cancer cells. The bispecific intracellular miRNA controllable DNA circuit, with low signal-to-noise ratio, easily extends to various cell type discrimination by adjusting the miRNA species, provides huge opportunities for accurately differentiating multiple cell types at the molecular level.
Collapse
Affiliation(s)
- Qiqi Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jinhong Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Huiting Lu
- Department of Chemistry School of Chemistry and Bioengineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Department of Chemistry & Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Department of Chemistry School of Chemistry and Bioengineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Centre Shenzhen University Shenzhen 518071 P. R. China
| |
Collapse
|
38
|
Moret-Tatay I, Cerrillo E, Hervás D, Iborra M, Sáez-González E, Forment J, Tortosa L, Nos P, Gadea J, Beltrán B. Specific Plasma MicroRNA Signatures in Predicting and Confirming Crohn's Disease Recurrence: Role and Pathogenic Implications. Clin Transl Gastroenterol 2021; 12:e00416. [PMID: 34695034 PMCID: PMC8547914 DOI: 10.14309/ctg.0000000000000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are important epigenetic regulators in Crohn's disease (CD); however, their contribution to postoperative recurrence (POR) is still unknown. We aimed to characterize the potential role of miRNAs in predicting POR in patients with CD and to identify their pathogenic implications. METHODS Of 67 consecutively operated patients with CD, we included 44 with pure ileal CD. Peripheral blood samples were taken before surgery and during follow-up. The patients were classified according to the presence or absence of POR assessed by ileocolonoscopy or magnetic resonance imaging enterography. The miRNAs were profiled by reverse transcription polymerase chain reaction before surgery and during morphological POR or, for those who remained in remission, 1 year after surgery. R software and mirWalk were used. RESULTS Five human miRNAs (miR-191-5p, miR-15b-5p, miR-106b-5p, miR-451a, and miR-93-5p) were selected for discriminating between the 2 patient groups at presurgery (PS), with an area under the curve of 0.88 (95% confidence interval [0.79, 0.98]). Another 5 (miR-15b-5p, miR-451a, miR-93-5p, miR-423-5p, and miR-125b-5p) were selected for 1 year, with an area under the curve of 0.96 (95% confidence interval [0.91, 1.0]). We also created nomograms for POR risk estimation. CCND2 and BCL9L genes were related to PS miRNA profiles; SENP5 and AKT3 genes were related to PS and 1 year; and SUV39H1 and MAPK3K10 were related to 1 year. DISCUSSION Different plasma miRNA signatures identify patients at high POR risk, which could help optimize patient outcomes. We developed nomograms to facilitate the clinical use of these results. The identified miRNAs participate in apoptosis, autophagy, proinflammatory immunological T-cell clusters, and reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - David Hervás
- Biostatistics Unit, Health Research IIS La Fe, Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Javier Forment
- The Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia- Spanish Research Council (CSIC), Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Jose Gadea
- The Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia- Spanish Research Council (CSIC), Valencia, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
39
|
Mei D, Qi Y, Xia Y, Ma J, Hu H, Ai J, Chen L, Wu N, Liao D. Microarray profile analysis identifies ETS1 as potential biomarker regulated by miR-23b and modulates TCF4 in gastric cancer. World J Surg Oncol 2021; 19:311. [PMID: 34686186 PMCID: PMC8540102 DOI: 10.1186/s12957-021-02417-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Gastric cancer (GC), a common malignancy of the human digestive system, represents the second leading cause of cancer-related deaths worldwide. Early detection of GC has a significant impact on clinical outcomes. The aim of this study was to identify potential GC biomarkers. Methods In this study, we conducted a multi-step analysis of expression profiles in GC clinical samples downloaded from TCGA database to identify differentially expressed miRNAs (DEMs) and differentially expressed mRNAs (DEGs). Potential prognostic biomarkers from the available DEMs were then established using the Cox regression method. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the biological role of the predicted target genes of the miRNA biomarkers. Then, the prognostic DEM-mediated regulatory network was constructed based on transcription factor (TF)–miRNA–target interaction. Subsequently, the consensus genes were further determined based on the overlap between DEGs and these target genes of DEMs. Besides, expression profile, co-expression analysis, immunity, and prognostic values of these prognostic genes were also investigated to further explore the roles in the mechanism of GC tumorigenesis. Results We got five miRNAs, including miR-23b, miR-100, miR-143, miR-145, and miR-409, which are associated with the overall survival of GC patients. Subsequently, enrichment analysis of the target genes of the miRNA biomarkers shown that the GO biological process terms were mainly enriched in mRNA catabolic process, nuclear chromatin, and RNA binding. In addition, the KEGG pathways were significantly enriched in fatty acid metabolism, extracellular matrix (ECM) receptor interaction, and proteoglycans in cancer pathways. The transcriptional regulatory network consisting of 68 TFs, 4 DEMs, and 58 targets was constructed based on the interaction of TFs, miRNAs, and targets. The downstream gene ETS1 of miR-23b and TCF4 regulated by ETS1 were obtained by the regulatory network construction and co-expression analysis. High expression of ETS1 and TCF4 indicated poor prognosis in GC patients, particularly in the advanced stages. The expression of ETS1 and TCF4 was correlated with CD4+ T cells, CD8+ T cells, and B cells. Conclusions miR-23b, ETS1, and TCF4 were identified as the prognostic biomarkers. ETS1 and TCF4 had potential immune function in GC, which provided a theoretical basis for molecular-targeted combined immunotherapy in the future.
Collapse
Affiliation(s)
- Dinglian Mei
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Yalong Qi
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Yuanyuan Xia
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Jun Ma
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Hao Hu
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Jun Ai
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Liqiang Chen
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Ning Wu
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
| | - Daixiang Liao
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China.
| |
Collapse
|
40
|
Farré PL, Duca RB, Massillo C, Dalton GN, Graña KD, Gardner K, Lacunza E, De Siervi A. MiR-106b-5p: A Master Regulator of Potential Biomarkers for Breast Cancer Aggressiveness and Prognosis. Int J Mol Sci 2021; 22:ijms222011135. [PMID: 34681793 PMCID: PMC8539154 DOI: 10.3390/ijms222011135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BCa) is the leading cause of death by cancer in women worldwide. This disease is mainly stratified in four subtypes according to the presence of specific receptors, which is important for BCa aggressiveness, progression and prognosis. MicroRNAs (miRNAs) are small non-coding RNAs that have the capability to modulate several genes. Our aim was to identify a miRNA signature deregulated in preclinical and clinical BCa models for potential biomarker discovery that would be useful for BCa diagnosis and/or prognosis. We identified hsa-miR-21-5p and miR-106b-5p as up-regulated and hsa-miR-205-5p and miR-143-3p as down-regulated in BCa compared to normal breast or normal adjacent (NAT) tissues. We established 51 shared target genes between hsa-miR-21-5p and miR-106b-5p, which negatively correlated with the miRNA expression. Furthermore, we assessed the pathways in which these genes were involved and selected 12 that were associated with cancer and metabolism. Additionally, GAB1, GNG12, HBP1, MEF2A, PAFAH1B1, PPP1R3B, RPS6KA3 and SESN1 were downregulated in BCa compared to NAT. Interestingly, hsa-miR-106b-5p was up-regulated, while GAB1, GNG12, HBP1 and SESN1 were downregulated in aggressive subtypes. Finally, patients with high levels of hsa-miR-106b-5 and low levels of the abovementioned genes had worse relapse free survival and worse overall survival, except for GAB1.
Collapse
Affiliation(s)
- Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Guillermo Nicolás Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Karen Daniela Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA;
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires B1900, Argentina;
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina; (P.L.F.); (R.B.D.); (C.M.); (G.N.D.); (K.D.G.)
- Correspondence: ; Tel.: +54-11-4783-2869 (ext. 1206)
| |
Collapse
|
41
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
42
|
|
43
|
Wang T, Xu Y, Liu X, Zeng Y, Liu L. miR-96-5p is the tumor suppressor in osteosarcoma via targeting SYK. Biochem Biophys Res Commun 2021; 572:49-56. [PMID: 34343834 DOI: 10.1016/j.bbrc.2021.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Osteosarcoma is a multiple malignant tumor in adolescents. MicroRNAs (MiRNAs) have been found to express abnormally in OS tissues and are considered as potential targets for OS prognosis and treatment. METHODS MiR-96-5p and SYK expression in clinical samples, osteoblast and OS cell lines were detected. The changes of cell proliferation, apoptosis, adhesion and metastasis of OS cells were detected by CCK-8, BrdU, caspase-3 activity and transwell assay. Dual luciferase report analysis and RNA pull-down were used to confirm binding relation of miR-96-5p and SYK. RESULTS MiR-96-5p was increased in OS tissue and cells. Moreover, miR-96-5p inhibits proliferation, adhesion and migration of HOS and Saos-2 cells, and promotes cell apoptosis. SYK has been identified to be targeted by miR-96-5p. Overexpressed SYK inhibits the suppressive impact of miR-96-5 on OS cells. CONCLUSION MiR-96-5p may function as an effective target in OS treatment.
Collapse
Affiliation(s)
- Taiping Wang
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China.
| | - Yong Xu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Xin Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Yong Zeng
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Lei Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| |
Collapse
|
44
|
Karadag A, Ozen A, Ozkurt M, Can C, Bozgeyik I, Kabadere S, Uyar R. Identification of miRNA signatures and their therapeutic potentials in prostate cancer. Mol Biol Rep 2021; 48:5531-5539. [PMID: 34318435 DOI: 10.1007/s11033-021-06568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/13/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Herein, we identified miRNA signatures that were able to differentiate malignant prostate cancer from benign prostate hyperplasia and revealed the therapeutic potential of these miRNAs against prostate cancer development. METHODS AND RESULTS MicroRNA expressions were determined by qPCR. MTT was used for cell viability analysis and immunohistochemistry was performed for Bax/Bcl-2 staining. ELISA was used to measure MMP2/9 levels. Wound healing assay was used for the evaluation of cell migration. Notably, expression levels of miR-125b-5p, miR-145-5p and miR-221-3p were significantly reduced in prostate cancer patients as compared to BPH patients. Moreover, ectopic expression of miR-125b-5p, miR-145-5p and miR-221-3p resulted in significant inhibition of cell proliferation and altered cell morphology. Also, expression level of Bax protein was increased while Bcl-2 level was reduced in cells treated with miR-125b-5p, miR-145-5p and miR-221-3p mimics. Enhanced expression of miR-125b-5p, miR-145-5p and miR-221-3p was also significantly altered the expression of caspase 3 and 8 levels. In addition, MMP9 levels were significantly reduced in cells ectopically expressing miR-221-3p. All miRNA mimics significantly interfered with the migration of prostate cancer cells. CONCLUSIONS Consequently, our findings point to an important role of these three miRNAs in prostate cancer and indicate that miR-125b-5p, miR-145-5p and miR-221-3p are potential therapeutic targets against prostate cancer.
Collapse
Affiliation(s)
- Abdullah Karadag
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
- Department of Physiology, Faculty of Medicine, Adiyaman University, Siteler, Atatürk Blv. No: 411, 02200, Adıyaman Merkez, Adiyaman, Turkey.
| | - Ata Ozen
- Department of Urology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mete Ozkurt
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cavit Can
- Department of Urology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Selda Kabadere
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ruhi Uyar
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
45
|
Bayramoglu Tepe N, Bozgeyik E, Bozdag Z, Balat O, Ozcan HC, Ugur MG. Identification of autophagy-associated miRNA signature for the cervical squamous cell cancer and high-grade cervical intraepithelial lesions. Reprod Biol 2021; 21:100536. [PMID: 34298410 DOI: 10.1016/j.repbio.2021.100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Cervical cancer markedly threatens women's health worldwide and currently ranks fourth leading cause of cancer mortality in women according to recent global cancer statistics. Recent advances have proven that not only tumor suppressor and oncogenes but also non-coding RNAs including micro RNAs (miRNAs) have significant impact in the development and progression of cervical cancers. Previous studies have identified many cancer-specific miRNAs for the early detection of cervical cancers. However, the diagnostic and prognostic use of autophagy-associated miRNAs for the cervical squamous cell cancer (SCC) cases and high-grade squamous intraepithelial lesion (HSIL) have not been uncovered. In the present study, we revealed that miRNAs are differentially expressed in both cervical SCC and HSIL. A total of 35 HSIL, 35 cervical SCC and 30 healthy controls were enrolled for the present study. Total RNA including miRNAs were isolated from the FFPE tissue samples and miRNA expression levels were quantified by quantitative PCR. Predicted miRNA targets of autophagy related genes were determined using miRNA-target prediction algorithms. MiR-143, miR-372, miR-375 and miR-30c were markedly downregulated in HSIL and cervical SCC. MiR-130a was significantly upregulated in the cervical SCC group compared to HSIL and control groups. MiR-30a, miR-520e, miR-548c and miR-372 were significantly associated with the overall survival of cervical SCC patients and these miRNAs were determined to be significant diagnostic markers as revealed by ROC analysis. Together, these results indicate that autophagy-associated miRNAs are potentially valuable for the differential diagnosis and targeted therapy to cervical cancer.
Collapse
Affiliation(s)
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| | - Zehra Bozdag
- Department of Pathology, University of Gaziantep, Gaziantep, Turkey
| | - Ozcan Balat
- Department of Obstetrics and Gynecology, University of Gaziantep, Gaziantep, Turkey
| | | | - Mete Gurol Ugur
- Department of Obstetrics and Gynecology, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
46
|
Diagnostic Value of Salivary miRNA in Head and Neck Squamous Cell Cancer: Systematic Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22137026. [PMID: 34209954 PMCID: PMC8268325 DOI: 10.3390/ijms22137026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Several studies have highlighted the diagnostic potential of salivary microRNA (miRNA) in head and neck squamous cell cancer (HNSCC). The purpose of this meta-analysis was to summarize published studies and evaluate the diagnostic accuracy of salivary miRNA in HNSCC detection. In this meta-analysis, we systematically searched PubMed, EMBASE, and Cochrane Library databases for studies on miRNA and HNSCC diagnosis. Pooled sensitivity, specificity, and diagnostic odds ratio (DOR) with a summary receiver-operating characteristic curve were calculated using a bivariate random-effect meta-analysis model. Furthermore, subgroup analyses were conducted to explore the main sources of heterogeneity. Seventeen studies from ten articles, including 23 miRNA and a total of 759 subjects, were included in this meta-analysis. The pooled sensitivity and specificity of salivary miRNA in the diagnosis of HNSCC were 0.697 (95% CI: 0.644–0.744) and 0.868 (95% CI: 0.811–0.910), respectively. The overall area under the curve was 0.803 with a DOR of 12.915 (95% CI: 9.512–17.534). Salivary miRNAs are a promising non-invasive diagnostic biomarker with moderate accuracy for HNSCC. These results must be verified by large-scale prospective studies.
Collapse
|
47
|
Benesova S, Kubista M, Valihrach L. Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis. Diagnostics (Basel) 2021; 11:964. [PMID: 34071824 PMCID: PMC8229417 DOI: 10.3390/diagnostics11060964] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol's performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.
Collapse
Affiliation(s)
- Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology, CAS, BIOCEV, 252 50 Vestec, Czech Republic; (S.B.); (M.K.)
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, CAS, BIOCEV, 252 50 Vestec, Czech Republic; (S.B.); (M.K.)
- TATAA Biocenter AB, 411 03 Gothenburg, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, CAS, BIOCEV, 252 50 Vestec, Czech Republic; (S.B.); (M.K.)
| |
Collapse
|
48
|
Paul D. Cancer as a form of life: Musings of the cancer and evolution symposium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:120-139. [PMID: 33991584 DOI: 10.1016/j.pbiomolbio.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Advanced cancer is one of the major problems in oncology as currently, despite the recent technological and scientific advancements, the mortality of metastatic disease remains very high at 70-90%. The field of oncology is in urgent need of novel ideas in order to improve quality of life and prognostic of cancer patients. The Cancer and Evolution Symposium organized online October 14-16, 2020 brought together a group of specialists from different fields that presented innovative strategies for better understanding, preventing, diagnosing, and treating cancer. Today still, the main reasons behind the high incidence and mortality of advanced cancer are, on one hand, the paucity of funding and effort directed to cancer prevention and early detection, and, on the other hand, the lack of understanding of the cancer process itself. I argue that besides being a disease, cancer is also a form of life, and, this frame of reference may provide a fresh look on this complex process. Here, I provide a different angle to several contemporary cancer theories discussing them from the perspective of "cancer-forms of life" (i.e. bionts) point of view. The perspectives and the several "bionts" introduced here, by no means exclusive or comprehensive, are just a shorthand that will hopefully encourage the readers, to further explore the contemporary oncology theoretical landscape.
Collapse
Affiliation(s)
- Doru Paul
- Medical Oncology, Weill Cornell Medicine, 1305 York Avenue 12th Floor, New York, NY, 10021, USA.
| |
Collapse
|
49
|
Kim KS, Lee JS, Park JH, Lee EY, Moon JS, Lee SK, Lee JS, Kim JH, Kim HS. Identification of Novel Biomarker for Early Detection of Diabetic Nephropathy. Biomedicines 2021; 9:biomedicines9050457. [PMID: 33922243 PMCID: PMC8146473 DOI: 10.3390/biomedicines9050457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. After development of DN, patients will progress to end-stage renal disease, which is associated with high morbidity and mortality. Here, we developed early-stage diagnostic biomarkers to detect DN as a strategy for DN intervention. For the DN model, Zucker diabetic fatty rats were used for DN phenotyping. The results revealed that DN rats showed significantly increased blood glucose, blood urea nitrogen (BUN), and serum creatinine levels, accompanied by severe kidney injury, fibrosis and microstructural changes. In addition, DN rats showed significantly increased urinary excretion of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Transcriptome analysis revealed that new DN biomarkers, such as complementary component 4b (C4b), complementary factor D (CFD), C-X-C motif chemokine receptor 6 (CXCR6), and leukemia inhibitory factor (LIF) were identified. Furthermore, they were found in the urine of patients with DN. Since these biomarkers were detected in the urine and kidney of DN rats and urine of diabetic patients, the selected markers could be used as early diagnosis biomarkers for chronic diabetic nephropathy.
Collapse
Affiliation(s)
- Kyeong-Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
| | - Jae-Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
| | - Eun-Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
| | - Sang-Kyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Jong-Sil Lee
- Department of Pathology, Institute of Health Sciences, College of Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea;
| | - Jung-Hwan Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (J.-H.K.); (H.-S.K.); Tel.: +82-55-772-8072 (J.-H.K.); +82-31-290-7789 (H.-S.K.)
| | - Hyung-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
- Correspondence: (J.-H.K.); (H.-S.K.); Tel.: +82-55-772-8072 (J.-H.K.); +82-31-290-7789 (H.-S.K.)
| |
Collapse
|
50
|
Liu Y, Liu Z, Liu R, Wang K, Shi H, Huang J. A MnO 2 nanosheet-mediated photo-controlled DNAzyme for intracellular miRNA cleavage to suppress cell growth. Analyst 2021; 146:3391-3398. [PMID: 33876148 DOI: 10.1039/d1an00406a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Certain miRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed, thus, representing a potential new class of targets for therapeutic intervention. RNA-cleaving DNAzymes, mainly aimed at mRNA, have shown potential as therapeutic agents for various diseases. However, it's rarely reported that a DNAzyme was used for intracellular miRNA cleavage to suppress cell growth. Herein, we have developed a MnO2 nanosheet-mediated photo-controlled DNAzyme (NPD) for intracellular miRNA cleavage to suppress cell growth. MnO2 nanosheets adsorb photocaged DNAzymes, protect them from enzymatic digestion, and efficiently deliver them into cells. In the presence of intracellular glutathione (GSH), MnO2 nanosheets are reduced to Mn2+ ions, which serve as cofactors of the 8-17 DNAzyme for miRNA cleavage. Once the DNAzyme is activated by light, it can cyclically cleave endogenous miR-21 inside cells, which would suppress cancer cell migration and invasion, and finally induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Yehua Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| | | | | | | | | | | |
Collapse
|